首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three ultrastructural patterns, each one associated with a different stage of pathogenesis, were observed in Cladosporium cucumerinum infecting cucumber cytoledons. (i) Fungal prepenetration structures (conidia and germ tubes) contained numberous lipid bodies. Microbodies were abundant and often associated with lipid bodies. Mitochondria were also abundant. (ii) During the invasion stage, no lipid bodies and relatively few microbodies were observed. Mitochondria were abundant, but differed markedly morphologically from those observed in the prepenetration structures. (iii) In the colonizing hyphae, microbodies were the most abundant organelle, lipid bodies were seldom found, and mitochondria were as observed during invasion. These changes in numbers of organelles may be associated with differences in the metabolic activities of the pathogen at various stages of pathogenesis.  相似文献   

2.
通过超微结构的观察,向日葵幼叶及其经培养后10天的愈伤组织细胞之间有明显区别。叶肉细胞的细胞质、细胞器及核的结构和发育都比较完整。当外植体组织发生变化和愈伤组织形成时,观察到线粒体相互连接成链状围绕在叶绿体周围,而叶绿体有的围绕在核的周围;线粒体的嵴和基质,叶绿体的基粒和片层结构常发生退化或解体,细胞质稀薄,核糖体和胞质凝成线状或网状,微体和高尔基体消失,液泡化程度高并含有较多的次生物质;而细胞核在后期才发生明显变化,轮廓不够清晰。  相似文献   

3.
薏苡种子胚芽鞘细胞的结构   总被引:2,自引:0,他引:2  
观察了薏苡浸泡种子胚芽鞘的结构。胚芽 外,内表皮薄壁组织及2个侧位的维管束组成。在外表皮两处,观察到径向壁不边原细胞群,它们实际是合胞体。薄壁细胞含丰富的核糖体,内质网小泡和线粒体,说明代谢活动已经活跃。初生纹孔场内有胞间连丝,显示胞间已存在物质的共质运转。  相似文献   

4.
T Makita  K Sasaki 《Cytobios》1979,25(99-100):183-192
Pathological alterations of the fine structure of the cardiac muscle of hereditary muscular dystrophic hamsters (BIO 14.6), with peculiar changes of mitochondria, which were possible degenerative, suggest a mode of formation of intramitochondrial dense bodies. The initial stage of this process appeared in the outer compartment of a mitochondrion where the outer membrane began to vesiculate or interdigit with another outer membrane of an adjacent mitochondrion. Then this vesiculated region developed into an intramitochondrial dense area, which further invaded the central part of the mitochondrion keeping its continuity with the cristae and its vesicle substructure. Independently, some parts of the membrane of the mitochondrial cristae fused with each other and formed dark spots. They were also included in the vesiculated intramitochondrial dense area. The vesiculated outer membrane may be involved in deterioration of the calcium binding site compatible with increased calcium of the prenecrotic stage of the cardiac muscle of dystrophic hamster.  相似文献   

5.
Developing oocysts of the gregarine Pterospora floridiensis Landers 2001 were examined by transmission electron microscopy. Each oocyst had an outer capsule and an inner capsule that contained 8 sporozoites. In early stages of development the inner capsular wall was separated from the developing sporozoites and residual mass, and was not appressed to the sporozoites. Early stage sporozoites were connected to a residual mass and were filled with endoplasmic reticulum, golgi and numerous developing secretory vesicles. In late stages of oocyst and sporozoite development, the inner capsular wall was closely appressed to the sporozoite surface. The inner capsular wall was ~60-100 nm thick and the outer capsular wall was ~160-320 nm thick. There were no extensions on the outer wall for which the genus was named. Late stage sporozoites had no residual mass connection, were more electron dense, and contained three distinct types of dense secretory structures: 1) small oval/spherical dense vesicles, 2) large (350-400 nm) vesicles near the anterior end, and 3) elongated dense tubular bodies that converged at the apex. Few ultrastructural reports exist of developing gregarine oocysts and sporozoites, and as more studies are completed these morphological characteristics may be important in interpreting molecular phylogenetic analyses.  相似文献   

