首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
Methods for efficient and accurate prediction of RNA structure are increasingly valuable, given the current rapid advances in understanding the diverse functions of RNA molecules in the cell. To enhance the accuracy of secondary structure predictions, we developed and refined optimization techniques for the estimation of energy parameters. We build on two previous approaches to RNA free-energy parameter estimation: (1) the Constraint Generation (CG) method, which iteratively generates constraints that enforce known structures to have energies lower than other structures for the same molecule; and (2) the Boltzmann Likelihood (BL) method, which infers a set of RNA free-energy parameters that maximize the conditional likelihood of a set of reference RNA structures. Here, we extend these approaches in two main ways: We propose (1) a max-margin extension of CG, and (2) a novel linear Gaussian Bayesian network that models feature relationships, which effectively makes use of sparse data by sharing statistical strength between parameters. We obtain significant improvements in the accuracy of RNA minimum free-energy pseudoknot-free secondary structure prediction when measured on a comprehensive set of 2518 RNA molecules with reference structures. Our parameters can be used in conjunction with software that predicts RNA secondary structures, RNA hybridization, or ensembles of structures. Our data, software, results, and parameter sets in various formats are freely available at http://www.cs.ubc.ca/labs/beta/Projects/RNA-Params.  相似文献   

2.
Accurate prediction of RNA pseudoknotted secondary structures from the base sequence is a challenging computational problem. Since prediction algorithms rely on thermodynamic energy models to identify low-energy structures, prediction accuracy relies in large part on the quality of free energy change parameters. In this work, we use our earlier constraint generation and Boltzmann likelihood parameter estimation methods to obtain new energy parameters for two energy models for secondary structures with pseudoknots, namely, the Dirks–Pierce (DP) and the Cao–Chen (CC) models. To train our parameters, and also to test their accuracy, we create a large data set of both pseudoknotted and pseudoknot-free secondary structures. In addition to structural data our training data set also includes thermodynamic data, for which experimentally determined free energy changes are available for sequences and their reference structures. When incorporated into the HotKnots prediction algorithm, our new parameters result in significantly improved secondary structure prediction on our test data set. Specifically, the prediction accuracy when using our new parameters improves from 68% to 79% for the DP model, and from 70% to 77% for the CC model.  相似文献   

3.
Hausmann NZ  Znosko BM 《Biochemistry》2012,51(26):5359-5368
To better elucidate RNA structure-function relationships and to improve the design of pharmaceutical agents that target specific RNA motifs, an understanding of RNA primary, secondary, and tertiary structure is necessary. The prediction of RNA secondary structure from sequence is an intermediate step in predicting RNA three-dimensional structure. RNA secondary structure is typically predicted using a nearest neighbor model based on free energy parameters. The current free energy parameters for 2 × 3 nucleotide loops are based on a 23-member data set of 2 × 3 loops and internal loops of other sizes. A database of representative RNA secondary structures was searched to identify 2 × 3 nucleotide loops that occur in nature. Seventeen of the most frequent 2 × 3 nucleotide loops in this database were studied by optical melting experiments. Fifteen of these loops melted in a two-state manner, and the associated experimental ΔG°(37,2×3) values are, on average, 0.6 and 0.7 kcal/mol different from the values predicted for these internal loops using the predictive models proposed by Lu, Turner, and Mathews [Lu, Z. J., Turner, D. H., and Mathews, D. H. (2006) Nucleic Acids Res. 34, 4912-4924] and Chen and Turner [Chen, G., and Turner, D. H. (2006) Biochemistry 45, 4025-4043], respectively. These new ΔG°(37,2×3) values can be used to update the current algorithms that predict secondary structure from sequence. To improve free energy calculations for duplexes containing 2 × 3 nucleotide loops that still do not have experimentally determined free energy contributions, an updated predictive model was derived. This new model resulted from a linear regression analysis of the data reported here combined with 31 previously studied 2 × 3 nucleotide internal loops. Most of the values for the parameters in this new predictive model are within experimental error of those of the previous models, suggesting that approximations and assumptions associated with the derivation of the previous nearest neighbor parameters were valid. The updated predictive model predicts free energies of 2 × 3 nucleotide internal loops within 0.4 kcal/mol, on average, of the experimental free energy values. Both the experimental values and the updated predictive model can be used to improve secondary structure prediction from sequence.  相似文献   

