首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of Glomus mosseae and Paecilomyces lilacinus on Meloidogyne javanica of tomato were tested in a greenhouse experiment. Chicken layer manure was used as a carrier substrate for the inoculum of P. lilacinus. The following parameters were used: gall index, average number of galls per root system, plant height, shoot and root weights. Inoculation of tomato plants with G. mosseae did not markedly increase the growth of infected plants with M. javanica. Inoculation of plants with G. mosseae and P. lilacinus together or separately resulted in similar shoots and plant heights. The highest root development was achieved when mycorrhizal plants were inoculated with P. lilacinus to control root-knot nematode. Inoculation of tomato plants with G. mosseae suppressed gall index and the average number of galls per root system by 52% and 66%, respectively, compared with seedlings inoculated with M. javanica alone. Biological control with both G. mosseae and P. lilacinus together or separately in the presence of layer manure completely inhibited root infection with M. javanica. Mycorrhizal colonization was not affected by the layer manure treatment or by root inoculation with P. lilacinus. Addition of layer manure had a beneficial effect on plant growth and reduced M. javanica infection.  相似文献   

2.
Xia  Yanfei  Li  Shen  Liu  Xueting  Zhang  Chong  Xu  Jianqiang  Chen  Yingwu 《Annals of microbiology》2019,69(12):1227-1233
Purpose

Determination of the nematicidal potential and mode of action of bacteria isolated from tobacco rhizosphere soil against the root-knot nematode Meloidogyne javanica in tomato plants.

Methods

Antagonistic bacteria were isolated from rhizosphere soil of tobacco infested with root-knot nematodes. Culture filtrate was used to examine nematicidal activity and ovicidal action of bacterial strains. Biocontrol of M. javanica and growth of treated tomato plants were assessed in pot experiments. To clarify whether secondary metabolites of bacteria in tomato roots induced systemic resistance to M. javanica, bacterial culture supernatants and second-stage juvenile nematodes were applied to spatially separated tomato roots using a split-root system. Bacterial strains were identified by 16S rDNA and gyrB gene sequencing and phylogenetic analysis.

Results

Of the 15 bacterial strains isolated, four (LYSX1, LYSX2, LYSX3, and LYSX4) demonstrated nematicidal activity against second-stage juveniles of M. javanica, and strain LYSX1 showed the greatest antagonistic activity; there was dose-dependent variability in nematicidal activity and inhibition of egg mass hatching by strain LYSX1. In vivo application of LYSX1 to tomato seedlings decreased the number of egg masses and galls and increased the root and shoot fresh weight. Treatment of half of the split-root system with LYSX1 reduced nematode penetration to the other half by 41.64%. Strain LYSX1 was identified as Bacillus halotolerans.

Conclusion

Bacillus halotolerans LYSX1 is a potential microbe for the sustainable biocontrol of root-knot nematodes through induced systemic resistance in tomato.

  相似文献   

3.
Efficacy of Pseudomonas aeruginosa alone or in combination with Paecilomyces lilacinus was evaluated in the control of root-knot nematode and root-infecting fungi under laboratory and field conditions. Ethyl acetate extract (1 mg/ml) of P. lilacinus and P. aeruginosa,respectively, caused 100 and 64% mortality of Meloidogyne javanica larvae after 24 h. Ethyl acetate fractions of biocontrol agents were more effective than hexane extracts in the suppression of M. javanica larvae, indicating that active nematicidal compounds are intermediary in polarity. In field experiments, biocontrol fungus and bacterium significantly suppressed soilborne root-infecting fungi including Macrophomina phaseolina, Fusarium oxysporum, Fusarium solani, Rhizoctonia solani and Meloidogyne javanica, the root-knot nematode. P. lilacinus parasitized eggs and female of M. javanica and this parasitism was not significantly influenced in the presence of P. aeruginosa. P. aeruginosa was reisolated from the inner root tissues of tomato, whereas P. lilacinusdid not colonize tomato roots. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

4.
The penetration of second stage juveniles of Meloidogyne javanica started within 12 hours after inoculation and the rate of penetration gradually increased with the passage of time up to the fifth day in the plants inoculated with root-knot nematode alone and up to the sixth day when plants were infected with root-knot nematode and root-rot fungus. Mostly, the penetration of second stage juveniles of Meloidogyne javanica took place in the meristematic region but in some cases the juveniles also penetrated into the root tips and oriented themselves near the stellar region almost parallel to the longitudinal axis of the roots. The life cycle of Meloidogyne javanica on balsam was completed within 25 days, whereas the duration of the life cycle and fecundity of females was adversely affected in the presence of fungus (Macrophomina phaseolina) and it took about 33 days to complete the life cycle, i.e. the presence of Macrophomina phaseolina delayed the life cycle of the root-knot nematode (Meloidogyne javanica) by eight days.  相似文献   