6.
A comparative study was made of the ultrastructure of parenchyma leaf cells of different soybean varieties systemically infected with soybean mosaic virus (SMV). It has been shown that virus accumulation and formation of virus-specific cylindrical inclusions (CIs) occur in the infected cells, in addition to intracellular changes showing stimulation of lytic processes, such as activation of smooth endoplasmic reticulum and Golgi apparatus, formation of cytoplasmic vacuoles, cytosegresomes, myelin-like bodies, different disturbances in the structure of cell organelles. Many infected cells demonstrated microbodies with invagination in which cylindrical inclusions were often found showing signs of destruction. It is suggested that such microbodies possess autophagic activity towards CIs. A possible relation of the observed virus-induced ultrastructural cell changes with the degree of SMV affection of investigated varieties is discussed  相似文献   

7.
ULTRASTRUCTURAL ZONATION OF ADRENOCORTEX IN THE RAT   总被引:15,自引:11,他引:4       下载免费PDF全文
The fine structure of the different zones in the adrenal cortex of the adult rat has been studied under the electron microscope. Four regions mainly differentiated by the mitochondrial morphology, the lipid droplets, and the structure of the ground cytoplasm were recognized. In the glomerular zone mitochondria are thin and elongated with an abundant matrix. The inner structure is characterized by the presence of tubules of 300 A that are straight or bend at an angle and which may be grouped in parallel array giving a pseudocrystalline pattern. The wall of each tubule is a finger-like projection of the inner membrane and its cavity corresponds to the outer chamber of the mitochondrion. In the intermediary zone mitochondria are larger and irregular. The matrix is filled with convoluted tubules and vesicular elements. The lipid droplets are larger and irregular in the glomerulosa and and small in the intermedia. The ground substance is dense and contains free ribosomes in the glomerulosa and starts to be vacuolated in the intermedia. In the fasciculata mitochondria are round or oval and are filled with vesicular elements with a mean size of 450 A. Larger vesicles and more clear elements (vacuoles) are seen near the edge as if their content was diluted. Some of these vacuoles protrude on the surface. In the reticular zone mitochondria are also vesicular but frequently show signs of alteration and disruption. Dense elements recognized as microbodies are observed in the fasciculata but they increase in number in the reticularis. These results are discussed on the light of the so called zonal theory of the adrenal cortex. Two stages in the differentiation of the mitochondria are postulated. The tubular structure of the glomerulosa undergoes a process of disorientation and dilatation of the tubules to form the tubulo-vesicular elements of the intermediary zone. In a second stage of differentiation, by fragmentation of the tubules, the vesicular structure of fasciculata is formed. These findings are discussed from the viewpoint of the relationship between mitochondria and synthesis of steroid hormones. A secretory process that starts within mitochondria by the formation of vesicles and proceeds into the ground cytoplasm, as extruded and more clear vacuoles, is postulated.  相似文献   

8.
Changes in leaf mesophyll cell ultrastructure under nitrate feeding into the apoplast of common flax (Linum usitatissimum L.) in the form of 50 mM KNO3 solution were studied. In 30 min after the beginning of nitrate feeding through the transpiration water stream, swelling of mitochondrial and microbodies, clarification of their matrices, and curling of dictyosome discs into annular structures were observed. These events characterized symplastic domain formed by mesophyll, bundle sheath and phloem parenchyma cells, and were not found in companion cell-sieve element complex. Simultaneously, formation of large central vacuoles in companion cells was noted. Restoration of organelle structures in assimilating cells and phloem parenchyma in 1-2 h after treatment was accompanied by enhancement of morphological changes in phloem elements and companion cells and signs of plasmolysis in the mesophyll cells. It was supposed that the two-phase character of changes in leaf organelle ultrastructure and photosynthesis might reflect duality of leaf cell response to nitrate ion. The rapid alterations of the structure can be coupled with direct influence of the anion on cell metabolism and(or) with signal-regulatory functions of oxidized nitrogen forms, while the slower ones reflect the result of suppression of photoassimilate export from leaves by the anion.  相似文献   