4.
We describe a computational method for the prediction of RNA secondary structure that uses a combination of free energy and comparative sequence analysis strategies. Using a homology-based sequence alignment as a starting point, all favorable pairings with respect to the Turner energy function are identified. Each potentially paired region within a multiple sequence alignment is scored using a function that combines both predicted free energy and sequence covariation with optimized weightings. High scoring regions are ranked and sequentially incorporated to define a growing secondary structure. Using a single set of optimized parameters, it is possible to accurately predict the foldings of several test RNAs defined previously by extensive phylogenetic and experimental data (including tRNA, 5 S rRNA, SRP RNA, tmRNA, and 16 S rRNA). The algorithm correctly predicts approximately 80% of the secondary structure. A range of parameters have been tested to define the minimal sequence information content required to accurately predict secondary structure and to assess the importance of individual terms in the prediction scheme. This analysis indicates that prediction accuracy most strongly depends upon covariational information and only weakly on the energetic terms. However, relatively few sequences prove sufficient to provide the covariational information required for an accurate prediction. Secondary structures can be accurately defined by alignments with as few as five sequences and predictions improve only moderately with the inclusion of additional sequences.  相似文献   

5.
Insertions and deletions (indels) are common molecular evolutionary events. However, probabilistic models for indel evolution are under-developed due to their computational complexity. Here, we introduce several improvements to indel modeling: 1) While previous models for indel evolution assumed that the rates and length distributions of insertions and deletions are equal, here we propose a richer model that explicitly distinguishes between the two; 2) we introduce numerous summary statistics that allow approximate Bayesian computation-based parameter estimation; 3) we develop a method to correct for biases introduced by alignment programs, when inferring indel parameters from empirical data sets; and 4) using a model-selection scheme, we test whether the richer model better fits biological data compared with the simpler model. Our analyses suggest that both our inference scheme and the model-selection procedure achieve high accuracy on simulated data. We further demonstrate that our proposed richer model better fits a large number of empirical data sets and that, for the majority of these data sets, the deletion rate is higher than the insertion rate.  相似文献   

6.
RNA is directly associated with a growing number of functions within the cell. The accurate prediction of different RNA higher-order structures from their nucleic acid sequences will provide insight into their functions and molecular mechanics. We have been determining statistical potentials for a collection of structural elements that is larger than the number of structural elements determined with experimentally determined energy values. The experimentally derived free energies and the statistical potentials for canonical base-pair stacks are analogous, demonstrating that statistical potentials derived from comparative data can be used as an alternative energetic parameter. A new computational infrastructure—RNA Comparative Analysis Database (rCAD)—that utilizes a relational database was developed to manipulate and analyze very large sequence alignments and secondary-structure data sets. Using rCAD, we determined a richer set of energetic parameters for RNA fundamental structural elements including hairpin and internal loops. A new version of RNAfold was developed to utilize these statistical potentials. Overall, these new statistical potentials for hairpin and internal loops integrated into the new version of RNAfold demonstrated significant improvements in the prediction accuracy of RNA secondary structure.  相似文献   

