首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 401 毫秒
1.
2.
Blue-Light Regulation of the Arabidopsis thaliana Cab1 Gene   总被引:12,自引:5,他引:7       下载免费PDF全文
Gao J  Kaufman LS 《Plant physiology》1994,104(4):1251-1257
  相似文献   

3.
The levels of Lhcb mRNA in higher plants are regulated by phytochrome, cryptochrome, and an endogenous circadian oscillator. To determine whether similar regulatory mechanisms operate in the ancient gymnosperm Ginkgo biloba, we measured Lhcb mRNA levels in seedlings in response to different light conditions. Removal of a diurnally oscillating light stimulus caused dampening of maximal Lhcb mRNA accumulation levels, with little change in periodicity. Although low fluence pulses of both red and blue light given to etiolated seedlings caused maximal accumulation of Lhcb mRNAs characteristic of the phasic/circadian response seen in flowering plants, the additional initial acute response seen in flowering plants was absent. The induction of Lhcb gene expression in both cases was at least partially reversible by far-red light, and appeared biphasic over a range of red fluences. Together, these data indicate that Lhcb genes in G. biloba appear to be regulated in a manner similar to that of flowering plants, whereas signaling and attenuation of mRNA levels through the photoreceptor systems and circadian clock show features distinct from those characterized to date. The implications for these findings are discussed in light of the evolution of circadian clock input signaling.  相似文献   

4.
E. Liscum  R. P. Hangarter 《Planta》1993,191(2):214-221
Fluence rate-response curves were generated for red-, far-red-, and blue-light-stimulated apical-hook opening in seedlings of several photomorphogenic mutants of Arabidopsis thaliana (L.) Heynh. Compared to wild-type plants, hook opening was reduced in the phytochrome-deficient hy1, hy2, and hy6 mutants in red and far-red light at all fluence rates tested, and in low-fluence blue light, but was normal under high-irradiance blue light. In contrast, the blue-light-response mutants (blu1, blu2, and blu3) lacked the high-irradiance-dependent hook-opening response in blue light while hook opening was normal in low-fluence blue light and in red and farred light at all fluence rates tested. Hook opening in the phytochrome-B-deficient hy3 mutant was similar to wild type in all light conditions tested. The effects of the different mutations on light-induced hook opening indicate that a phytochrome(s) other than phytochrome B mediates hook opening stimulated by red, far-red and lowfluence blue light, while a blue-light-absorbing photoreceptor mediates the blue-light-sensitive high-irradiance response. Although the phytochrome and blue-light photosensory systems appear to work independently for the most part, some of their signal-transduction components may interact since the hy4, and hy5 mutants showed reduced hook-opening responses under conditions dependent on the phytochrome and blue-light-photosensory systems.We thank Jeff Young and Brian Parks for their many helpful suggestions during the progress of this research. This work was supported by National Science Foundation Grant No. DCB-9106697.  相似文献   

5.
6.
We have investigated the involvement of phytochrome B in the early-flowering response of Arabidopsis thaliana L. seedlings to low red:far-red (R/FR) ratio light conditions. The phytochrome B-deficient hy3 (phyB) mutant is early flowering, and in this regard it resembles the shade-avoidance phenotype of its isogenic wild type. Seedlings carrying the hy2 mutation, resulting in a deficiency of phytochrome chromophore and hence of active phytochromes, also flower earlier than wild-type plants. Whereas hy3 or hy2 seedlings show only a slight acceleration of flowering in response to low R/FR ratio, seedlings that are doubly homozygous for both mutations flower earlier than seedlings carrying either phytochrome-related mutation alone. This additive effect clearly indicates the involvement of one or more phytochrome species in addition to phytochrome B in the flowering response as well as indicating the presence of some functional phytochrome B in hy2 seedlings. Seedlings that are homozygous for the hy3 mutation and one of the fca, fwa, or co late-flowering mutations display a pronounced early-flowering response to low R/FR ratio. A similar response to low R/FR ratio is displayed by seedlings doubly homozygous for the hy2 mutation and any one of the late-flowering mutations. Thus, placing the hy3 or hy2 mutations into a late-flowering background has the effect of uncovering a flowering response to low R/FR ratio. Seedlings that are triply homozygous for the hy3, hy2 mutations and a late-flowering mutation flower earlier than the double mutants and do not respond to low R/FR ratio. Thus, the observed flowering responses to low R/FR ratio in phytochrome B-deficient mutants can be attributed to the action of at least one other phytochrome species.  相似文献   