9.
Amelogenesis in the tooth germs of the frog Rana pipiens was examined by electron microscopy at different stages of tooth development. Cellular changes in secretory ameloblasts during this process showed many basic similarities to those in mammalian amelogenesis. Amelogenesis can be divided into three stages based on histological criteria such as thickness of enamel and the relative position of the tooth germ within the continuous succession of teeth. These stages are early, transitional and late. The fine structure of the enamel-secreting cells reflects the functional role of these ameloblasts as primarily secretory in the early stage, possibly transporting in the late stage and reorganizing between the two functions in the transitional stage. In early amelogenesis the cell exhibits well-developed granular endoplasmic reticulum, Golgi complex, microtubules, dense granules, smooth and coated vesicles, lysosome-like bodies in supranuclear and distal portions of the cell and mitochondria initially concentrated in the basal part of the cell. Numerous autophagic vacuoles are observed concomitant with the loss of some cell organelles at the transitional stage. During late amelogenesis the ameloblasts exhibit numerous vesicles, granules, convoluted cell membranes, junctional complexes and widely distributed mitochondria. Toward the end of amelogenesis, cells become oriented parallel to the enamel surface and the number of organelles is reduced. Amelogenesis in the frog is an extracellular process and mineralization seems to occur simultaneously with matrix formation.  相似文献   

10.
Summary Distribution, localization and fine structure of the stellate cells in the liver of lamprey, Lampetra japonica, were studied during the spawning migration by use of Kupffer's gold-chloride method, fluorescence microscopy for vitamin A (retinol) and electron microscopy. The stellate cells in the lamprey liver differ in some of their properties from those in mammalian livers. Stellate cells which store abundant retinol in lipid droplets, occur not only in the hepatic parenchyma, but also in the dense perivascular and capsular connective tissue of the liver and in the interstitium of pancreatic tissue. In the hepatic parenchyma these cells are located perisinusoidally or along thick bundles of collagen fibrils. The stellate cells display a number of large retinol-containing lipid droplets, granular endoplasmic reticulum, tubular structures, dense bodies, Golgi complex, microtubules, and microfilaments. In the space of Disse, the stellate cells and extracellular fibrilar components such as collagen fibrils and microfibrils (11–12 nm in diameter) are intervened between the two layers of basal laminae. Differentiation and possible functions of the stellate cells in the lamprey liver are discussed.  相似文献   

11.
Abstract The morphology of the nonculturable Vibrio cholerae strain TSI-4 was examined by the freeze fixation technique of electron microscopy and subsequently four unique structures were found in the fine structure s of this bacterium. The size of the cell was about 2 3 of the growing cell. Although the cell was observed to have an outer membrane as well as the cell membrane and cytoplasm, the outer membrane was undulated and had a surface layer of fine fibers. The peptidoglycan layer was thick and more electron dense than that of normal cells.  相似文献   

12.
Summary Nitrogen-fixing peanut root nodules are characterized by their unique structural organization, distinct from other legume nodules. The focus of this study has been in and around the hostsymbiont interface, where the bacterioid and the host cell surface (peribacteroid membrane envelope) interact during symbiosis. The infected nodule cells have revealed the presence of lipid bodies (oleosomes) in intimate association with the peribacteroid membrane, which encloses the large spherical bacteroids with a relatively narrow peribacteroid space. Electron dense structures, referred to as dense bodies have been found attached to the bacteroid outer membranes at the host-symbiont interface. The dense bodies are osmiophilic, amorphous and 3,3-diaminobenzidine positive. The isolated intact bacteroids with dense bodies attached to their cell wall showed significant catalase activity. Many microbodies showing DAB-positive reaction have been found in the host cytoplasm, associated closely with the peribacteroid membrane. These ultrastructural and cytochemical characteristics of peanut root nodules suggest that lipids are utilized during symbiosis and the dense bodies and microbodies may be involved in the catabolic process.Abbreviation DAB 3,3-diaminobenzidine  相似文献   