7.
Christiansen ME  Znosko BM 《Biochemistry》2008,47(14):4329-4336
Because of the availability of an abundance of RNA sequence information, the ability to rapidly and accurately predict the secondary structure of RNA from sequence is becoming increasingly important. A common method for predicting RNA secondary structure from sequence is free energy minimization. Therefore, accurate free energy contributions for every RNA secondary structure motif are necessary for accurate secondary structure predictions. Tandem mismatches are prevalent in naturally occurring sequences and are biologically important. A common method for predicting the stability of a sequence asymmetric tandem mismatch relies on the stabilities of the two corresponding sequence symmetric tandem mismatches [Mathews, D. H., Sabina, J., Zuker, M., and Turner, D. H. (1999) J. Mol. Biol. 288, 911-940]. To improve the prediction of sequence asymmetric tandem mismatches, the experimental thermodynamic parameters for the 22 previously unmeasured sequence symmetric tandem mismatches are reported. These new data, however, do not improve prediction of the free energy contributions of sequence asymmetric tandem mismatches. Therefore, a new model, independent of sequence symmetric tandem mismatch free energies, is proposed. This model consists of two penalties to account for destabilizing tandem mismatches, two bonuses to account for stabilizing tandem mismatches, and two penalties to account for A-U and G-U adjacent base pairs. This model improves the prediction of asymmetric tandem mismatch free energy contributions and is likely to improve the prediction of RNA secondary structure from sequence.  相似文献   

8.
Current approaches to RNA structure prediction range from physics-based methods, which rely on thousands of experimentally measured thermodynamic parameters, to machine-learning (ML) techniques. While the methods for parameter estimation are successfully shifting toward ML-based approaches, the model parameterizations so far remained fairly constant. We study the potential contribution of increasing the amount of information utilized by RNA folding prediction models to the improvement of their prediction quality. This is achieved by proposing novel models, which refine previous ones by examining more types of structural elements, and larger sequential contexts for these elements. Our proposed fine-grained models are made practical thanks to the availability of large training sets, advances in machine-learning, and recent accelerations to RNA folding algorithms. We show that the application of more detailed models indeed improves prediction quality, while the corresponding running time of the folding algorithm remains fast. An additional important outcome of this experiment is a new RNA folding prediction model (coupled with a freely available implementation), which results in a significantly higher prediction quality than that of previous models. This final model has about 70,000 free parameters, several orders of magnitude more than previous models. Being trained and tested over the same comprehensive data sets, our model achieves a score of 84% according to the F?-measure over correctly-predicted base-pairs (i.e., 16% error rate), compared to the previously best reported score of 70% (i.e., 30% error rate). That is, the new model yields an error reduction of about 50%. Trained models and source code are available at www.cs.bgu.ac.il/?negevcb/contextfold.  相似文献   

9.
Cardiac muscle tissue during relaxation is commonly modeled as a hyperelastic material with strongly nonlinear and anisotropic stress response. Adapting the behavior of such a model to experimental or patient data gives rise to a parameter estimation problem which involves a significant number of parameters. Gradient-based optimization algorithms provide a way to solve such nonlinear parameter estimation problems with relatively few iterations, but require the gradient of the objective functional with respect to the model parameters. This gradient has traditionally been obtained using finite differences, the calculation of which scales linearly with the number of model parameters, and introduces a differencing error. By using an automatically derived adjoint equation, we are able to calculate this gradient more efficiently, and with minimal implementation effort. We test this adjoint framework on a least squares fitting problem involving data from simple shear tests on cardiac tissue samples. A second challenge which arises in gradient-based optimization is the dependency of the algorithm on a suitable initial guess. We show how a multi-start procedure can alleviate this dependency. Finally, we provide estimates for the material parameters of the Holzapfel and Ogden strain energy law using finite element models together with experimental shear data.  相似文献   

10.
11.
Coarse-grained (CG) models in molecular dynamics (MD) are powerful tools to simulate the dynamics of large biomolecular systems on micro- to millisecond timescales. However, the CG model, potential energy terms, and parameters are typically not transferable between different molecules and problems. So parameterizing CG force fields, which is both tedious and time-consuming, is often necessary. We present RedMDStream, a software for developing, testing, and simulating biomolecules with CG MD models. Development includes an automatic procedure for the optimization of potential energy parameters based on metaheuristic methods. As an example we describe the parameterization of a simple CG MD model of an RNA hairpin.  相似文献   