5.
Reproduction of Meloidogyne javanica was compared on several Agrobacterium rhizogenes-transformed root cultures under monoxenic conditions. M. javanica reproduced on all transformed roots tested; however, more females and eggs were obtained on potato and South Australian Early Dwarf Red tomato than on bindweed, Tropic tomato, lima bean, or carrot. Roots that grew at moderate rates into the agar and produced many secondary roots supported the highest reproduction. Numbers of females produced in cultures of transformed potato roots increased with increasing nematode inoculum levels, whether inoculum was dispersed eggs or juveniles. Females appeared smaller, produced fewer eggs, and were found in coalesced galls at the higher inoculum levels. The ratio between the final and initial population decreased sharply as the juvenile inoculum increased. The second-stage juvenile was preferred to dispersed eggs or egg masses for inoculation of tissue culture systems because quantity and viability of inoculum were easily assessed. Meloidogyne javanica reared on transformed root cultures were able to complete their life cycles on new transformed root cultures or greenhouse tomato plants.  相似文献   

6.
Cotton‐ and maize‐producing insecticidal crystal (Cry) proteins from the bacterium, Bacillus thuringiensis (Bt), have been commercialized since 1996. Bt plants are subjected to environmental risk assessments for non‐target organisms, including natural enemies that suppress pest populations. Here, we used Cry1F‐resistant Spodoptera frugiperda (J.E. Smith) and Cry1Ac and Cry2Ab‐resistant Trichoplusia ni (Hübner) as prey for the assassin bug, Zelus renardii (Kolenati), a common predator in maize and cotton fields. In tritrophic studies, we assessed several fitness parameters of Z. renardii when it fed on resistant S. frugiperda that had fed on Bt maize expressing Cry1F or on resistant T. ni that had fed on Bt cotton expressing Cry1Ac and Cry2Ab. Survival, nymphal duration, adult weight, adult longevity and female fecundity of Z. renardii were not different when they were fed resistant‐prey larvae (S. frugiperda or T. ni) reared on either a Bt crop or respective non‐Bt crops. ELISA tests demonstrated that the Cry proteins were present in the plant at the highest levels, at lower levels in the prey and at the lowest levels in the predator. While Z. renardii was exposed to Cry1F and Cry1Ac and Cry2Ab when it fed on hosts that consumed Bt‐transgenic plants, the proteins did not affect important fitness parameters in this common and important predator.  相似文献   

7.
Studies on insect food intake and utilization are important for determining the degree of insect/plant association and host species’ resistance, and also for helping design pest management programs by providing estimates of potential economic losses, techniques for mass breeding of insects, and identifying physiological differences between species. We studied the feeding and development of fall armyworm, Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae), on transgenic (Bt) and non‐transgenic (non‐Bt) cotton. The larvae of S. frugiperda fed on Bt cotton had a longer development period (23.0 days) than those fed on non‐Bt cotton (20.2 days). Survivorship of S. frugiperda larvae fed on Bt cotton (74.1%) was lower than that of larvae fed on non‐Bt cotton (96.7%). Pupal weight of larvae fed on Bt cotton (0.042 g) was lower than that of larvae fed on non‐Bt cotton (0.061 g). The cotton cultivar significantly affected food intake, feces production, metabolization, and food assimilation by S. frugiperda larvae. However, it did not affect their weight gain. Intake of Bt‐cotton leaf (0.53 g dry weight) per S. frugiperda larva was lower than the intake of non‐Bt‐cotton leaf (0.61 g dry weight). Larvae fed on Bt‐cotton leaves produced less feces (0.25 g dry weight) than those fed on non‐Bt‐cotton leaves (0.37 g dry weight). Weight gain per S. frugiperda larva fed on Bt‐cotton leaves (0.058 g dry weight) was similar to the weight gain for larvae fed on non‐Bt‐cotton leaves (0.056 g dry weight). The cotton cultivar significantly affected the relative growth, consumption, and metabolic rates, as well as other nutritional indices: the figures were lower for larvae fed on Bt‐cotton leaves than for larvae fed on non‐transgenic cotton leaves.  相似文献   