13.
Acid phosphatase was localized at the fine structural level in rat endometrial phagocytes during the period of postpartum involution. These cells showed intense phagocytotic and pinocytotic activities, which were accompanied by the development of abundant lysosomes. Phagosomes acquired their enzymatic complement by fusion with lysosomes; the same appeared to be true in the case of pinocytotic vesicles, but, because of the small size of these vesicles, this point could not be established with certainty. Digestion within some phagolysosomes led to the formation of electron-lucent vacuoles containing solubilized products. Other phagolysosomes showed accumulation of lipid residues in the form of droplets and myelin figures, and the structures acquired the appearance of residual bodies. In many macrophages, overfeeding led to the formation of unusually large numbers of phagolysosomes, which occupied almost the entire cytoplasm with exclusion of other cell organelles. In these cells the presence of abundant lead deposits, apparently free in the cytoplasm suggested an intracytoplasmic release of hydrolases.  相似文献   

14.
Changes in the structure of the digestive gland cells of Venus's-flytrap during the digestive process have been studied with light and electron microscopy. Large vacuolar lipid-protein inclusions break up and become smaller; however, they never completely disappear during the entire 7-10-day cycle. Dictyosomes in the resting digestive gland are associated with small, inconspicuous vesicles, whereas during the digestive cycle two types of prominent vesicles are observed on the peripheral tubules. Changes in plastid fine structure are complex and involve the disappearance of lipid globules and the tubular complex, followed by the formation of microtubules on the thylakoids and cisternae on the outer plastid membrane. Mitochondrial fine structure changes from the small cristae and light matrix of the resting state to large cristae and a very dense matrix representative of a change to a state where phosphorylation is tightly coupled to electron transport. Pronounced changes which occur in the cell envelope (cell wall and membrane taken together) are apparently associated with secretion of the digestive fluid. Numerous other changes are observed such as polysome formation, multivesicular body formation, mitochondria division, and changes which can be attributed in general to elevated cell activity.  相似文献   

15.
16.
Abstract The occurrence of microbodies in different cells of the nematophagous fungus Arthrobotrys oligospora has been investigated. In the predacious phase this organism forms complex 3-dimensional network traps. Mature trap cells generally were crowded with "special" microbodies which possessed an electron dense matrix and were surrounded by a membrane of approx. 9 nm. These organelles developed during the early stages of trap formation and were derived from specialized regions of the endoplasmic reticulum. Cytochemical staining experiments revealed that the electron-dense microbodies contained catalase and d -amino acid oxidase and thus must be considered peroxisomal in nature. Electron-dense bodies were absent in normal vegetative cells of the fungus. These cells contained "normal" microbodies which developed from each other by the separation of small organelles from mature ones. As in yeasts, the metabolic function of these latter organelles was dependent upon environmental conditions.  相似文献   

17.
Calcium oxalate formation in Lemna minor L. occurs in structurally specialized cells called crystal idioblasts. Cytochemical and immunocytochemical protocols were employed to study the distribution of peroxisomes and the enzymes glycolate oxidase, glycine decarboxylase and ribulose 1,5-bisphosphate carboxylase-oxygenase (RuBisCO) in relation to synthesis of oxalate used for Ca oxalate formation. These enzymes are necessary for photorespiratory glycolate synthesis and metabolism. Using catalase cytochemistry, microbodies were found to exist in crystal idioblasts but were smaller and fewer than those found in mesophyll cells. Glycolate oxidase, which can oxidize glycolate to oxalate via glyoxylate, could not be found in microbodies of crystal idioblasts at any stage of development. This enzyme increased in amount in microbodies of mesophyll cells as they matured and could even be found in dense amorphous inclusions of mature cell peroxisomes. Glycine decarboxylase and RuBisCO could also be detected in increasing amount in mesophyll cells as they matured but could not be detected in idioblasts or were just detectable. Thus, Lemna idioblasts lack the machinery for synthesis of oxalate from glycolate. Based on these results and other available information, two general models for the generation and accumulation of oxalate used for Ca oxalate formation in crystal idioblasts are proposed. The biochemical specialization of crystal idioblasts indicated by this study is also discussed with respect to differentiation of cellular structure and function.  相似文献   

