首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the presence of high concentrations of the nonspecific polymer polyethylene glycol (PEG), intermolecular cohesive-end ligation with the DNA ligase from Escherichia coli was stimulated by high salt concentrations: 200 mM NaCl or 300 mM KCl in 10% (w/v) PEG 6000 solutions, and 100-200 mM NaCl or 150-300 mM KCl in 15% PEG 6000 solutions. Intermolecular blunt-end ligation with this ligase was also stimulated at 100-150 mM NaCl or 150-250 mM KCl in 15% PEG 6000 solutions. The extent of such intermolecular ligation increased and the salt concentrations at which ligation was stimulated extended to lower concentrations when we raised the temperature from 10 to 37 degrees C.  相似文献   

2.
A series of polymers of oligodeoxythymidylates has been prepared by the T4 polynucleotide ligase-catalyzed joining of oligodeoxythymidylates in the presence of poly(dA) or poly(rA). A similar series of polymers of oligoriboadenylates was prepared by the enzymatic joining reaction of oligoriboadenylates in the presence of poly(dT). Analysis of the polymer series by polyacrylamide-gel electrophoresis showed that polynucleotides of up to 250 nucleotides in length were present. Chain length of individual oligomers could be determined by internal to external phosphate ratios. The oligodeoxythymidylate and oligoriboadenylate polymers provide a series of specific molecular weight markers for size estimation of single-stranded RNA and DNA in the size range 10–200 nucleotides on denaturing gels containing 7 m urea.  相似文献   

3.
High concentrations of the nonspecific macromolecule polyethylene glycol 6000 (PEG 6000) enabled DNA ligases I and II from calf thymus to catalyze intermolecular blunt-end ligation of duplex DNA. Intermolecular cohesive-end ligation with these enzymes was markedly stimulated in the presence of 10-16% (w/v) PEG 6000. The effect of PEG 6000 (4-16%) on the sealing of single-stranded breaks in duplex DNA with DNA ligases I and II was not appreciably stimulatory but rather inhibitory. PEG 6000 (15%) enhanced more twofold the rate of DNA ligase II-AMP complex formation, but moderately suppressed the rate of formation of DNA ligase 1-AMP complex. Polyamines and KCl inhibited blunt-end and cohesive-end ligations with DNA ligases I and II in the presence of PEG 6000.  相似文献   

4.
Monovalent cations such as Na+ and K+ inhibit the activity of T4 DNA ligase. However, the extent of inhibition varies with the terminal sequence of the duplex DNA used as substrate; in many cases, ligation of DNA is completely inhibited at 200 mM. The activity of the ligase is stimulated by raising the concentration of polyethylene glycol 6000 from 0 to 15% (w/v) when NaC1 and KC1 were both absent. Ligation was reduced as the concentration of NaC1 or KC1 was raised in a mixture containing 5 or 15% PEG 6000. With 10% PEG 6000, both cohesive- and blunt-end ligation of this ligase increased at high concentrations of salt (150-200 mM NaC1, or 200-250 mM KC1). Further, with 10% PEG 6000, inter- and intramolecular ligation occurred at low salt concentrations (0-100 mM NaC1, or 0-150 mM KC1); only linear oligomers were formed by intermolecular ligation at the high concentrations.  相似文献   

5.
NB8 DNA ligase from an extract of Thermus thermophilus HB8 could catalyze blunt-end ligation in the presence of high concentration of polyethylene glycols (PEG) or in the presence of polyamines. In the presence of high molecular weight PEG 20,000, 6,000, or 1,000 (8-28%), the enzyme catalyzed blunt-end intermolecular joining to yield linear oligomers, but no circular DNA forms. But in the presence of low molecular PEG 400, 200 (8-80%), or the monomer, ethylene glycol (16-80%), the circular forms were also detected by intramolecular ligation. In the presence of polyamines, the blunt-end ligation products were linear oligomers and the optimum concentrations were as follows: caldopentamine (0.05 mM), thermine (0.1-0.2 mM), spermine (0.2 mM), thermospermine (0.4 mM), and sperminediol (0.75 mM). Spermidine and putrescine were less capable of producing oligomers. PEG and polyamines elevated the ligation temperature by HB8 DNA ligase. The optimum temperature of blunt-end ligation was about 65 degrees C.  相似文献   

6.
The amount of reaction catalyzed by T4 polynucleotide kinase on a variety of its substrates is greatly increased in the presence of polyethylene glycol 8000 (PEG 8000). Both the forward and reverse reactions as well as the exchange reaction can be stimulated. The stimulation is a general effect on T4 polynucleotide kinase reactions involving high molecular weight DNA substrates. The use of PEG 8000 is particularly advantageous for labeling or removing terminal 5'-phosphate groups which are only slowly or incompletely labeled or removed under ordinary conditions, such as those at recessed termini or at "nicks" in duplex DNA, although the reaction on blunt-ended or protruding termini is also increased. It is further advantageous for labeling very low concentrations of substrates.  相似文献   

