首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For successful transformation of a plant by Agrobacterium tumefaciens it is essential that the explant used in cocultivation has the ability to induce Agrobacterium tumour-inducing (Ti) plasmid virulence (vir) genes. Here we report a significant variation in different tissues of Indica rice (Oryza sativa L. cv. Co43) in their ability to induce Agrobacterium tumefaciens vir genes and T-strand generation, using explants preincubated in liquid Murashige and Skoog (MS) medium. An analysis of rice leaf segments revealed that they neither induced vir genes nor inhibited vir gene induction. Of different parts of rice plants of different ages analysed only scutellum from four-day old rice seedlings induced vir genes and generation of T-strands. We observed that the physical presence of preincubated scutella is required for vir gene induction. Conditioned medium from which preincubated scutella were removed did not induce the vir genes. Scutellum-derived calli, cultured for 25 days on medium containing 2,4-D, also induced virE to an appreciable level. These results suggest that scutellum and scutellum-derived calli may be the most susceptible tissues of rice for Agrobacterium-mediated transformation.  相似文献   

2.
3.
We assessed the effect of four different virulence (vir) gene combinations on plant transformation efficiency and transgene behaviour in rice using the pGreen/pSoup dual binary vector system. Transformation experiments were conducted using a pGreen vector containing the bar and gusA expression units with, or without, the virG542, virGN54D, virGwt or the virG/B/C genes added to the backbone. Additonal vir gene(s) significantly altered plant transformation efficiency and the integration of vector backbone sequences. However, no differences in transgene copy number, percentage of expressing lines and expression levels could be detected. Addition of virGwt was the most beneficial, doubling the overall performance of the pGreen/pSoup vector system based on transformation frequency, absence of backbone sequence integration and expression of unselected transgenes. In 39 of the plant lines, the additional vir genes were integrated into the rice genome. The contribution of super dual binary pGreen/pSoup vectors to the development of efficient rice transformation systems and to the production of plants free of selectable marker genes are discussed.  相似文献   

4.
This paper describes a so-called ternary transformation system for plant cells. We demonstrate that Agrobacterium tumefaciens strain LBA4404 supplemented with a constitutive virG mutant gene (virGN54D) on a compatible plasmid is capable of very efficient T-DNA transfer to a diverse range of plant species. For the plant species Catharanthus roseus it is shown that increased T-DNA transfer results in increased stable transformation frequencies. Analysis of stably transformed C. roseus cell lines showed that, although the T-DNA transfer frequency is greatly enhanced by addition of virGN54D, only one or a few T-DNA copies are stably integrated into the plant genome. Thus, high transformation frequencies of different plant species can be achieved by introduction of a ternary plasmid carrying a constitutive virG mutant into existing A. tumefaciens strains in combination with standard binary vectors.  相似文献   

5.
Agrobacterium tumefaciens elicits tumorous growths on plants by transforming plant cells with a segment of its own DNA. This trait led to development of Agrobacterium as a vector for genetic transformation of flowering plants. The transformation process is a unique mixture of several distinct steps, some of which are evolutionarily and functionally related to bacterial conjugation, and some of which converge with eukaryotic cellular processes. Recent work has advanced our understanding of each of these steps. The early reactions in the production of an ssDNA transfer intermediate (T-strand), mediated by the VirD1/D2 proteins, are chemically similar to formation of a relaxosome in bacterial conjugation. The T-strand is coated by the ssDNA binding protein VirE2; however, whether this binding occurs in the bacterium or in planta is disputed. VirB proteins, related to proteins for the conjugal transfer of DNA between bacteria, most likely form the transfer apparatus. VirD2, which remains covalently bound to the 5′ end of the T-strand, and VirE2 both localize to the nucleus of plant cells. VirE2 also mediates the nuclear accumulation of ssDNA but only when the protein is bound to the ssDNA. Genetically, VirD2 is required for faithful integration of the 5′ end and VirE2 for the 3′ end of the T-strand. The steps of the process currently under active investigation are the assembly of the export apparatus and the enzymology of integration.  相似文献   

6.
The soil bacterium Agrobacterium tumefaciens can transfer a part of its tumour-inducing (Ti) plasmid, the T-DNA, to plant cells. The virulence (vir) genes, also located on the Ti plasmid, encode proteins involved in the transport of T-DNA into the plant cell. Once in the plant nucleus, T-DNA is able to integrate into the plant genome by an illegitimate recombination mechanism. The host range of A. tumefaciens is not restricted to plant species. A. tumefaciens is also able to transfer T-DNA to the yeast Saccharomyces cerevisiae. In this paper we demonstrate transfer of T-DNA from A. tumefaciens to the yeast Kluyveromyces lactis. Furthermore, we found that T-DNA serves as an ideal substrate for gene targeting in K. lactis. We have studied the efficiency of gene targeting at the K. lactis TRP1 locus using either direct DNA transfer (electroporation) or T-DNA transfer from Agrobacterium. We found that gene targeting using T-DNA was at least ten times more efficient than using linear double-stranded DNA introduced by electroporation. Therefore, the outcome of gene targeting experiments in some organisms may depend strongly upon the DNA substrate used. Received: 11 May 1998 / Accepted: 16 October 1998  相似文献   

