首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Aspartoacylase catalyzes the deacetylation of N-acetylaspartic acid (NAA) in the brain to produce acetate and L-aspartate. An aspartoacylase deficiency, with concomitant accumulation of NAA, is responsible for Canavan disease, a lethal autosomal recessive disorder. To examine the mechanism of this enzyme the genes encoding murine and human aspartoacylase were cloned and expressed in Escherichia coli. A significant portion of the enzyme is expressed as soluble protein, with the remainder found as inclusion bodies. A convenient enzyme-coupled continuous spectrophotometric assay has been developed for measuring aspartoacylase activity. Kinetic parameters were determined with the human enzyme for NAA and for selected N-acyl analogs that demonstrate relaxed substrate specificity with regard to the nature of the acyl group. The clinically relevant E285A mutant reveals an altered enzyme with poor stability and barely detectable activity, while a more conservative E285D substitution leads to only fivefold lower activity than native aspartoacylase.  相似文献   

2.
Le Coq J  An HJ  Lebrilla C  Viola RE 《Biochemistry》2006,45(18):5878-5884
Aspartoacylase catalyzes the deacetylation of N-acetylaspartic acid (NAA) to produce acetate and L-aspartate and is the only brain enzyme that has been shown to effectively metabolize NAA. Although the exact role of this enzymatic reaction has not yet been completely elucidated, the metabolism of NAA appears to be necessary in the formation of myelin lipids, and defects in this enzyme lead to Canavan disease, a fatal neurological disorder. The low catalytic activity and inherent instability observed with the Escherichia coli-expressed form of aspartoacylase suggested the need for a suitable eukaryotic expression system that would be capable of producing a fully functional, mature enzyme. Human aspartoacylase has now been successfully expressed in Pichia pastoris. While the expression yields are lower than in E. coli, the purified enzyme is significantly more stable. This enzyme form has the same substrate specificity but is 150-fold more active than the E. coli-expressed enzyme. The molecular weight of the purified enzyme, measured by mass spectrometry, is higher than predicted, suggesting the presence of some post-translational modifications. Deglycosylation of aspartoacylase or mutation at the glycosylation site causes decreased enzyme stability and diminished catalytic activity. A carbohydrate component has been removed and characterized by mass spectrometry. In addition to this carbohydrate moiety, the enzyme has also been shown to contain one zinc atom per subunit. Chelation studies to remove the zinc result in a reversible loss of catalytic activity, thus establishing aspartoacylase as a zinc metalloenzyme.  相似文献   

3.
The function of N-acetyl-aspartate (NAA), a predominant molecule in the brain, has not yet been determined. However, NAA is commonly used as a putative marker of viable neurones. To investigate the possible function of NAA, we determined the anatomical, developmental and cellular distribution of aspartoacylase, which catalyses the hydrolysis of NAA. Levels of aspartoacylase activity were measured during postnatal development in several brain regions. The differential distribution of aspartoacylase activity in purified populations of cells derived from the rat CNS was also investigated. The developmental and anatomical distribution of aspartoacylase correlated with the maturation of white matter tracts in the rat brain. Activity increased markedly after 7 days and coincided with the time course for the onset of myelination in the rat brain. Gray matter showed little activity or developmental trend. There was a 60-fold excess in optic nerve (a white matter tract) when compared with cortex at 21 days of development. In the adult brain there was a 18-fold difference in corpus callosum compared with cortex (stripped of corpus callosum). Cellular studies demonstrated that purified cortical neurons and cerebellar granular neurones have no activity. Primary O-2A progenitor cells had moderate activity, with three-fold higher activity in immature oligodendrocyte and 13-fold increase in mature oligodendrocytes (myelinating cells of the CNS). The highest activity was seen in type-2 astrocytes (20-fold difference compared with O-2A progenitors) derived from the same source. Aspartoacylase activity increased with time in freshly isolated astrocytes, with significantly higher activity after 15 days in culture. We conclude that aspartoacylase activity in the developing postnatal brain corresponds with maturation of myelination, and that the cellular distribution is limited to glial cells.  相似文献   

