首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Indian hedgehog (Ihh), a member of the vertebrate hedgehog morphogen family, is a key signaling molecule that controls chondrocyte proliferation and differentiation. In this study, we show a novel function of Ihh. Namely, it acts as an essential mediator of mechanotransduction in cartilage. Cyclic mechanical stress greatly induces the expression of Ihh by chondrocytes. This induction is abolished by gadolinium, an inhibitor of stretch-activated channels. This suggests that the IHH gene is mechanoresponsive. The mechano-induction of Ihh is essential for stimulating chondrocyte proliferation by mechanical loading. The presence of an Ihh functional blocking antibody during loading completely abolishes the stimulatory effect of mechanical load on proliferation. Furthermore, Ihh mediates the mechanotransduction process in a bone morphogenic protein (BMP)-dependent and parathyroid hormone-related peptide-independent manner. BMP 2/4 are up-regulated by mechanical stress through the induction of Ihh, and BMP antagonist noggin inhibits mechanical stimulation of chondrocyte proliferation. This suggests BMP lies downstream of Ihh in mechanotransduction pathway. Our data suggest that Ihh may transduce mechanical signals during cartilage growth and repair processes.  相似文献   

3.
A new study suggests that mechanical strain through the actin-binding protein filamin A leads to increased linkage between the extracellular matrix and cytoskeleton and decreased actin dynamics.  相似文献   

4.
Communication by touch: role of cellular extensions in complex animals   总被引:7,自引:0,他引:7  
Rørth P 《Cell》2003,112(5):595-598
Neurons make networks of intercellular connections. Many other cells also send out long cellular extensions and "touch" other cells far away. The extensions are intriguing, but what do they do? Possible rationales for this cell behavior include: (1) forming precise binary connections with the possibility of forming more complex networks, and (2) coupling of signaling with physical force.  相似文献   

5.
A new animal model for studying muscular dystrophy, a mutant form of the nematode Caenorhabditis elegans, brings the power of worm genetics to bear on the search for a cure for this disease; work on this worm has already led to the identification of a novel component that can suppress the mutant phenotype.  相似文献   

6.
Lee D 《Neuron》2007,56(3):419-421
The primate posterior parietal cortex has been implicated in a large number of cognitive functions. In this issue of Neuron, Cui and Andersen show that neurons in this area maintain effector-specific coding of motor intentions without specific sensory instructions and therefore when behavior is chosen by the animal freely.  相似文献   

7.
With tens of billions of dollars spent each year on the development of drugs to treat human diseases, and with fewer and fewer applications for investigational new drugs filed each year despite this massive spending, questions now abound on what changes to the drug discovery paradigm can be made to achieve greater success. The high rate of failure of drug candidates in clinical development, where the great majority of these drugs fail due to lack of efficacy, speak directly to the need for more innovative approaches to study the mechanisms of disease and drug discovery. Here we review systems biology approaches that have been devised over the last several years to understand the biology of disease at a more holistic level. By integrating a diversity of data like DNA variation, gene expression, protein–protein interaction, DNA–protein binding, and other types of molecular phenotype data, more comprehensive networks of genes both within and between tissues can be constructed to paint a more complete picture of the molecular processes underlying physiological states associated with disease. These more integrative, systems-level methods lead to networks that are demonstrably predictive, which in turn provides a deeper context within which single genes operate such as those identified from genome-wide association studies or those targeted for therapeutic intervention. The more comprehensive views of disease that result from these methods have the potential to dramatically enhance the way in which novel drug targets are identified and developed, ultimately increasing the probability of success for taking new drugs through clinical development. We highlight a number of the integrative approaches via examples that have resulted not only in the identification of novel genes for diabetes and cardiovascular disease, but in more comprehensive networks as well that describe the context in which the disease genes operate.  相似文献   

8.
The Golgi apparatus is a highly dynamic organelle through which nascent proteins released from the endoplasmic reticulum (ER) are trafficked. Proteins are post-translationally modified within the Golgi and subsequently packaged into carriers for transport to a variety of cellular destinations. This transit of proteins, as well as the maintenance of Golgi structure and position, is highly dependent upon the actin and microtubule cytoskeletons and their associated molecular motors. Here we review how motors contribute to the correct functioning of the Golgi in higher eukaryotes and discuss the secretory pathway as a model system for studying cooperation between motor proteins.  相似文献   