7.
Polyethylene glycol (PEG) stimulates ligation with T4 DNA ligase. In 10% (w/v) PEG 6,000 solutions, only intermolecular ligation is enhanced by monovalent cations, while both inter- and intramolecular ligation occur without their presence. Similar stimulation was also caused by divalent cations or polyamines in the PEG 6,000 solutions. Such properties of the ligase could be applied to control the extent of inter- and intramolecular ligation. Ligation with cations or polyamines in 10% PEG 6,000 solutions was effective for intermolecular ligation. Ligation without cations or polyamines in 6.0% to 10% PEG 6,000 solutions was effective for intramolecular ligation.  相似文献   

8.
The double-strand DNA break repair pathway, non-homologous DNA end joining (NHEJ), is distinctive for the flexibility of its nuclease, polymerase and ligase activities. Here we find that the joining of ends by XRCC4-ligase IV is markedly influenced by the terminal sequence, and a steric hindrance model can account for this. XLF (Cernunnos) stimulates the joining of both incompatible DNA ends and compatible DNA ends at physiologic concentrations of Mg2+, but only of incompatible DNA ends at higher concentrations of Mg2+, suggesting charge neutralization between the two DNA ends within the ligase complex. XRCC4-DNA ligase IV has the distinctive ability to ligate poly-dT single-stranded DNA and long dT overhangs in a Ku- and XLF-independent manner, but not other homopolymeric DNA. The dT preference of the ligase is interesting given the sequence bias of the NHEJ polymerase. These distinctive properties of the XRCC4-DNA ligase IV complex explain important aspects of its in vivo roles.  相似文献   

9.
Equimolar addition of oligoribonucleotides with T4 RNA ligase.   总被引:16,自引:15,他引:1       下载免费PDF全文
T4 induced RNA ligase will join equimolar concentrations of two oligoribonucleotides, (Ap)3C and p(Up) 5, to form a single product, (Ap)3Cp(Up) 5, in high yield. The presence of the 3' phosphate on p(Up)5 prevents the oligomer from adding to itself. The pH optimum of the reaction is about 7.5, but less of the undesirable adenylated intermediate, App(Up) 5, forms at pH 8.2. The reaction rate is a linear function of oligomer concentration from 3 micronM to 0.6 mM. The data suggest that T4 RNA ligase will be a useful enzyme for the synthesis of oligomers of defined sequence.  相似文献   

10.
Macromolecular crowding increases the rate of nonenzymatic cohesion of the complementary ends of lambda DNA. Both lambda DNA and DNA fragments bearing the cohesive ends of lambda DNA are similarly affected. High concentrations of plasma albumin or Ficoll 70 increase the rate of cohesion by ca. 100-fold whereas high concentrations of polyethylene glycol 8000 cause greater than 2000-fold stimulation in this rate. These results have implications for the mechanism of polymer-stimulated enzymatic ligation of DNA or RNA. In addition, these crowding effects may help to explain the rapid cohesion of lambda DNA observed in vivo. An improved procedure for the recovery of DNA fragments separated by agarose gel electrophoresis is also described.  相似文献   

11.
Ligase-mediated gene detection has proven valuable for detection and precise distinction of DNA sequence variants. We have recently shown that T4 DNA ligase can also be used to distinguish single nucleotide variants of RNA sequences. Here we describe parameters that influence RNA-templated DNA ligation by T4 DNA ligase. The reaction proceeds much more slowly, requiring more enzyme, compared to ligation of the same oligonucleotides hybridized to the corresponding DNA sequence. The reaction is inhibited at high concentrations of ATP and NaCl and both magnesium and manganese ions can support the reaction. We define reaction conditions where 80% of RNA target molecules can template a diagnostic ligation reaction. Ligase-mediated RNA detection should provide a useful mechanism for sensitive and accurate detection and distinction of RNA sequence variants.  相似文献   

12.
The rates of blunt-end and cohesive-end ligation of DNA by T4 DNA ligase are increased by orders of magnitude in the presence of high concentrations of a variety of nonspecific polymers such as polyethylene glycol, Ficoll, bovine plasma albumin, or glycogen. Blunt-end ligation of small self-complementary oligodeoxyribonucleotides is also stimulated. The use of polyethylene glycol 6000 in such systems is characterized in some detail. Conditions are suggested which either greatly increase the rate of formation of and size of linear ligation products or which allow smaller but significant improvements in the amounts of circular ligation products.  相似文献   