4.
The membrane-bound enzyme 2′,3′-cyclic nucleotide 3′-phosphohydrolase has been purified from acetone powders of bovine white matter and spinal cord. Affinity chromatography on AMP-Sepharose has been used as the final step in the chromatographic purifications. The yield was about 3 mg of purified enzyme per 100 g of tissue in each instance. The enzymes from the two sources were indistinguishable by chromatography, gel electrophoresis, and amino acid analysis; the enzyme from spinal cord, however, has shown a specific activity of 225 units/mg compared to 342 units/mg for the enzyme from white matter. Both proteins had a molecular weight of 100,000 by gel filtration and 50,000 by sodium dodecyl sulfate-gel electrophoresis under reducing conditions. The properties of the enzyme, including amino acid composition determined on the purified soluble protein and on the protein purified by sodium dodecyl sulfate-gel electrophoresis, were those of a basic hydrophobic protein.  相似文献   

5.
Although the most prominent acute and chronic effect of alcohol ingestion in man is alteration of brain function, metabolism of ethanol by human brain has not been documented. This study was designed to detect and localize a new family of nonoxidative ethanol metabolites, fatty acid ethyl esters, in human brain and characterize their synthetic pathways. Fatty acid ethyl ester synthase activity was present in 10 different locations in human brain, with gray matter containing more activity than white matter (0.53 nmol of ethyl oleate/mg of protein/h and 0.25 nmol of ethyl oleate/mg of protein/h, respectively). Two forms of this synthase, present in cytosol or loosely bound to membrane fractions, were isolated from human gray and white matter and then partially purified by ion-exchange chromatography. Both were active at low ethanol concentrations easily attained in vivo in man. Importantly, fatty acid ethyl esters were also detected in brains of individuals dying while intoxicated; only small amounts were present in control subjects at autopsy. Thus, alcohol metabolism in human brain has been documented for the first time by identifying both fatty acid ethyl esters and their synthases in this important target-organ of alcohol abuse.  相似文献   

6.
Ferrochelatase was purified to homogeneity from yeast mitochondrial membranes and found to be a 40-kDa polypeptide with a pI at 6.3. Fatty acids were absolutely necessary to measure the activity in vitro. The Michaelis constants for protoporphyrin IX (9 x 10(-8) M), ferrous iron (1.6 x 10(-7) M), and zinc (9 x 10(-6) M) were determined on purified enzyme preparations in the presence of dithiothreitol. However, the Km for zinc was lower when measured in the absence of dithiothreitol (K-m(Zn2+) = 2.5 x 10(-7) M, Km(protoporphyrin) unchanged). The maximum velocities of the enzyme were 35,000 nmol of heme/h/mg of protein and 27,000 nmol of zinc-protoporphyrin/h/mg of protein. Antibodies against yeast ferrochelatase were raised in rabbits and used in studies on the biogenesis of the enzyme. Ferrochelatase is synthesized as a higher molecular weight precursor (Mr = 44,000) that is very rapidly matured in vivo to the Mr = 40,000 membrane-bound form. This precursor form of ferrochelatase was immunoprecipitated from in vitro translation (in a rabbit reticulocyte lysate system) of total yeast RNAs. The antibodies were used to characterize two yeast mutant strains deficient in ferrochelatase activity as being devoid of immunodetectable protein in vivo and ferrochelatase mRNA in vitro translation product. The N-terminal amino acid sequence of the purified protein has been established and was found to be frayed.  相似文献   

7.
A NAD-dependent 15-hydroxyprostaglandin dehydrogenase (PGDH) was purified to a specific activity of over 25,000 nmol NADH formed/min/mg protein with 50 microM prostaglandin E1 as substrate from the lungs of 28-day-old pregnant rabbits. This represented a 2600-fold purification of the enzyme with a recovery of 6% of the starting enzyme activity. The lungs of pregnant rabbits were used because a 42- to 55-fold induction of the PGDH activity was observed after 20 days of gestation. The enzyme was purified by CM-cellulose, DEAE-cellulose, Sephadex G-75, octylamino-agarose, and hydroxylapatite chromatography. The enzyme could not be purified by affinity chromatography using NAD- or blue dextran-bound resins. The purified enzyme was specific for NAD and had a subunit molecular weight of 29,000. The optimal pH range for the oxidation of prostaglandin E1 was between 10.0 and 10.4 using 3-(cyclohexylamino)propanesulfonic acid as the buffer. The Km and Vmax values for prostaglandin E1 were 33 microM and 40,260 nmol/min/mg protein, respectively, while the Km and Vmax values for prostaglandin E2 were 59 microM and 43,319 nmol/min/mg protein, respectively. The Km for prostaglandin F2 alpha was four times the value for prostaglandin E1. The PGDH activity was inhibited by p-chloromercuriphenylsulfonic acid but the enzymatic activity was restored by the addition of dithiothreitol. n-Ethylmaleimide also produced a rapid decline in enzymatic activity but when NAD was included in the incubation system, no inhibition was observed.  相似文献   