7.
Agrobacterium tumefaciens is a plant pathogenic bacterium that causes neoplastic growths, called ‘crown gall’, via the transfer and integration of transferred DNA (T‐DNA) from the bacterium into the plant genome. We characterized an acetosyringone (AS)‐induced tumour‐inducing (Ti) plasmid gene, tzs (trans‐zeatin synthesizing), that is responsible for the synthesis of the plant hormone cytokinin in nopaline‐type A. tumefaciens strains. The loss of Tzs protein expression and trans‐zeatin secretions by the tzs frameshift (tzs‐fs) mutant is associated with reduced tumorigenesis efficiency on white radish stems and reduced transformation efficiencies on Arabidopsis roots. Complementation of the tzs‐fs mutant with a wild‐type tzs gene restored wild‐type levels of trans‐zeatin secretions and transformation efficiencies. Exogenous application of cytokinin during infection increased the transient transformation efficiency of Arabidopsis roots infected by strains lacking Tzs, which suggests that the lower transformation efficiency resulted from the lack of Agrobacterium‐produced cytokinin. Interestingly, although the tzs‐fs mutant displayed reduced tumorigenesis efficiency on several tested plants, the loss of Tzs enhanced tumorigenesis efficiencies on green pepper and cowpea. These data strongly suggest that Tzs, by synthesizing trans‐zeatin at early stage(s) of the infection process, modulates plant transformation efficiency by A. tumefaciens.  相似文献   

8.
The effect of additional virulence (vir) genes and size of plasmid T-DNA in Agrobacterium tumefa- ciens was investigated for their impact on transformation efficiency. Transformation efficiency in tobacco, cotton, and rice was increased when the T-DNA was 4.3 kb compared to 8.4 kb in size. However, when additional virG, virGN54D,virE, or virE/virG plasmids were included with the 8.4-kb T-DNA, transformation frequencies in all cases were increased over that of the shorter T-DNA without additional vir plasmids. The use of virE, virG or virGN54D copies enhanced transformation efficiency; however, the most significant increase of transformation efficiency in all three plant species was observed when the virE/virG plasmid was used for infection. The virE/virG plasmid dramatically enhanced the efficiency of Agrobacterium-mediated gene transfer; moreover, this plasmid appears to have broad efficiency since it was consistently effective on two different dicotyledon species as well as a monocotyledon species. Received: 8 February 2000 / Accepted: 21 March 2000  相似文献   

9.
We examined the expression of the vir genes of the Agrobacterium tumefaciens Ti plasmid in Rhizobium meliloti, which remains non-tumorigenic on plants after introduction of a Ti- or Ri-plasmid. Both the levels of virulence (vir) gene expression, induced by the plant phenolic compound acetosyringone, and of subsequent T-strand formation were comparable to what is observed in Agrobacterium. In contrast to the situation in Agrobacterium, though, vir induction in R. meliloti did not require a low pH (5.3) of the induction medium and the optimum temperature for induction in R. meliloti was significantly lower than in Agrobacterium. At 37°C no induction of the vir genes was found both in Agrobacterium and R. meliloti. We postulate that the lack of tumorigenicity of Ti carrying R. meliloti strains is due either to a lack of proper attachment of the bacteria to plant cells, or to an improper assembly of a virB-determined essential structure in the cell wall of R. meliloti.  相似文献   

10.
Exocellular structures containing VirB2 proteins were, for the first time, localized on the surface of Agrobacterium by transmission electron microscopy. Using colloidal gold (CG)-labeled VirB2-specific antibodies, it was shown that VirB2 proteins enter into the composition of short surface pili, which emerge at the poles of acetosyringone (AS)-induced Agrobacterium cells. However, cells of the Ti plasmidless A. tumefaciens strain UBAPF-2 and cells not induced with AS were incapable of pilus synthesis. In suspension, mating Agrobacterium cells were connected together by short thick bridges. It was found that these bridges did not include as part of their structure CG-labeled VirB1 and VirB2 proteins. We did not find the tetracycline-resistant transconjugants after mating of A. tumefaciens donor cells harboring binary systems with plasmid-free A. tumefaciens GM-I 9023 in vir-induced and vir-uninduced conditions. However, the same strains can transfer pSUP106 plasmid via a vir-dependent way. We found that activated vir genes slightly stimulate pTd33 plasmid transfer via a tra-dependent pathway to plasmid-free strain UBAPF-2. It seems, that vir-induced T-DNA/plasmid DNA transfer machinery is not essential for the conjugation process between agrobacterial cells but may participate in this process.  相似文献   