7.
Cotyledon expansion in response to blue light was compared for wild-type Arabidopsis thaliana (L.) Heynh. and the mutants blu3 and hy4, which show reduced inhibition of hypocotyl growth in blue light. White, blue, and red light stimulated cotyledon expansion in both intact and excised cotyledons of wild-type seedlings (ecotypes No-0, WS, Co-0, La-er). Cotyledons on intact blu3 and hy4 seedlings did not grow as well as those on the wild type in response to blue light, but pretreatment of blu3 seedlings with low fluence rates of red light increased their responsiveness to blue light. Excision of cotyledons alleviated the mutant phenotype so that both mutant and wild-type cotyledons grew equally well in blue light. The loss of the mutant cotyledon phenotype upon excision indicates that the blu3 and hy4 lesions affect cotyledon expansion indirectly via a whole-plant response to light. Furthermore, the ability of excised, mutant cotyledons to grow normally in blue light shows that this growth response to blue light is mediated by a photosystem other than the ones impaired by the blu3 and hy4 lesions.  相似文献   

8.
9.
10.
A combination of physiological and genetic approaches was used to investigate whether phytochromes and blue light (BL) photoreceptors act in a fully independent manner during photomorphogenesis of Arabidopsis thaliana (L.) Heynh. Wild-type seedlings and phyA, phyBand hy4 mutants were daily exposed to 3 h BL terminated with either a red light (R) or a far-red light (FR) pulse. In wild-type and phyA-mutant seedlings, BL followed by an R pulse inhibited hypocotyl growth and promoted cotyledon unfolding. The effects of BL were reduced if exposure to BL was followed by an FR pulse driving phytochrome to the R-absorbing form (Pr). In the wild type, the effects of R versus FR pulses were small in seedlings not exposed to BL. Thus, maximal responses depended on the presence of both BL and the FR-absorbing form of phytochrome (Pfr) in the subsequent dark period. Impaired responses to BL and to R versus FR pulses were observed in phyB and hy4 mutants. Simultaneous irradiation with orange light indicated that BL, perceived by specific BL photoreceptors (i.e. not by phytochromes), required phytochrome B to display a full effect. These results indicate interdependent co-action between phytochrome B and BL photoreceptors, particularly the HY4 gene product. No synergism between phytochrome A (activated by continuous or pulsed FR) and BL photoreceptors was observed.Abbreviations BL blue light - D darkness - FR far-redlight - FRc continuous FR - Pfr FR-absorbing form of phytochrome - Pfr/P proportion of phytochrome as Pfr - phyA phytochrome A - phyB phytochrome B - R red light - WT wild type We thank Professors R.E. Kendrick and M. Koornneef (Wageningen Agricultural University, The Netherlands), Professor J. Chory (Salk Institute, Calif., USA) and the Arabidopsis Biological Resource Center (Ohio State University, Ohio, USA) for their kind provision of the original seed batches. This work was financially supported by CONICET, Universidad de Buenos Aires (AG 040) and Fundación Antorchas (A-12830/1 0000/9)  相似文献   

11.
12.
Four genetic loci were recently identified by mutations that affect phototropism in Arabidopsis thaliana (L.) Heyhn. seedlings. It was hypothesized that one of these loci, NPH1, encodes the apoprotein for a phototropic photoreceptor. All of the alleles at the other three mutant loci (nph2, nph3, and nph4) contained wild-type levels of the putative NPH1 protein and exhibited normal blue-light-dependent phosphorylation of the NPH1 protein. This indicated that the NPH2, NPH3, and NPH4 proteins likely function downstream of NPH1 photoactivation. We show here that, although the nph2, nph3, and nph4 mutants are all altered with respect to their phototropic responses, only the nph4 mutants are also altered in their gravitropic responsiveness. Thus, NPH2 and NPH3 appear to act as signal carriers in a phototropism-specific pathway, whereas NPH4 is required for both phototropism and gravitropism and thus may function directly in the differential growth response. Despite their altered phototropic responses in blue and green light as etiolated seedlings, the nph2 and nph4 mutants exhibited less dramatic mutant phenotypes as de-etiolated seedlings and when etiolated seedlings were irradiated with unilateral ultraviolet-A (UV-A) light. Examination of the phototropic responses of a mutant deficient in biologically active phytochromes, hy1-100, indicated that phytochrome transformation by UV-A light mediates an increase in phototropic responsiveness, accounting for the greater phototropic curvature of the nph2 and nph4 mutants to UV-A light than to blue light.  相似文献   