8.
Aspartoacylase (ASPA) hydrolyzes N-acetylaspartic acid (NAA) into aspartate and acetate. Normal hydrolysis of NAA is important to maintain healthy neurons. Since enteric neuropathy is one of the events seen in diabetes, whether ASPA activity is affected in diabetic condition is not known. In order to investigate the possibility, ASPA activity was examined in the duodenum and brain of obesity induced diabetes model mouse. Aspartoacylase activity was high in the diabetic mouse duodenum compared to control duodenum. The same result was also observed by immunostaining of the mouse duodenum. The activity of ASPA was found to be elevated in the brain of diabetic mouse compared to the control brain. These data suggest that normal hydrolysis of NAA is affected by ASPA activity seen in the type 2 diabetes model mouse and this change is likely to contribute to neuropathy seen in diabetes, if documented also in patients with type 2 diabetes.  相似文献   

9.
Cytochrome P-450scc (cholesterol side-chain cleavage enzyme) was purified from porcine adrenocortical mitochondria. 2. The purified cytochrome P-450scc was found to be homogeneous on SDS-polyacrylamide gel electrophoresis. 3. The heme content of the purified enzyme was 20.6 nmol/mg protein. 4. The enzymatic activity of the reconstituted cytochrome P-450scc-linked monooxygenase system amounted to 7.8 nmol of pregnenolone formed per nmole of P-450 per minute, with cholesterol as a substrate. 5. The amino acid sequence of the amino-terminal region of the cytochrome P-450scc and the amino acid residue at the carboxyl terminal were determined and compared with those of other mammalian cytochromes P-450scc.  相似文献   

10.
We have previously shown the presence of two different forms of glutathione disulfide (GSSG)-stimulated Mg2+-ATPases in human erythrocytes. We have now investigated a low-Km form of the enzyme from human erythrocytes. Purification of the enzyme was performed to apparent homogeneity involving procedures of affinity chromatography and gel filtration. The enzyme was composed of two non-identical subunits of Mr = 82K and 62K. The enzyme reconstituted into phospholipid vesicles showed both GSSG-stimulated Mg2+-ATPase activity (285 nmol Pi released/mg protein/min) and active GSSG transport activity (320 nmol GSSG/mg protein/min). The amino acid composition of the enzyme was similar to that of the enzyme purified from cytoplasmic membranes of human hepatocytes. These enzymes were immunologically cross reactive. These results indicate that this enzyme functions in the active transport of GSSG as it possibly does in hepatocytes.  相似文献   

11.
Atrial-natriuretic-peptide (ANP) receptor, previously identified as a 140 kDa protein with a disulphide-linked homodimeric structure, was purified from bovine lung by (NH4)2SO4 fractionation and affinity chromatography on ANP-Affi-Gel 10. The purified receptor had a binding capacity of 4.2 nmol of ANP/mg of protein and an affinity constant of 6.5 pM. The isoelectric point of the receptor was 5.8, consistent with the acidic nature of the protein (amino acid analysis revealed a predominance of glutamic acid and aspartic acid residues). Treatment with endoglycosidase H and glycopeptidase F revealed that the receptor has three complex types of oligosaccharide chains per 70 kDa subunit. Deglycosylation of the receptor did not affect its binding activity. Reduction with dithiothreitol and reoxidation by dialysis revealed a strong tendency of the receptor subunits to dimerize via disulphide cross-linking; however, carboxymethylation of the reduced receptor indicated that the intersubunit disulphide bond is not necessary for the ligand-binding activity.  相似文献   