12.
Lam Tran  Kevin He  Di Wang  Hui Jiang 《Biometrics》2023,79(2):1280-1292
The proliferation of biobanks and large public clinical data sets enables their integration with a smaller amount of locally gathered data for the purposes of parameter estimation and model prediction. However, public data sets may be subject to context-dependent confounders and the protocols behind their generation are often opaque; naively integrating all external data sets equally can bias estimates and lead to spurious conclusions. Weighted data integration is a potential solution, but current methods still require subjective specifications of weights and can become computationally intractable. Under the assumption that local data are generated from the set of unknown true parameters, we propose a novel weighted integration method based upon using the external data to minimize the local data leave-one-out cross validation (LOOCV) error. We demonstrate how the optimization of LOOCV errors for linear and Cox proportional hazards models can be rewritten as functions of external data set integration weights. Significant reductions in estimation error and prediction error are shown using simulation studies mimicking the heterogeneity of clinical data as well as a real-world example using kidney transplant patients from the Scientific Registry of Transplant Recipients.  相似文献   

13.
RNA folding free energy change parameters are widely used to predict RNA secondary structure and to design RNA sequences. These parameters include terms for the folding free energies of helices and loops. Although the full set of parameters has only been traditionally available for the four common bases and backbone, it is well known that covalent modifications of nucleotides are widespread in natural RNAs. Covalent modifications are also widely used in engineered sequences. We recently derived a full set of nearest neighbor terms for RNA that includes N6-methyladenosine (m6A). In this work, we test the model using 98 optical melting experiments, matching duplexes with or without N6-methylation of A. Most experiments place RRACH, the consensus site of N6-methylation, in a variety of contexts, including helices, bulge loops, internal loops, dangling ends, and terminal mismatches. For matched sets of experiments that include either A or m6A in the same context, we find that the parameters for m6A are as accurate as those for A. Across all experiments, the root mean squared deviation between estimated and experimental free energy changes is 0.67 kcal/mol. We used the new experimental data to refine the set of nearest neighbor parameter terms for m6A. These parameters enable prediction of RNA secondary structures including m6A, which can be used to model how N6-methylation of A affects RNA structure.  相似文献   

14.
Lorenz WA  Clote P 《PloS one》2011,6(1):e16178
An RNA secondary structure is locally optimal if there is no lower energy structure that can be obtained by the addition or removal of a single base pair, where energy is defined according to the widely accepted Turner nearest neighbor model. Locally optimal structures form kinetic traps, since any evolution away from a locally optimal structure must involve energetically unfavorable folding steps. Here, we present a novel, efficient algorithm to compute the partition function over all locally optimal secondary structures of a given RNA sequence. Our software, RNAlocopt runs in O(n3) time and O(n2) space. Additionally, RNAlocopt samples a user-specified number of structures from the Boltzmann subensemble of all locally optimal structures. We apply RNAlocopt to show that (1) the number of locally optimal structures is far fewer than the total number of structures--indeed, the number of locally optimal structures approximately equal to the square root of the number of all structures, (2) the structural diversity of this subensemble may be either similar to or quite different from the structural diversity of the entire Boltzmann ensemble, a situation that depends on the type of input RNA, (3) the (modified) maximum expected accuracy structure, computed by taking into account base pairing frequencies of locally optimal structures, is a more accurate prediction of the native structure than other current thermodynamics-based methods. The software RNAlocopt constitutes a technical breakthrough in our study of the folding landscape for RNA secondary structures. For the first time, locally optimal structures (kinetic traps in the Turner energy model) can be rapidly generated for long RNA sequences, previously impossible with methods that involved exhaustive enumeration. Use of locally optimal structure leads to state-of-the-art secondary structure prediction, as benchmarked against methods involving the computation of minimum free energy and of maximum expected accuracy. Web server and source code available at http://bioinformatics.bc.edu/clotelab/RNAlocopt/.  相似文献   