11.
Agrobacterium tumefaciens harbouring the Ti plasmid incites crown gall tumor on dicotyledonous species. Upon infection of these plants, T-DNA in the Ti plasmid is transferred by unknown mechanisms to plant cells to be integrated into nuclear DNA. WhenAgrobacterium is incubated with protoplasts or seedlings of dicotyledonous plants, circulation of T-DNA and expression ofvir (virulence) genes on the Ti plasmid are induced. The circularization event is efficiently induced by mesophyll protoplasts of tobacco which are highly competent for transformation by the T-DNA, and is also induced by diffusible phenolic compounds excreted from the protoplasts. The circularization and formation of crown gall both require the expression of thevirD locus, one of the induciblevir genes. These results suggest that the circularization of T-DNA reflects one of steps of the T-DNA transfer during formation of crown gall. In contrast to dicotyledonous plants, monocotyledonous plants are thought to be unresponsive to infection byAgrobacterium. We showed that monocotyledonous plants do not excrete diffusible inducers for the expression ofvir genes, while they contain a novel type of a signal substance(s). This inducer is not detected in the exudates of seedlings of monocotyledonous plants, but is found in the extracts from the seedlings, and also those from the seeds, bran and germ of wheat and oats. This finding suggests that T-DNA processing, and possibly its transfer, should take place whenAgrobacterium invades seedlings and seeds of monocotyledonous plants. Recipient of the Botanical Society Award for Young Scientists, 1987.  相似文献   

12.
In the transformation of plants by Agrobacterium tumefaciens the VirD2 protein has been shown to pilot T-DNA during its transfer to the plant cell nucleus. Other studies have shown that the MobA protein of plasmid RSF1010 is capable of mediating its transfer from Agrobacterium cells to plant cells by a similar process. We have demonstrated previously that plasmid pTF-FC2, which has some similarity to RSF1010, is also able to transfer DNA efficiently. In this study, we performed a mutational analysis of the roles played by A. tumefaciens VirD2 and pTF-FC2 MobA in DNA transfer-mediated by A. tumefaciens carrying pTF-FC2. We show that MobA+/VirD2+ and MobA+/VirD2– strains were equally proficient in their ability to transfer a pTF-FC2-derived plasmid DNA to plants and to transform them. However, the MobA–/VirD2+ strain showed a DNA transfer efficiency of 0.03% compared with that of the other two strains. This sharply contrasts with our results that VirD2 can rather efficiently cleave the oriT sequence of pFT-FC2 in vitro. We therefore conclude that MobA plays a major VirD2-independent role in plant transformation by pTF-FC2.  相似文献   

13.
An intermediate vector pSSJ1 was constructed by cloning a hph gene and a gus gene with catalase intron in pGV1500. pSSJ1 was cointegrated into a disarmed receptor Ti plasmid pGV2260 harboured in Agrobacterium tumefaciens strain C58C1RifR. The resulting A. tumefaciens strain C58C1RifR (pGV2260::pSSJ1) stably transformed Oryza sativa L. cv Pusa Basmati 1 scutellum-derived calli at 26% frequency. Introduction of the plasmid pSSJ3 (3′virB, virG and virC of pTiB0542) into A. tumefaciens C58C1RifR (pGV2260::pSSJ1) resulted in the elevation of acetosyringone-induced T -strand accumulation. Rice transformation efficiency of the cointegrate plasmid pGV2260::pSSJ1 increased from 26% to 33% in the presence of pSSJ3 and from 26% to 35% in the presence of pToK47 (complete virB, virG and virC). T-DNA integration in To plants was confirmed by Southern hybridization analysis. Inheritance analysis of the T0 plants with single-copy T-DNA insertions revealed segregation of hygromycin resistance in 3:1 ratio. The feasibility of rice transformation with a cointegrate Ti plasmid vector is clearly established.  相似文献   

14.
Agrobacterium VirE2 gets the VIP1 treatment in plant nuclear import.   总被引:1,自引:0,他引:1  
Agrobacterium tumefaciens transforms plant cells by targeting a large single-stranded DNA molecule (T-strand) to the plant nucleus. The host cell contribution to nuclear import and transformation is the focus of several current articles. Recently, plant proteins have been identified that promote nuclear import of the T-strand. In particular, VIP1 might couple transformation to the importin-dependent nuclear import pathway and deliver the T-strand to chromatin, thereby promoting integration into the host genome.  相似文献   