12.
The previous demonstration that incubation of brain slices with [32P]phosphate brings about rapid tabeling of phosphatidic acid in myelin suggests that the enzyme involved should be present in this specialized membrane. DAG kinase (ATP:1,2-diacyglycerol 3-phosphotransferase, E.C. 2.7.1.107) is present in rat brain homogenate at a specific activity of 2.5 nmol phosphatidic acid formed/min/mg protein, while highly purified myelin had a much lower specific activity (0.29 nmol/min/mg protein). Nevertheless, the enzyme appears to be intrinsic to this membrane since it can not be removed by washing with a variety of detergents or chelating agents, and it could not be accounted for as contamination by another subcellular fraction. Production of endogenous, membrane-associated, diacylglycerol (DAG) by PLC (phospholipase C) treatment brought about translocation from soluble to particulate fractions, including myelin. Another level of control of activity involves inactivation by phosphorylation; a 10 min incubation of brain homogenate with ATP resulted in a large decrease in DAG kinase activity in soluble, particulate and myelin fractions.  相似文献   

13.
GABA receptor activation in central nervous white matter may be protective during white matter hypoxia in the adult, and it may modify axonal conduction, especially in the developing brain. GABA uptake is important for the shaping of the GABA signal, but quantitative data are lacking for GABA uptake and GABA-metabolizing enzymes in central nervous white matter. We report that high-affinity uptake of GABA in adult pig corpus callosum, fimbria, subcortical pyramidal tracts, and occipital white matter is approximately 20% of that in temporal cortex gray matter. Tiagabine (0.1 microM), an antiepileptic drug that specifically inhibits the GAT-1 GABA transporter inhibited GABA uptake 50% in temporal cortex and 60-68% in white structures. This finding indicates that GAT-1 is an important GABA transporter in white matter and suggests that white matter GABA uptake is inhibited during tiagabine therapy. GABA transaminase activity in white structures was approximately 20% of neocortical values. Glutamate decarboxylase (GAD) activity in white structures was only 4% of that in neocortex (7-12 pmol/mg tissue x min(-1) versus approximately 200 pmol/mg tissue x min(-1)). Since white matter activity of citrate synthase of the tricarboxylic acid cycle was approximately 25% of neocortical values ( approximately 0.4 nmol/mg tissue x min(-1) versus approximately 1.5 nmol/mg tissue x min(-1)), the low GAD activity suggests a slower metabolic turnover of GABA in white than in gray matter.  相似文献   

14.
—The enzyme cytidine 5′-monophospho-N-acetylneuraminic acid synthetase was studied in different parts of the calf brain. Characterization of partial purified enzyme preparations from cortical grey matter and corpus callosum by means of pH optima and Km values, showed the enzyme of grey and white brain areas to be identical. Unexpectedly the regional differences of the enzyme activities per g wet tissue and per mg protein were very slight. From the presence of the enzyme in pure white brain areas, which are known to be poor in neuronal perikarya, and the fact that the enzyme is localized in the cell nucleus, we concluded that cytidine 5′-monophospho-N-acetylneuraminic acid is produced in glia cell nuclei and that it is very likely that biosynthesis of sialo-glycoproteins and/or ganglio-sides occurs within glia cells. The enzyme activity per μmol DNA-P is somewhat higher in grey than in white regions, indicating a slightly higher activity per neuronal than per glial nucleus. The regional differences of lipid and protein-bound sialic acid and RNA show a striking similarity and contrast to those of the enzyme. These differences are interpreted in terms of a differential content in neurons and glia cells.  相似文献   

15.
A long-chain acyl-CoA hydrolase from rat liver microsomes has been purified by solvent extraction and gel chromatography to homogeneity as judged by polyacrylamide gel electrophoresis in the presence and absence of sodium dodecyl sulfate. The enzyme was a monomer of molecular weight 59 000. In a sucrose gradient it sedimented at 4.3 S. The isoelectric point, pI was 6.9, and the Stokes radius was approx. 31 A. The enzyme hydrolyzed long-chain fatty acyl-CoA (C7--C18) with maximum activity for palmitoyl-CoA. Bovine serum albumin activation of the enzyme was related to the ratio acyl-CoA/bovine serum albumin, and at high ratios, acyl-CoA inhibited the enzyme activity. Disregarding the substrate inhibition, an apparent Km of 65 nmol/mg protein or 1-10(-7) M and a V of 750 nmol/mg protein per min were calculated. The enzyme was inhibited by p-hydroxymercuribenzoate and N-ethylmaleimide. Reactivation by means of dithiothreitol was not complete.  相似文献   