9.
Our experiments were designed to test the hypothesis that the cell surface interferon gamma receptor chains are preassembled rather than associated by ligand and to assess the molecular changes on ligand binding. To accomplish this, we used fluorescence resonance energy transfer, a powerful spectroscopic technique that has been used to determine molecular interactions and distances between the donor and acceptor. However, current commercial instruments do not provide sufficient sensitivity or the full spectra to provide decisive results of interactions between proteins labeled with blue and green fluorescent proteins in living cells. In our experiments, we used the blue fluorescent protein and green fluorescent protein pair, attached a monochrometer and charge-coupled device camera to a modified confocal microscope, reduced background fluorescence with the use of two-photon excitation, and focused on regions of single cells to provide clear spectra of fluorescence resonance energy transfer. In contrast to the prevailing view, the results demonstrate that the receptor chains are preassociated and that the intracellular domains move apart on binding the ligand interferon gamma. Application of this technology should lead to new rapid methods for high throughput screening and delineation of the interactome of cells.  相似文献   

10.
The ion channel formed by the homologous proteins MEC-4 and MEC-10 forms the core of a sensory mechanotransduction channel in Caenorhabditis elegans. Although the products of other mec genes are key players in the biophysics of transduction, the mechanism by which they contribute to the properties of the channel is unknown. Here, we investigate the role of two auxiliary channel subunits, MEC-2 (stomatin-like) and MEC-6 (paraoxonase-like), by coexpressing them with constitutively active MEC-4/MEC-10 heteromeric channels in Xenopus oocytes. This work extends prior work demonstrating that MEC-2 and MEC-6 synergistically increase macroscopic current. We use single-channel recordings and biochemistry to show that these auxiliary subunits alter function by increasing the number of channels in an active state rather than by dramatically affecting either single-channel properties or surface expression. We also use two-electrode voltage clamp and outside-out macropatch recording to examine the effects of divalent cations and proteases, known regulators of channel family members. Finally, we examine the role of cholesterol binding in the mechanism of MEC-2 action by measuring whole-cell and single-channel currents in MEC-2 mutants deficient in cholesterol binding. We suggest that MEC-2 and MEC-6 play essential roles in modulating both the local membrane environment of MEC-4/MEC-10 channels and the availability of such channels to be gated by force in vivo.  相似文献   

11.
Do-it-yourself bioanalytical equipment that requires no analytical skill to operate is currently available for use in intensive care units, operating suites, side wards, health centres, clinics, general practitioners'' surgeries, etc. Agreement is needed between the laboratory consultant and doctors and others using laboratory-type equipment and reagents in near-bedside analyses for diagnosis, clinical management, or health screening of their patients. Choice and safety of method procedure, operator training and accountability, quality control and assessment, maintenance, safety and future development of do-it-yourself equipment must be considered.  相似文献   

12.
Mechnotransduction, the phenomenon by which cells respond to applied force, is necessary for normal cell processes and is implicated in the pathology of several diseases including atherosclerosis. The exact mechanisms which govern how forces can affect gene expression have not been determined, but putative direct force effects on the genome would require transduction through the nuclear lamina. In this study we show that nuclei in cells exposed to shear stress significantly change shape, upregulate nuclear lamins and move lamins from the nuclear interior to the nuclear periphery. We hypothesize that the augmentation of the nuclear lamina at the nuclear periphery protects the nuclear interior from the force and allows a nuclear adaptation to shear stress. We also investigate the shear stress response of nuclei in cells that have been transfected with lamin A Delta50, which significantly stiffens nuclei. Lamin A Delta50 causes the premature aging syndrome Hutchinson-Gilford progeria syndrome (HGPS) and models many aspects of normal aging. We find that the presence of lamin A Delta50 in only 30% of cells greatly reduces the response of the nuclear lamina in all cells in the flow field. We suggest that cells expressing lamin A Delta50 lack the ability to adapt to flow and may prevent neighboring cells from adapting as well. These results provide insight into the development of cardiovascular disease both in patients with HGPS and in normal aging.  相似文献   