13.
H M Eun  J W Yoon 《BioTechniques》1989,7(9):992-4, 996-7
A group of efficient cDNA cloning strategies employs vector-primers where cDNA synthesis starts from the oligo(dT)-primer tail, which is conventionally attached to cloning vectors by use of terminal deoxynucleotidyl transferase. An alternative, efficient and more versatile method of vector-primer preparation is to directly ligate, by use of T4 DNA ligase, a double-digested vector, e.g., pTZ18R/Pst I/Bam HI, to a synthetic (Bam HI)-adapter-end-primer, 5'-pGATCC-Tn or 5'-pGATCC-site-specific sequence. The use of a utility-vector containing a sizable spacer between the two selected restriction sites enables unambiguous separation on agarose gels of the double-digested vector precursors from single-digested ones, further simplifying the vector preparation. The adapter-end-primer ligation method can be applied to any suitable vectors with multiple cloning sites for the preparation of not only oligo(dT)-tailed, but also site-specific sequence-tailed vectors. Thus, the method enables the cDNA cloning of total poly (A+)-mRNAs, as well as specific RNA or mRNA species with or without poly(A)-tail.  相似文献   

14.
In the present study, the formation of one molten globule-like unfolding intermediate of bovine serum albumin (BSA) at pH 11.2 has been established with the help of circular dichroism (CD) spectra, fluorescence spectroscopy and 'phase diagram' approach. Additionally, we have shown the conformational changes occurring in the pH 11.2 intermediate of BSA when it was exposed to different molecular weight polyethylene glycols (PEGs) at varying concentrations. When the pH 11.2 intermediate of BSA was treated by PEG 400 there was induction of secondary and non-native tertiary contacts. In case of PEG 8000 and PEG 20,000, the loss in secondary as well as tertiary structure was observed. PEG 8000 and 20,000 altered the conformation of the pH 11.2 intermediate and resulted in its transition to another intermediate state in which the hydrophobic patches were inaccessible.  相似文献   

15.
This study reassesses the proposal that cellular conditions of low temperature and relative acidosis during hibernation contribute to a suppression of phosphofructokinase (PFK) activity which, in turn, contributes to glycolytic rate suppression during torpor. To test the proposal that a dilution effect during in vitro assay of PFK was the main reason for activity loss (tetramer dissociation) at lower pH values, the influence of the macromolecular crowding agent, polyethylene glycol 8000 (PEG), on purified skeletal muscle PFK from Spermophilus lateralis was evaluated at different pH values (6.5, 7.2 and 7.5) and assay temperatures (5, 25 and 37degrees C). A 78 +/- 2.5% loss of PFK activity during 1 h incubation at 5 degrees C and pH 6.5 was virtually eliminated when 10% PEG was present (only 7.0 +/- 1.5% activity lost). The presence of PEG also largely reversed PFK inactivation at pH 6.5 at warmer assay temperatures and reversed inhibitory effects by high urea (50 or 400 mM). Analysis of pH curves at 5 degrees C also indicated that approximately 70% of activity would remain at intracellular pH values in hibernator muscle. The data suggest that under high protein concentrations in intact cells that the conditions of relative acidosis, low temperature or elevated urea during hibernation would not have substantial regulatory effects on PFK.  相似文献   

16.
T4 DNA ligase is one of the workhorses of molecular biology and used in various biotechnological applications. Here we report that this ligase, unlike Escherichia coli DNA ligase, Taq DNA ligase and Ampligase, is able to join the ends of single-stranded DNA in the absence of any duplex DNA structure at the ligation site. Such nontemplated ligation of DNA oligomers catalyzed by T4 DNA ligase occurs with a very low yield, as assessed by quantitative competitive PCR, between 10(-6) and 10(-4) at oligonucleotide concentrations in the range 0.1-10 nm, and thus is insignificant in many molecular biological applications of T4 DNA ligase. However, this side reaction may be of paramount importance for diagnostic detection methods that rely on template-dependent or target-dependent DNA probe ligation in combination with amplification techniques, such as PCR or rolling-circle amplification, because it can lead to nonspecific background signals or false positives. Comparison of ligation yields obtained with substrates differing in their strandedness at the terminal segments involved in ligation shows that an acceptor duplex DNA segment bearing a 3'-hydroxy end, but lacking a 5'-phosphate end, is sufficient to play a role as a cofactor in blunt-end ligation.  相似文献   