16.
Acylpeptide hydrolase was purified to homogeneity from porcine intestinal mucosa using a seven-step procedure including ammonium sulfate precipitation, gel filtration as well as anion exchange and affinity chromatography. The specific activity of the enzyme reached 105000 nmol/mg protein per min and the purification was as high as 5500-fold. This tetrameric enzyme is composed of four apparently identical subunits, the molecular mass of which was estimated to be 75 kDa, based on the results of amino acid analysis and gel electrophoresis performed under denaturing conditions. It is likely that the NH(2)-terminal residue may be acetylated, while serine was found to be the COOH-terminal residue. The hydrolytic activity of the enzyme toward N-acetyl-L-alanine p-nitroanilide at the optimum pH value was increased twofold in the presence of the chloride anion. The K(m) value calculated from the kinetics of the hydrolysis of acetylalanyl peptides was found to be 0.7+/-0.1 mM, whereas the V(max) values decreased from 200 to 50 nmol/min per microgram of enzyme, depending on the peptidic chain lengths. The V(max) value of the synthetic substrate (250 nmol/min per microgram of enzyme) was 25-500% higher than those of the acetylalanyl peptides, depending on the peptide chain length, although the enzyme affinity was slightly lower (1.8 mM as compared with 0.7 mM). In line with data on other animal species and on various tissues, the enzyme seemed likely to be a serine protease, since it was readily inhibited by diisopropyl fluorophosphate and diethyl pyrocarbonate. A 2377-nucleotide long cDNA coding for the enzyme was isolated from pig small intestine. The deduced amino acid sequence consisted of 731 residues and showed a single different amino acid with that of the porcine liver APH, except the N-terminal amino acid which is still probably lacking.  相似文献   

17.
1. L-Alanine: 4,5-dioxovaleric acid aminotransferase (DOVA transaminase) activity was measured in murine liver, kidney and spleen homogenates. 2. Among the organs examined, the specific activity of the enzyme was highest in kidney, followed by liver then spleen. 3. No differences in DOVA transaminase activity in kidney, liver and spleen homogenates were detected between mouse strains C57BL/6J and DBA/2J. 4. Based on enzyme activity, the capacity of DOVA transaminase to catalyze the formation of delta-aminolevulinic acid (ALA) in liver appeared much greater than the capacity of ALA synthase. 5. In DBA/2J animals, DOVA transaminase activity in liver mitochondrial fractions prepared by differential centrifugation was 24 nmol ALA formed/hr/mg protein compared with 0.63 nmol ALA formed/hr/mg protein for ALA synthase. 6. Cell fractionation analyses indicated that liver DOVA transaminase is located in the mitochondrial matrix. 7. The liver enzyme was purified from mitoplasts by chromatography on DEAE-Sephacel followed by affinity chromatography on L-alanine-AH-Sepharose. 8. The specific activity of the purified DOVA transaminase was 1600 nmol ALA formed/hr/mg protein. 9. The yield of the purification was ca 90 micrograms of protein per gram liver wet weight. 10. The purified enzyme had a subunit mol. wt of 146,000 +/- 5000 as determined by electrophoresis under denaturing conditions.  相似文献   