13.
Parks BM  Quail PH 《The Plant cell》1991,3(11):1177-1186
The hy1 and hy2 long hypocotyl mutants of Arabidopsis contain normal levels of immunochemically detectable phytochrome A, but the molecule is photochemically nonfunctional. We have investigated the biochemical basis for this lack of function. When the hy1 and hy2 mutants were grown in white light on a medium containing biliverdin IX[alpha], a direct precursor to phytochromobilin, the phytochrome chromophore, the seedlings developed with a morphological phenotype indistinguishable from the light-grown wild-type control. Restoration of a light-grown phenotype in the hy1 mutant was also accomplished by using phycocyanobilin, a tetrapyrrole analog of phytochromobilin. Spectrophotometric and immunochemical analyses of the rescued hy1 and hy2 mutants demonstrated that they possessed wild-type levels of photochemically functional phytochrome that displayed light-induced conformational changes in the holoprotein indistinguishable from the wild type. Moreover, phytochrome A levels declined in vivo in response to white light in rescued hy1 and hy2 seedlings, indicative of biliverdin-dependent formation of photochemically functional phytochrome A that was then subject to normal selective turnover in the far-red-light-absorbing form. Combined, these data suggest that the hy1 and hy2 mutants are inhibited in chromophore biosynthesis at steps prior to the formation of biliverdin IX[alpha], thus potentially causing a global functional deficiency in all members of the phytochrome photoreceptor family.  相似文献   

14.
The lz-2 mutation in tomato ( Lycopersicon esculentum ) causes conditional reversal of shoot gravitropism by light. This response is mediated by phytochrome. To further elicit the mechanism by which phytochrome regulates the lz-2 phenotype, phytochrome-deficient lz-2 plants were generated. Introduction of au alleles, which severely block chromophore biosynthesis, eliminated the reversal of hypocotyl gravitropism in continuous red and far-red light. The fri 1 and tri 1 alleles were introduced to specifically deplete phytochromes A and B1, respectively. In dark-grown seedlings, phytochrome A was necessary for response to high-irradiance far-red light, a complete response to low fluence red light, and also mediated the effects of blue light in a far-red reversible manner. Loss of phytochrome B1 alone did not significantly affect the behaviour of lz-2 plants under any light treatment tested. However, dark-grown lz-2 plants lacking both phytochrome A and B1 exhibited reduced responses to continuous red and were less responsive to low fluence red light and high fluence blue light than plants that were deficient for phytochrome A alone. In high light, full spectrum greenhouse conditions, lz-2 plants grew downward regardless of the phytochrome deficiency. These results indicate that phytochromes A and B1 play significant roles in mediating the lz-2 phenotype and that at least one additional phytochrome is involved in reversing shoot gravitropism in this mutant.  相似文献   

15.
Folta KM 《Plant physiology》2004,135(3):1407-1416
During the transition from darkness to light, the rate of hypocotyl elongation is determined from the integration of light signals sensed through the phototropin, cryptochrome, and phytochrome signaling pathways. In all light conditions studied, from UV to far-red, early hypocotyl growth is rapidly and robustly suppressed within minutes of illumination in a manner dependent upon light quality and quantity. In this study, it is shown that green light (GL) irradiation leads to a rapid increase in the growth rate of etiolated Arabidopsis seedlings. GL-mediated growth promotion was detected in response to constant irradiation or a short, single pulse of light with a similar time course. The response has a threshold between 10(-1) and 10(0) micromol m(-2), is saturated before 10(2) micromol m(-2) and obeys reciprocity. Genetic analyses indicate that the cryptochrome or phototropin photoreceptors do not participate in the response. The major phytochrome receptors influence the normal amplitude and timing of the GL response, yet the GL response is normal in seedlings grown for hours under constant dim-red light. Therefore, phytochrome activation enhances, but is not required for, the GL response. Seedlings grown under green, red, and blue light together are longer than those grown under red and blue alone. These data indicate that a novel GL-activated light sensor promotes early stem elongation that antagonizes growth inhibition.  相似文献   

16.
Transgenic Arabidopsis thaliana plants constitutively expressing Agrobacterium tumefaciens tryptophan monooxygenase (iaaM) were obtained and characterized. Arabidopsis plants expressing iaaM have up to 4-fold higher levels of free indole-3-acetic acid (IAA) and display increased hypocotyl elongation in the light. This result clearly demonstrates that excess endogenous auxin can promote cell elongation in a whole plant. Interactions of the auxin-overproducing transgenic plants with the phytochrome-deficient hy6-1 and auxin-resistant axrl-3 mutations were also studied. The effects of auxin overproduction on hypocotyl elongation were not additive to the effects of phytochrome deficiency in the hy6-1 mutant, indicating that excess auxin does not counteract factors that limit hypocotyl elongation in hy6-1 seedlings. Auxin-overproducing seedlings are also qualitatively indistinguishable from wild-type controls in their response to red, far-red, and blue light treatments, demonstrating that the effect of excess auxin on hypocotyl elongation is independent of red and blue light-mediated effects. All phenotypic effects of iaaM-mediated auxin overproduction (i.e. increased hypocotyl elongation in the light, severe rosette leaf epinasty, and increased apical dominance) are suppressed by the auxin-resistant axr1-3 mutation. The axr1-3 mutation apparently blocks auxin signal transduction since it does not reduce auxin levels when combined with the auxin-overproducing transgene.  相似文献   