17.
Miyoshi D  Nakao A  Sugimoto N 《Biochemistry》2002,41(50):15017-15024
Almost all biochemical reactions in vitro have been investigated through numerous experiments conducted in dilute solutions containing low concentrations of solutes. However, biomacromolecules such as nucleic acids, proteins, and polysaccharides are designed to function and/or form their native structures in a living cell containing high concentrations of biomacromolecules, substrates, cofactors, salts, and so on. In the present study, we have demonstrated quantitatively the effect of molecular crowding on structures and stabilities of the G-quadruplex of d(G(4)T(4)G(4)). Molecular crowding with poly(ethylene glycol) (PEG) induced a structural transition from the antiparallel to the parallel G-quadruplex of d(G(4)T(4)G(4)), while molecular crowding with polycations did not alter the structure of the antiparallel G-quadruplex. The binding constants of putrescine, one of the polycations, for d(G(4)T(4)G(4)) in the absence and presence of Na(+) are calculated to be 277 and 2.5 M(-)(1), respectively. This indicates that the polycations coordinate to d(G(4)T(4)G(4)) with electrostatic interactions. The thermodynamic parameters of the antiparallel G-quadruplex formation under the crowding and noncrowding conditions induced by putrescine were also estimated. The stability of the antiparallel G-quadruplex decreased (-DeltaG degrees (25) decreased from 28 to 22 kcal mol(-)(1)) with molecular crowding by putrescine. Also, enthalpy and entropy changes in the structural formation under crowding and noncrowding conditions clearly showed that destabilization was entropy-driven. These quantitative parameters indicated that both the volume excluded by PEG and chemical interactions such as electrostatic interaction with solute polycations are critical for determining how molecular crowding affects the structure and stability of highly ordered DNA structures.  相似文献   

18.
The poly(dA) dependent T4 polynucleotide ligase catalyzed polymerization of oligodeoxythymidylates is dependent upon duplex stability. The antibiotics ethidium bromide, netropsin and Hoechst 33258 stabilize the duplex poly(dA) . P(dT)n (n = 6-10) to thermal denaturation. Ethidium bromide to DNA ratio of 1.25 and netropsin or Hoechst 33258 to DNA ratio of 0.1 the Tm of d(pT) 10 . poly (dA) was increased by 10 degrees and 25 degrees C respectively. The T4 polynucleotide ligase activity was not inhibited under these conditions and temperature optimum of joining of d(pT) 10 . poly(dA) was increased 5 degrees to 10 degrees by the binding of the antibiotics. Duplexes containing shorter oligodeoxythymidylates required lower concentrations of the antibiotics netropsin or Hoechst 33258 to show no inhibition of T4 polynucleotide ligase. The temperature optima of joining the duplexes d(pT)6 . POLY(DA) and d(pT) 8 . poly(dA) were increased by 5 degrees C upon binding of the antibiotics. Polyacrylamide gel analysis of the T4 polynucleotide ligase catalyzed joining of the oligodeoxythymidylates showed that the presence of antibiotics affected the product distribution of the polymerized oligomers.  相似文献   

19.
Enzyme kinetic parameters for rate equations are vital in metabolic network simulation, a major part of systems biology research efforts. Measurements of Michaelis–Menten kinetic parameters Km and Kcat have been performed for enzymes glucose-6-phosphate dehydrogenase (G6P DH) under crowded conditions using molecular crowding agents bovine serum albumin (BSA) and polyethylene glycol (PEG) of 8000 Da molecular weight. An increase in Kcat was observed at very low concentrations of crowding agent, and also at high crowder concentrations when the experiment was performed at 45 °C with PEG. The observed pattern in Kcat for G6P DH at high crowder concentrations has been explained via modelling using excluded volume theory. An increase in rate was observed at 45 °C for G6P DH versus 30 °C; this has been modelled via the Arrhenius equation.  相似文献   

20.
Adapter ligation is a critical first step in many microRNA analysis methods including microarray, qPCR, and sequencing. Previous studies have shown that ligation bias can have dramatic effects on both the fidelity of expression profiles and reproducibility across samples. We have developed a method for high efficiency and low bias microRNA capture by 3′ adapter ligation using T4 RNA ligase that does not require pooled adapters. Using a panel of 20 microRNA, we investigated the effects of ligase type, PEG concentration, ligase amount, adapter concentration, incubation time, incubation temperature, and adapter design on capture efficiency and bias. Of these factors, high PEG% was found to be critical in suppressing ligation bias. We obtained high average capture efficiency and low CV across the 20 microRNA panel, both in idealized buffer conditions (86%±10%) and total RNA spiking conditions (64%±17%). We demonstrate that this method is reliable across microRNA species that previous studies have had difficulty capturing and that our adapter design performs significantly better than the common adapter designs. Further, we demonstrate that the optimization methodology must be specifically designed for minimizing bias in order to obtain the ideal reaction parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号