15.
MOTIVATION: Diffusable and non-diffusable gene products play a major role in body plan formation. A quantitative understanding of the spatio-temporal patterns formed in body plan formation, by using simulation models is an important addition to experimental observation. The inverse modelling approach consists of describing the body plan formation by a rule-based model, and fitting the model parameters to real observed data. In body plan formation, the data are usually obtained from fluorescent immunohistochemistry or in situ hybridizations. Inferring model parameters by comparing such data to those from simulation is a major computational bottleneck. An important aspect in this process is the choice of method used for parameter estimation. When no information on parameters is available, parameter estimation is mostly done by means of heuristic algorithms. RESULTS: We show that parameter estimation for pattern formation models can be efficiently performed using an evolution strategy (ES). As a case study we use a quantitative spatio-temporal model of the regulatory network for early development in Drosophila melanogaster. In order to estimate the parameters, the simulated results are compared to a time series of gene products involved in the network obtained with immunohistochemistry. We demonstrate that a (mu,lambda)-ES can be used to find good quality solutions in the parameter estimation. We also show that an ES with multiple populations is 5-140 times as fast as parallel simulated annealing for this case study, and that combining ES with a local search results in an efficient parameter estimation method.  相似文献   

16.

Background

The investigation of network dynamics is a major issue in systems and synthetic biology. One of the essential steps in a dynamics investigation is the parameter estimation in the model that expresses biological phenomena. Indeed, various techniques for parameter optimization have been devised and implemented in both free and commercial software. While the computational time for parameter estimation has been greatly reduced, due to improvements in calculation algorithms and the advent of high performance computers, the accuracy of parameter estimation has not been addressed.

Results

We propose a new approach for parameter optimization by using differential elimination, to estimate kinetic parameter values with a high degree of accuracy. First, we utilize differential elimination, which is an algebraic approach for rewriting a system of differential equations into another equivalent system, to derive the constraints between kinetic parameters from differential equations. Second, we estimate the kinetic parameters introducing these constraints into an objective function, in addition to the error function of the square difference between the measured and estimated data, in the standard parameter optimization method. To evaluate the ability of our method, we performed a simulation study by using the objective function with and without the newly developed constraints: the parameters in two models of linear and non-linear equations, under the assumption that only one molecule in each model can be measured, were estimated by using a genetic algorithm (GA) and particle swarm optimization (PSO). As a result, the introduction of new constraints was dramatically effective: the GA and PSO with new constraints could successfully estimate the kinetic parameters in the simulated models, with a high degree of accuracy, while the conventional GA and PSO methods without them frequently failed.

Conclusions

The introduction of new constraints in an objective function by using differential elimination resulted in the drastic improvement of the estimation accuracy in parameter optimization methods. The performance of our approach was illustrated by simulations of the parameter optimization for two models of linear and non-linear equations, which included unmeasured molecules, by two types of optimization techniques. As a result, our method is a promising development in parameter optimization.
  相似文献   

17.
We have investigated simulation-based techniques for parameter estimation in chaotic intercellular networks. The proposed methodology combines a synchronization–based framework for parameter estimation in coupled chaotic systems with some state–of–the–art computational inference methods borrowed from the field of computational statistics. The first method is a stochastic optimization algorithm, known as accelerated random search method, and the other two techniques are based on approximate Bayesian computation. The latter is a general methodology for non–parametric inference that can be applied to practically any system of interest. The first method based on approximate Bayesian computation is a Markov Chain Monte Carlo scheme that generates a series of random parameter realizations for which a low synchronization error is guaranteed. We show that accurate parameter estimates can be obtained by averaging over these realizations. The second ABC–based technique is a Sequential Monte Carlo scheme. The algorithm generates a sequence of “populations”, i.e., sets of randomly generated parameter values, where the members of a certain population attain a synchronization error that is lesser than the error attained by members of the previous population. Again, we show that accurate estimates can be obtained by averaging over the parameter values in the last population of the sequence. We have analysed how effective these methods are from a computational perspective. For the numerical simulations we have considered a network that consists of two modified repressilators with identical parameters, coupled by the fast diffusion of the autoinducer across the cell membranes.  相似文献   