13.
14.
In touch: plant responses to mechanical stimuli   总被引:14,自引:0,他引:14  
Braam J 《The New phytologist》2005,165(2):373-389
  相似文献   

15.
Mechanical strain triggers a variety of cellular responses, but the underlying mechanotransduction process has not been established. Endothelial cells (EC) respond to mechanical strain by upregulating adhesion molecule expression through a signaling process involving reactive oxygen species (ROS), but the site of their generation is unknown. Mitochondria anchor to the cytoskeleton and could function as mechanotransducers by releasing ROS during cytoskeletal strain. In human umbilical vein EC (HUVEC), ROS production increased 221 +/- 17% during 6 h of cyclic strain vs. unstrained controls. Mitochondrial inhibitors diphenylene iodonium or rotenone abrogated this response, whereas inhibitors of nitric oxide (NO) synthase (L-nitroarginine), xanthine oxidase (allopurinol), or NAD(P)H oxidase (apocynin) had no effect. The antioxidants ebselen and diethyldithiocarbamate inhibited the increase in ROS, but the NO scavenger Hb had no effect. Thus strain induces ROS release from mitochondria. In other studies, HUVEC were rendered mitochondria deficient (rho0 EC) to determine the requirement for electron transport in the response to strain. Strain-induced 2'7'-dichlorofluorescein fluorescence was attenuated by >80% in rho0 EC compared with HUVEC (43 +/- 7 vs. 221 +/- 17%). Treatment with cytochalasin D abrogated strain-induced ROS production, indicating a requirement for the actin cytoskeleton. Cyclic strain (6 h) increased VCAM-1 expression in wild-type but not rho0 EC. Increases in NF-kappaB activation and VCAM-1 mRNA expression during strain were prevented by antioxidants. These findings demonstrate that mitochondria function as mechanotransducers in endothelium by increasing ROS signaling, which is required for strain-induced increase in VCAM-1 expression via NF-kappaB.  相似文献   

16.
Physical forces play an important role in modulating cell function and shaping tissue structure. Mechanotransduction, the process by which cells transduce physical force-induced signals into biochemical responses, is critical for mediating adaptations to mechanical loading in connective tissues. While much is known about mechanotransduction in cells involving forces delivered through extracellular matrix proteins and integrins, there is limited understanding of how mechanical signals are propagated through the interconnected cellular networks found in tissues and organs. We propose that intercellular mechanotransduction is a critical component for achieving coordinated remodeling responses to force application in connective tissues. We examine here recent evidence on different pathways of intercellular mechanotransduction and suggest a general model for how multicellular structures respond to mechanical loading as an integrated unit.  相似文献   

17.
This review focuses on the structure and function of a single mechanoreceptor organ in the cuticle of spiders. Knowledge emerging from the study of this organ promises to yield general principles that can be applied to mechanosensation in a wide range of animal systems. The lyriform slit sense organ on the antero-lateral leg patella of the spider Cupiennius salei is unusual in possessing large sensory neurons, whose cell bodies are close to the sites of sensory transduction, and accessible to intracellular recording during mechanotransduction. This situation, combined with recent technical developments, has made it possible to observe and experiment with all the major stages of mechanosensation. Important findings include the approximate size, number and ionic selectivity of the ion channels responsible for mechanotransduction, the types of voltage-activated ion channels responsible for action potential encoding, and the mechanisms controlling the dynamic properties of transduction and encoding. Most recently, a complex efferent system for peripheral modulation of mechanosensation has been discovered and partially characterized. Much remains to be learned about mechanosensation, but the lyriform slit sense organ system continues to offer important opportunities to advance our understanding of this crucial sense.  相似文献   

18.
19.
20.
In 1990, Hopkins and Ruiz-Riben stated that the target date o f the end o f 1995 for the eradication of dracunculiasis is unrealistic only if it is judged to be unimportant. Here, Ralph Muller reviews the situation in each endemic country, and looks at possible intervention strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号