8.
Summary The interaction between the VA mycorrhizal fungus,Glomus fasciculatus and the root-knot nematodes,Meloidogyne incognita andM. javanica, and their effects on the growth and phosphorus nutrition of tomato was studied in a red sandy loam soil of pH 6.0. Inoculation of tomato roots with root-knot nematodes enhanced infection and spore production byG. fasciculatus. Inoculation of tomato plants withG. fasciculatus significantly reduced the number and size of the root-knot galls produced byM. incognita andM. javanica. Inoculation withG. fasciculatus although improved plant growth and its total phosphorus content compared to the uninoculated plants, the difference were not statistically significant.  相似文献   

9.
The aim of this study was to assess the effects of potato plants expressing a barley cystatin on a potentially cystatin-susceptible natural enemy by predation on susceptible and non-susceptible preys feeding on the plant. We have focussed on the impact of the variant HvCPI-1 C68 → G, in which the only cysteine residue was changed by a glycine, on the growth and digestive physiology of the Colorado potato beetle (CPB), Leptinotarsa decemlineata, and the Egyptian cotton leafworm (ECW), Spodoptera littoralis. Moreover, we have studied the prey-mediated effects of the barley cystatin at the third trophic level, using the predatory spined soldier bug (SSB), Podisus maculiventris, as a model. Feeding trials conducted with CPB larvae reared on transgenic potato plants expressing the C68 → G variant resulted in significantly lower weight gains compared to those fed on non-transformed (NT) plants. On the contrary, larger weight gains were obtained when ECW larvae, that lack digestive cysteine proteases, were reared on transgenic potato expressing the cystatin, as compared to larvae fed on NT plants. No negative effects on survival and growth were observed when SSB nymphs were exposed to HvCPI-1 C68 → G by predation on either CPB or ECW larvae reared on transgenic potato plants expressing the barley cystatin, despite the fact that the inhibitor suppressed in vitro gut proteolysis of the predatory bug. To investigate the physiological background, biochemical analysis were carried out on guts of insects dissected at the end of the feeding assays. Fernando álvarez-Alfageme and Manuel Martínez are contributed equally to this work.  相似文献   

10.
Six amino acids viz. DL-methionine, DL-valine, DL-serine, DL-phenylalanine, L-proline and L-histidine were tested against root knot of tomato caused by Meloidogyne javanica. All amino acids showed significant response in plant growth characters with corresponding reduction in the number of galls, adult females, egg masses and juvenile stages within the treated plants. DL-phenylalanine gave significantly higher response in reducing the hatch of egg masses and survival of juveniles in in vitro test compared to control. The highest plant growth and maximum reduction of galling incidence of tomato were recorded in the DL-phenylalanine- treated plants followed by L-proline and L-histidine. All the amino acids gave positive response in suppressing the development of the nematode in the treated plants.  相似文献   

11.
Saccharomyces cerevisiae is a promising plant growth-promoting yeast for different crops. Applicability of S. cerevisiae as a biocontrol agent of the root-knot nematode (Meloidogyne javanica) was investigated on cucumber under growth-room and field conditions. The yeast S. cerevisiae similar to the nematicide, Ethoprophos, when applied as a rhizospheric soil drench treatment led to an obvious reduction of root galling caused by M. javanica and resulted in reducing the nematode reproduction ability on cucumber under growth room and field conditions. The yeast was more effective at 10 than at 5?g/l. Furthermore, the application of S. cerevisiae resulted in improving cucumber plant growth and increasing its fruit yield. High content of total phenolics in cucumber roots of S. cerevisiae-treated plants and hydrogen peroxide-treated plants gives a clue on the ability of the yeast to induced plant resistance in a similar way to exogenous hydrogen peroxide.  相似文献   

12.
Determining the impact of genetically modified (GM) crops on beneficial organisms is an important aspect of the environmental risk assessment of GM crops. In the present study, the impact of Bt maize expressing Cry1Ab on the development and behaviour of the parasitoid Campoletis sonorensis was compared to individuals reared on hosts fed conventionally bred plants partially resistant to the European corn borer (Ostrinia nubilalis Hübner) and on susceptible maize hybrids. Adult parasitoids reared on Bt maize-fed Spodoptera frugiperda larvae were significantly smaller (15–30%) than those reared in hosts fed either of the conventional maize hybrids. The magnitude of this effect was dependent on the size of the host at oviposition and its subsequent growth rate. The development time of C. sonorensis was not affected by the maize treatment. In choice tests, female parasitoids displayed no preference for hosts fed a specific maize hybrid. No Cry1Ab was detected within adult parasitoids.  相似文献   