18.
In the marine shrimp Sicyonia ingentis, ova lack cortical vesicles at spawning. Previous ultrastructural studies suggested that two different populations of cortical vesicles (dense vesicles and the ring vesicles) appear within 30 min post-spawning. These vesicles undergo sequential exocytosis (exocytosis of the dense vesicles followed by exocytosis of the ring vesicles) that leads to the formation of a hatching envelope around the ovum (see Pillai and Clark: Tissue & Cell 20:941-52, 1988). In the present study, lectins were used as molecular probes to study the development of cortical vesicles subsequent to spawning and the role of these vesicles in formation and elaboration of the hatching envelope. Isolated envelopes were screened with 11 different lectins to determine what group(s) were specific to the envelope glycoconjugates; Concanavalin A (Con A), Griffonia simplicifolia (GS II), Lens culinaris (LCA), and wheat germ agglutinin (WGA) bound to the envelopes. FITC-lectin studies of sectioned ova (fixed at various time points after spawning) utilizing WGA and LCA showed different labelling patterns. Data obtained at the light microscopical level indicated that WGA was specific to the dense vesicles and the outer portion of the envelope, while LCA exhibited specificity for the ring vesicles and the inner portion of the envelope. At the ultrastructural level, gold-LCA labelling was seen associated with the cisternal elements (containing ring-shaped structures), ring vesicles, and the inner layer of the fully formed envelope. These data demonstrated that 1) the ring vesicles are formed by fusion of cisternal elements containing ring-shaped structures; 2) the two species of cortical vesicles are chemically heterogeneous; and 3) the components of each type of vesicle contribute to different integral parts (the outer and inner layers) of the hatching envelope.  相似文献   

19.
This paper emphatically deals with the ultrastructure of albuminous cells in different stages of development in the secondary phloem of Pinus bungeana. The secondary phloem of Pinus bungeana is composed of sieve cells, axial parenchyma cells, radial plates and rays. Among the constituents, most of upright ray cells and radial plate parenchyma cells are albuminous cells. Although the shape and distribution of this kind of albuminous cells may be different, they possess the following common cytological characteristics. These cells have dense cytoplasm with abundant mitochondria, ribosomes, rough endoplasmic reticula and a large nucleus, the nuclei of some albuminous cells are lobed in shape which increases the outer surface of the nuclei. Usually the albuminous cell contains some starch granules, the quantity of the starch granules in albuminous cells is less than the other parenchyma cells of the secondary phloem. All these cytological characteristics suggest that albuminous cells are active physiologically. The distinguishing characteristics of albuminous cells from other parenchyma ceils are that the albuminous cells are associated with sieve cells through unilateral sieve area and they died together with the sieve cells.  相似文献   

20.
Structural changes in the seutellar parenchyma and epithelial cells of oats during the first 3 days of germination were followed by electron microscopy. The seutellar parenchyma cells contain more protein bodies than the epithelial cells, otherwise the general fine structures of the two types of cells arc quite similar: When the seed starts to germinate the protein bodies change into vacuoles and the proteins inside the protein bodies gradually disappear. Spherosomes are in abundance ill the seutcllar cells of the dry seed. Few disappeared during germination. Other cellular organelles, such as the mitochondria, endoplasmie reticulum, plastids, Golgi apparatus and glyoxysomes are scarcely seen in the seutellar cells of the dry seed. They become more obvious and easily recognizable after germination. In the dry seed, the walls of the epithelial cell that abut the endospernl show a two layered structure, consisted of an inner and outer layer. The outer layer becomes hydrolysed during seed germination, but the inner layer remains intact. The scutetlar epithelial cells are known for their ability to secret enzymes ute and absorb nutrients from the endosperm. But in the fine structural studies we have not been able to locate any specific strurcture that could be related to their known functions of enzyme secretion and nutrient absorption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号