18.
MOTIVATION: Modern experimental biology is moving away from analyses of single elements to whole-organism measurements. Such measured time-course data contain a wealth of information about the structure and dynamic of the pathway or network. The dynamic modeling of the whole systems is formulated as a reverse problem that requires a well-suited mathematical model and a very efficient computational method to identify the model structure and parameters. Numerical integration for differential equations and finding global parameter values are still two major challenges in this field of the parameter estimation of nonlinear dynamic biological systems. RESULTS: We compare three techniques of parameter estimation for nonlinear dynamic biological systems. In the proposed scheme, the modified collocation method is applied to convert the differential equations to the system of algebraic equations. The observed time-course data are then substituted into the algebraic system equations to decouple system interactions in order to obtain the approximate model profiles. Hybrid differential evolution (HDE) with population size of five is able to find a global solution. The method is not only suited for parameter estimation but also can be applied for structure identification. The solution obtained by HDE is then used as the starting point for a local search method to yield the refined estimates.  相似文献   

19.
The increase in complexity of computational neuron models makes the hand tuning of model parameters more difficult than ever. Fortunately, the parallel increase in computer power allows scientists to automate this tuning. Optimization algorithms need two essential components. The first one is a function that measures the difference between the output of the model with a given set of parameter and the data. This error function or fitness function makes the ranking of different parameter sets possible. The second component is a search algorithm that explores the parameter space to find the best parameter set in a minimal amount of time. In this review we distinguish three types of error functions: feature-based ones, point-by-point comparison of voltage traces and multi-objective functions. We then detail several popular search algorithms, including brute-force methods, simulated annealing, genetic algorithms, evolution strategies, differential evolution and particle-swarm optimization. Last, we shortly describe Neurofitter, a free software package that combines a phase–plane trajectory density fitness function with several search algorithms.  相似文献   

20.

Background

Translating a known metabolic network into a dynamic model requires reasonable guesses of all enzyme parameters. In Bayesian parameter estimation, model parameters are described by a posterior probability distribution, which scores the potential parameter sets, showing how well each of them agrees with the data and with the prior assumptions made.

Results

We compute posterior distributions of kinetic parameters within a Bayesian framework, based on integration of kinetic, thermodynamic, metabolic, and proteomic data. The structure of the metabolic system (i.e., stoichiometries and enzyme regulation) needs to be known, and the reactions are modelled by convenience kinetics with thermodynamically independent parameters. The parameter posterior is computed in two separate steps: a first posterior summarises the available data on enzyme kinetic parameters; an improved second posterior is obtained by integrating metabolic fluxes, concentrations, and enzyme concentrations for one or more steady states. The data can be heterogenous, incomplete, and uncertain, and the posterior is approximated by a multivariate log-normal distribution. We apply the method to a model of the threonine synthesis pathway: the integration of metabolic data has little effect on the marginal posterior distributions of individual model parameters. Nevertheless, it leads to strong correlations between the parameters in the joint posterior distribution, which greatly improve the model predictions by the following Monte-Carlo simulations.

Conclusion

We present a standardised method to translate metabolic networks into dynamic models. To determine the model parameters, evidence from various experimental data is combined and weighted using Bayesian parameter estimation. The resulting posterior parameter distribution describes a statistical ensemble of parameter sets; the parameter variances and correlations can account for missing knowledge, measurement uncertainties, or biological variability. The posterior distribution can be used to sample model instances and to obtain probabilistic statements about the model's dynamic behaviour.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号