13.
Balsam seedlings were inoculated with root-knot nematode Meloidogyne javanica Race-2 and Macrophomina phaseolina either individually or concomitantly, as well as sequentially with an interval of 15?days between the nematode or fungal inoculations to determine whether the interaction was concomitant or sequential. The greater reduction in plant growth characters was observed in the plants inoculated with M. javanica and M. phaseolina, either concomitantly or sequentially as compared to their individual inoculation. However, the highest reduction in plant growth characters were recorded in the plants inoculated with M. javanica Race-2 15?days prior to M. phaseolina followed by concomitant-inoculated M. javanica Race-2 and M. phaseolina, and M. phaseolina 15?days prior to M. javanica. The number of galls/root system and the reproduction factor of the root-knot nematode was reduced in the presence of root-rot fungus. The intensity of root-rot caused by M. phaseolina increased in the presence of root-knot nematode M. javanica as compared to when M. phaseolina was inoculated individually. Moreover, stem and collar-rot symptoms caused by M. phaseolina appeared only in the presence of root-knot nematode.  相似文献   

14.
15.
The root-knot nematode Meloidogyne spp. includes important plant pathogens worldwide. This study has considered nematode Meloidogyne javanica second stage larvae activity in the extracts of Pseudomonas fluorescens strains UTPF5 and cytotoxic effect of the strain on the nematode. The movement of second stage larvae of nematodes in water agar medium at four concentrations of bacterial extracts and second stage larvae mortality rate of hatching nematode and bacterial strains in vitro were affected. Different concentrates of the strain UTPF5 effect nematode larvae movement and disposal of the same. Bacterial extraction kills almost 100% of the larvae hatching after 24?h and a complete ban on egg hatch of biocontrol nematodes and nematode indicated that root-knot nematode larvae movement on the right attract the bacteria P. fluorescens to extract in the first place.  相似文献   

16.
Presumably due to their association with nitrogen-fixing bacteria, the nutritional quality of legumes decreases less than that of non-legume C3 plants when grown under elevated atmospheric CO2. Therefore, it seems likely that legume-feeding herbivores will be less adversely affected than herbivores of non-legume C3 plants by anthropogenic increases in atmospheric CO2. When the legumes Medicago sativa (alfalfa), Trifolium repens (white clover), and Lotus corniculatus (birdsfoot trefoil) were grown under elevated (756 ppm) CO2, leaf nitrogen remained the same or increased, and C:N ratio did not change. Unlike most insects fed non-legume C3 plants, Colias philodice (sulfur butterfly) larvae fed elevated-grown M. sativa and T. repens did not exhibit reduced relative growth rate (RGR), and larvae fed elevated-grown L. corniculatus exhibited a nearly significant 37% increase in RGR. Pupal weight was unaffected by growth of host plants under elevated CO2. Relative nitrogen growth rate (RGRN) did not change for larvae fed elevated-grown M. sativa or T. repens, but increased by 34% for larvae fed elevated-grown L. corniculatus. These results suggest that legume-feeding herbivores will be relatively buffered against the adverse effects of elevated CO2 typically experienced by herbivores of non-legume C3 plants.  相似文献   

17.
The influence of different application rates of the plant growth-promoting rhizobacterium, Pseudomonas aeruginosa, population densities of the root-knot nematode, Meloidogyne javanica, moisture and other plant-associated bacteria in the suppression of root rot–root knot disease complex of tomato are described. The impact of these factors on bacterial rhizosphere and inner root and shoot establishment are also presented. The highest inoculum level of P. aeruginosa (7.4 × 108 cfu ml–1) in the presence of the lowest population density of M. javanica (500 J2/plant) caused the greatest reduction in gall formation due to M. javanica. The number of root–knot nematodes recovered from soil and roots treated with P. aeruginosa were also significantly reduced. Root infection caused by the soilborne root-infecting fungi Fusarium oxysporum, F. solani and Rhizoctonia solani was also effectively suppressed following application of P. aeruginosa. A P. aeruginosa-Bacillus subtilis treatment was the most effective in the suppression of root-rot disease complex with enhancement of plant growth. Biocontrol and growth promoting potential of the bacterium was enhanced when soil was kept at 50% or 75% moisture holding capacity, whereas a 25% MHC reduced bacterial efficacy. Rhizosphere population of P. aeruginosa declined drastically in P. aeruginosa-Bradyrhizobium japonicum treatments. Rhizosphere colonisation by P. aeruginosa seems to be governed by two factors: Initial inoculum size of the bacterium and severity of the root-knot disease. Endoroot and endoshoot colonisation of the bacterium was dependent on degree of root-colonisation by Fusarium oxysporum. An inoculum level 2.5 × 108 cfu/ml of P. aeruginosa was optimal for the enhancement of plant growth, whereas inoculum below this level reduced plant growth.  相似文献   