15.
Plant infections with cassava latent virus (CLV) were mediated by the Ti plasmid of Agrobacterium tumefaciens containing either monomeric or dimeric copies of the virus genome. The CLV DNAs caused typical symptoms when they were inoculated in Agrobacterium strains C58, LBA4404 and a virE mutant A1026, but not other Agrobacterium strains with mutations in other vir loci or an E. coli polA strain. Virus-specific DNA forms characteristic of normal CLV infections were found after such infection. Characterization of progeny CLV DNA from selected plants identified several infectious mutants. These were found to be small insertions and/or deletions in the coat protein gene of DNA 1 and in the intergenic region of DNA 2.  相似文献   

16.
Parameters affecting the efficiency of agroinfection of maize streak virus (MSV) in maize have been determined. Monomeric units, cloned at a number of sites in the MSV genome were not infectious but multimeric units containing partial duplications were equally as infectious as complete tandem dimeric clones. Inoculation of tandem dimeric units conjugated into different strains of Agrobacterium showed that both A. tumefaciens and A. rhizogenes were able to transfer DNA to maize and this ability was Ti (or Ri) plasmid-specific. Nopaline strains of A. tumefaciens and both agropine and mannopine A. rhizogenes strains efficiently transferred MSV DNA to maize. A number of strains were capable of MSV DNA transfer to other members of the Gramineae, providing information which may be essential for Agrobacterium-mediated transformation of monocotyledonous plants.  相似文献   

17.
Summary DNA transfer fromAgrobacterium tumefaciens, a soil bacterium, to the non-host graminaceous monocotyledonous plantZea mays, was analysed using the recently developed technique of agroinfection. Agroinfection ofZ. mays with maize streak virus using strains ofA. tumefaciens carrying mutations in the pTiC58 virulence region showed an almost absolute dependence on the products of the bacterialvirC genes. In contrast, agroinfection of the control hostBrassica rapa with cauliflower mosaic virus was less dependent on thevirC gene products. In other respects, the basic mechanism of the plant-bacterium interaction was found to be similar. While intactvirA, B, D and G functions were absolutely necessary, mutants invirE were attenuated. Agroinfection of maize was effective in the absence of an exogenously suppliedvir gene inducer, and indeed woundedZ. mays tissues were found to produce substance(s) which induced the expression ofA. tumefaciens vir genes. These findings are discussed in the light of current knowledge about the function ofAgrobacterium vir genes.  相似文献   

18.
The recognition of the T-DNA left border (LB) repeat is affected by its surrounding sequences. Here, the LB regions were further characterized by molecular analysis of transgenic plants, obtained after Agrobacterium tumefaciens-mediated transformation with T-DNA vectors that had been modified in this LB region. At least the 24-bp LB repeat by itself was insufficient to terminate the T-strand synthesis. Addition of the natural inner and/or outer border regions to at least the LB repeat, even when present at a distance, enhanced the correct recognition of the LB repeat, reducing the number of plants containing vector backbone sequences. In tandem occurrence of both the octopine and nopaline LB regions with their repeats terminated the T-strand synthesis most efficiently at the LB, yielding a reproducibly high number of plants containing only the T-DNA. Furthermore, T-strand synthesis did not terminate efficiently at the right border (RB) repeat, which might indicate that signals in the outer RB region inhibit the termination of T-strand synthesis at the RB repeat.  相似文献   

19.
20.
Genetic transformation of wheat, using biolistics or Agrobacterium, underpins a range of specific research methods for identifying genes and studying their function in planta. Transgenic approaches to study and modify traits in durum wheat have lagged behind those for bread wheat. Here we report the use of Agrobacterium strain AGL1, with additional vir genes housed in a helper plasmid, to transform and regenerate the durum wheat variety Ofanto. The use of the basic pSoup helper plasmid with no additional vir genes failed to generate transformants, whereas the presence of either virG542 or the 15 kb Komari fragment containing virB, virC and virG542 produced transformation efficiencies of between 0.6 and 9.7%. Of the 42 transgenic plants made, all but one (which set very few seeds) appeared morphologically normal and produced between 100 and 300 viable seeds. The transgene copy number and the segregation ratios were found to be very similar to those previously reported for bread wheat. We believe that this is the first report describing successful genetic transformation of tetraploid durum wheat (Triticum turgidum L. var. durum) mediated by Agrobacterium tumefaciens using immature embryos as the explant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号