17.
 We analysed the light-dependent acquisition of competence for adventitious shoot formation in hypocotyls of phytochrome A (fri) and phytochrome B1 (tri) mutants of tomato and their wild type by pre-growing the seedlings under different light quality. The regenerative response in vitro of explants from etiolated seedlings was reduced in comparison to that displayed by light-grown ones. Our results indicate that the light-dependent acquisition of competence for shoot regeneration in the tomato hypocotyl is regulated by phytochrome and antagonistically by a blue-light receptor. By using phytochrome mutants and narrow wave band light we showed that it is mediated at least by two distinct phytochrome species: phytochrome B1 and phytochrome A. The action of phytochrome B1 during seedling growth was sufficient to induce the full capacity of the subsequent regenerative response in vitro in explants from all positions along the hypocotyls. In contrast far-red light acting through phytochrome A did not induce the full capability of shoot regeneration from middle and basal segments of the hypocotyl when phytochrome B1 was absent (tri mutant). A few middle and basal hypocotyl explants pre-grown in blue light regenerated shoots. Received: 12 April 1999 / Revision received: 5 July 1999 · Accepted: 6 August 1999  相似文献   

18.
19.
Shoots of the lazy-2 (lz-2) gravitropic mutant of tomato (Lycopersicon esculentum Mill.) have a normal gravitropic response when grown in the dark, but grow downward in response to gravity when grown in the light. Experiments were undertaken to investigate the nature of the light induction of the downward growth of lz-2 shoots. Red light was effective at causing downward growth of hypocotyls of lz-2 seedlings, whereas treatment with blue light did not alter the dark-grown (wild-type) gravity response. Downward growth of lz-2 seedlings is greatest 16 h after a 1-h red light irradiation, after which the seedlings begin to revert to the dark-grown phenotype. lz-2 seedlings irradiated with a far-red light pulse immediately after a red light pulse exhibited no downward growth. However, continuous red or far-red light both resulted in downward growth of lz-2 seedlings. Thus, the light induction of downward growth of lz-2 appears to involve the photoreceptor phytochrome. Fluence-response experiments indicate that the induction of downward growth of lz-2 by red light is a low-fluence phytochrome response, with a possible high-irradiance response component.  相似文献   

20.
The hy 1 and hy 2 long hypocotyl mutants of Arabidopsis thaliana contain less than 20% (the detection limit) of the phytochrome in wild-type tissue as measured by in vivo difference spectroscopy. In contrast, spectral measurements for the hy 3, hy 4, and hy 5 long hypocotyl mutants indicate that they each contain levels of phytochrome equivalent to the wild-type parent. Immunoblot analysis using a monoclonal antibody directed against the chromophore-bearing region of etiolated-oat phytochrome demonstrates that extracts of all mutant and wild-type Arabidopsis tissues, prepared by extraction of proteins into hot SDS-containing buffer, have identical levels of one major immunodetectable protein (116 kDa). An assay involving controlled in vitro proteolysis, known to produce distinctive fragmentation patterns for Pr and Pfr (Vierstra RD, Quail PH, Planta 156: 158–165, 1982), indicates that the 116 kDa polypeptide from the wild-type parent represents Arabidopsis phytochrome. The 116 kDa protein from either hy 3, hy 4, or hy 5 displays the same fragmentation pattern found for the wild type. Together with the spectral data, these results indicate that the mutant phenotype of these variants does not involve lesions in the polypeptide sequence that lead to gross conformational aberrations, and suggest that the genetic lesions may affect steps in the transduction chain downstream of the photoreceptor. In contrast, this same analysis for hy 1 and hy 2 has revealed that the 116 kDa protein from either of these mutants is not degraded differently in response to the different wavelengths of irradiation given in vitro. Moreover, whereas immunoblot analysis of tissue extracts from light-grown wild-type seedlings show that the 116 kDa phytochrome protein level is greatly reduced relative to dark-grown tissue as expected, similar extracts of light-grown hy 1 and hy 2 seedlings contain the 116 kDa polypeptide in amounts equivalent to those of dark-grown tissue. Combined, these data indicate that the hy 1 and hy 2 mutants both produce normal levels of immunochemically detectable phytochrome that is photochemically nonfunctional.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号