18.
Silicon (Si) has been reported to enhance plant resistance against biotic and abiotic stressors and also benefit plant growth. These effects are more pronounced in grass species, especially with soil‐applied Si. This study investigated the effects of Si application on rice resistance to Spodoptera frugiperda development and plant vegetative growth. Effects of Si on rice were assessed via soil and foliar applications and compared with untreated plants (control). Si was soil‐ and foliar‐applied as 1% silicic acid solution at a dosage equivalent to 1.4 t Si per ha. After application, leaf material was collected from Si‐treated and untreated plants and placed in Petri dishes with individual S. frugiperda neonate larvae, where development was followed to adult emergence and biological parameters recorded. Vegetative growth parameters recorded in rice plants were the height, chlorophyll content, fresh and dry weights of shoots, and shoot Si content. No effects of Si application were observed on the durations of larval and pupal stages, larval and pupal survival, and sex ratio of S. frugiperda. Insects fed leaves from Si‐treated plants exhibited lower leaf consumption, larval and pupal weights, longevity of males and females, number of eggs, and egg viability. The negative effects were correlated with higher rice Si content. Si application to rice increased plant height, chlorophyll content and dry weight. Our study demonstrates that foliar‐applied Si is as efficient as soil‐applied Si in negatively affecting S. frugiperda development and providing beneficial effects on rice plant growth.  相似文献   

19.
Two Hawaiian isolates of Steinernema feltiae MG-14 and Heterohabditis indica MG-13, a French isolate of S. feltiae SN, and a Texan isolate of S. riobrave TX were tested for their efficacy against the root-knot nematode, Meloidogyne javanica, in the laboratory and greenhouse. Experiments were conducted to investigate the effects of treatment application time and dose on M. javanica penetration in soybean, and egg production and plant development in tomato. Two experiments conducted to assess the effects of entomopathogenic nematode application time on M. javanica penetration demonstrated that a single application of 10⁴ S. feltiae MG-14 or SN infective juveniles per 100 cm³ of sterile soil, together with 500 (MG-14) or 1,500 (SN) second-stage juveniles of M. javanica, reduced root penetration 3 days after M. javanica inoculation compared to that of a water treatment. Entomopathogenic nematode infective juveniles applied to assess the effects on M. javanica egg production did not demonstrate a significant reduction compared to that of the water control treatment. There was no dose response effect by Steinernema spp. On M. javanica root penetration or egg production. Steinernema spp. did not affect the growth or development of M. javanica-infected plants, but H. indica MG-13-treated plants had lower biomass than untreated plants infected with M. javanica. Infective juveniles of S. riobrave TX, S. feltiae SN, and MG-14 but not those of H. indica MG-13 were found inside root cortical tissues of M. javanica-infected plants. Entomopathogenic nematode antagonism to M. javanica on soybean or tomato was insufficient in the present study to provide a consistent level of nematode suppression at the concentrations of infective juveniles applied.  相似文献   

20.
A pathogenicity trial conducted against root-knot nematode, Meloidogyne javanica on broccoli indicated that a gradual increase in the nematode inoculum from 500 to 8000 juveniles/kg soil was associated with a progressive decline in all the plant growth parameters and reproduction factor of the nematode. Although 8000 juveniles/kg soil showed maximum plant growth reduction and root knot index, statistical analysis of the data revealed that the population of 1000 juveniles/kg soil was associated with a significant decline in plant growth. Hence, this level was indicative of being the pathogenic level. The significant reduction in seedling emergence was recorded at and above 2000 juveniles/kg soil and it decreased further with increasing inoculum levels. Meloidogyne javanica required 27 days to complete the life cycle on broccoli at a temperature range of 28–35°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号