18.
High-affinity uptake of glycine and glutamate modulates glutamatergic neurotransmission in gray matter. N-Methyl-D-aspartate (NMDA) receptors were recently described on white matter oligodendrocytes, therefore uptake of glutamate and glycine in white matter may also modulate NMDA receptor function. We found that glycine uptake in white structures of pig forebrain (corpus callosum, fimbria, subcortical pyramidal tracts, and occipital subcortical white matter) was similar to that in gray structures (frontal and temporal cortices and hippocampus), and that it was sensitive to sarcosine, a GLYT1 inhibitor (IC(50) 15 microM). Glutamate uptake in white matter was approximately 10% of that in gray; it was sensitive to dihydrokainate, an EAAT2 inhibitor. The levels of glycine and its precursor serine were similar in white and gray matter: approximately 2 and 1 nmol/mg tissue, respectively. The white matter level of glutamate was approximately 7.6 nmol/mg tissue, or approximately 74% of gray matter levels. The activity of serine hydroxymethyl transferase, which converts serine into glycine, was similar in white and gray matter (11-18 pmol/(mg tissue)min), whereas the white matter activity of phosphate-activated glutaminase, which converts glutamine into glutamate, was approximately 100 pmol/(mg tissue)min, or approximately 34% of gray matter activity. The white matter activity of glutamine synthetase, the glial enzyme that converts glutamate into glutamine, was 20-40 nmol/(mg tissue)min in neocortex and 5-6 nmol/(mg tissue)min in white matter. The data show that forebrain white matter is equipped to regulate extracellular levels of glycine and glutamate, functions that may modulate white matter NMDA receptor function.  相似文献   

19.
Rat liver arylhydroxamic acid N,O-acyltransferase, a noninducible soluble enzyme that can transform N-hydroxy-N-2-aminofluorenes and N-hydroxy-N-acyl-4-aminobiphenyls into reactive derivatives capable of binding protein and oligonucleotides, has been purified greater than 3000-fold by sequential use of the following methods: homogenization and fractional centrifugation, ammonium sulfate precipitation, chromatography on DEAE-cellulose followed by Sephacryl S-200 filtration, preparative polyacrylamide electrophoresis, and preparative isoelectric focusing. These procedures allowed a 14% recovery of enzyme activity. The molecular weight of the enzyme, as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, is 38,500. The isoelectric point, as determined by preparative and analytical flat-bed isoelectrofocusing, is 4.5; the pH optimum is 7.0. N,O-Acyltransferase showed a Km for N-hydroxy-N-acetyl-2-aminofluorene of 6.3 X 10(-6) M with a Vmax of 10.4 nmol of aminofluorene bound to tRNA/min/mg of protein. Activity was not inhibited by the esterase inhibitor paraoxon. Rat liver N,O-acyltransferase is an enzyme that is very unstable, due in part to labile sulfhydryl groups which easily oxidize in air. The enzyme cannot, however, be fully stabilized with the addition of dithiothreitol.  相似文献   

20.
Prophenoloxidase (PPO) was isolated from the hemolymph of Ostrinia furnacalis larvae and purified to homogeneity. A 369.85-fold purification and 35.34% recovery of activity were achieved by employing ammonium sulfate precipitation, Blue Sepharose CL-6B chromatography and Phenyl Sepharose CL-4B chromatography. The purified enzyme exhibits a band with a molecular mass of 158 kDa on native PAGE and two spots with a molecular mass of 80 kDa and a pI of 5.70, and a molecular mass of 78 kDa and a pI of 6.50, respectively, on two-dimensional gel electrophoresis. The N-terminal amino acid sequences of two subunits are as follows: PPO1, FGEEPGVQTTELKPLANPPQFRRASQLPRD; PPO2, FGDDAGERIPLQNLSQVPQFRVPSQLPTD. The amino acid composition of purified PPO was similar to that from Galleria mellonella. The enzyme kinetic property of the purified protein showed that the affinity of the enzyme for dopamine was higher than that for l-DOPA and N-acetyldopamine. The phenoloxidase (PO) reaction was strongly inhibited by phenylthiourea, thiourea, dithiothreitol and ethylene diamine tetraacetic acid (EDTA), but poorly inhibited by diethyldithiocarbamate (DTC) and triethylenetetramine hexaacetic acid (THAA), and was not inhibited by o-phenanthroline and ethylene glycol-bis (beta-aminoethylether) N,N,N',N'-tetraacetic acid (EGTA). Both Mg(2+) and Cu(2+) stimulated PO activity when compared with controls. The beta-sheet content of PPO treated with Mg(2+) and Cu(2+) increased significantly (P<0.05). The purified PPO has magnesium level of 5.674+/-2.294 microg/mg and copper level of 1.257+/-0.921 microg/mg as determined with ICP-MS, suggesting that the purified PPO is a metalloprotein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号