首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Adenosine A1 Receptors Are Associated with Cerebellar Granule Cells   总被引:3,自引:0,他引:3  
The cerebellum of mouse appears to have only the adenosine A1 receptor, which decreases adenylate cyclase activity, and not the A2 receptor, which increases adenylate cyclase activity. The adenosine analog N6-(L-phenylisopropyl)adenosine (PIA), stimulates the A1 receptor in a membrane preparation and decreases basal adenylate cyclase activity by 40%. The EC50 for PIA is approximately 50 nM. To associate the A1 receptor with a cerebellar cell type, three different neurological mutant mouse strains were studied: staggerer (Purkinje and granule cell defect), nervous (Purkinje cell defect), and weaver (granule cell defect). PIA was unable to effect a maximal decrease in adenylate cyclase activity of membranes prepared from cerebella of the staggerer and weaver mice in comparison with the respective littermate control mice. In contrast, membranes from nervous mice and their littermates showed similar PIA dose-response curves. Moreover, the diminished PIA response observed in the weaver cerebellum, when compared with the control littermate, was not detected in the striatum. This suggests no overall brain defect in the adenosine A1 receptors coupled to adenylate cyclase of the weaver mouse. We conclude that a loss of granule cells coincides with an attenuated response to PIA, implying that the A1 receptors are associated with the granule cells of the cerebellum.  相似文献   

2.
We have analysed the proteins of the cerebella from mutant and control mice by applying high resolution two-dimensional polyacrylamide gel electrophoresis. The tissue of each cerebellum and also the pallium cerebri were fractionated into water-soluble and particulate fractions, and these were used in gel electrophoresis. In order to augment the sensitivity for detection of protein spots, we applied silver staining. We used the cerebella from weaver (granule cell deficient), nervous (Purkinje cell deficient), and staggerer (poor dendritic arborization of Purkinje cells) mutant mice. The present technique revealed at least 700 to 800 protein spots. Among the spots detected we found 12 new significantly-changed proteins in the cerebella of the mutants. The possible significance of these proteins is discussed.  相似文献   

3.
A brain specific antiserum was prepared by immunizing rabbits with a crude membrane fraction from 8-day old rat cerebella. In immunofluorescence studies the antiserum labeled the perikarya and processes of cultured cerebellar neurones. In contrast, other cell types, encountered in cerebellar cultures including astrocytes, endothelial cells and fibroblasts, were consistently unstained. The antiserum when used in crossed immunoelectrophoresis with Triton X-100 solubilized brain extracts reacted predominantly with one antigen that could be identified as the D2 protein.This paper is dedicated to Dr. Derek Richter on his seventy-fifth birthday.  相似文献   

4.
Antibodies have been raised against an enriched preparation of isolated rat cerebellar Purkinje cells. The immunoglobulins were labeled with 125I and the strength and specificity of the serum determined by a direct binding assay on cerebellar membranes. About 2% of the 125I-labeled IgG bound to an excess of cerebellar membranes. Absorption with heart and liver membranes removed 80.5% of the 125I-labeled IgG binding to cerebellar membranes; absorption with cerebrum membranes removed 13% more; the remaining 6.5% were directed specifically against cerebellar membranes. An enriched 125I-labeled anti-Purkinje antibody population was prepared by absorption and subsequent elution from cerebellar membranes. The absorption pattern with heart, liver, and cerebrum membranes resembled that found with the total population of IgG except that the nonspecific binding was significantly diminished. The Purkinje cell degeneration (pcd) mouse mutant was used to assess the specificity of the serum toward the Purkinje cells. After absorption of the enriched anti-Purkinje antibodies with heart, liver, and cerebrum membranes, the binding of labeled IgG to membranes prepared from pcd/pcd cerebella was about one-fourth that found with control cerebella. The direct immunoperoxidase technique performed on smears of purified Purkinje and granule cells shows that the unabsorbed serum stains both classes of cells, but that after absorption with liver, heart, and cerebrum membranes, only the Purkinje cells react positively.  相似文献   

5.
Recent progress in the comparative analysis of the vertebrate cerebellar organization shows that the cerebella of different tetrapods have a basically similar intrinsic organization, whereas the cerebellum of fishes displays a number of fundamental differences in this respect. Clear examples of teleostean cerebellar specializations are present in the gigantocerebellum of mormyrids, including a valvula cerebelli, the absence of a parasagittal zonal organization, the presence of eurydendroid projection neurons instead of deep cerebellar nuclei, a precerebellar nucleus lateralis valvulae, olivocerebellar fibers that do not climb into the molecular layer, uni- and bilateral locations of granule cells, parallel fibers without a T-shaped bifurcation and with a coextensive distribution in the transverse plane, and different Purkinje cell arrangements including a dendritic palisade pattern. A theoretical exploration of the possible significance of these configurations suggests that they all might be involved in a single main cerebellar function, i.e. coincidence detection of parallel fiber activity by Purkinje cells.  相似文献   

6.
The serotonin (5-HT) innervation of the posterior vermis was studied by high resolution radioautography in both normal and X-ray-induced agranular rat cerebella, following 3 h topical superfusion with 10(-4) M 3H-5-HT. In the normal cerebellar cortex, 5-HT axonal varicosities are scarce and only rarely exhibit the membrane differentiations characterizing synaptic contacts. In the agranular cerebellum, 5-HT terminals appear to have a much higher density than in normal controls, although their absolute number may not be significantly different when the important reduction in volume of this experimental cerebellum is taken into account. These terminals frequently show typical synaptic contracts. Most of them are established on the branchlet spines of Purkinje cell dendrites, but some are also observed on the shafts of Golgi cell dendrites. The 5-HT innervation of the cerebellar cortex thus undergoes important changes in the absence of granule cells. It is suggested that these modifications may be part of the general reorganization process of the cerebellar circuitry consequent on the early destruction of the external granular layer. This new example of synaptic remodelling could imply that the formation of cerebellar connectivity is modulated, to a certain extent, by the local cellular environment.  相似文献   

7.
Postnatal cerebellum development involves the generation of granule cells and Bergmann glias (BGs). The granule cell precursors are located in the external germinal layer (EGL) and the BG precursors are located in the Purkinje layer (PL). BGs extend their glial fibers into the EGL and facilitate granule cells' inward migration to their final location. Growth arrest specific gene 1 (Gas1) has been implicated in inhibiting cell-cycle progression in cell culture studies (G. Del Sal et al., 1992, Cell 70, 595--607). However, its growth regulatory function in the CNS has not been described. To investigate its role in cerebellar growth, we analyzed the Gas1 mutant mice. At birth, wild-type and mutant mice have cerebella of similar size; however, mature mutant cerebella are less than half the size of wild-type cerebella. Molecular and cellular examinations indicate that Gas1 mutant cerebella have a reduced number of granule cells and BG fibers. We provide direct evidence that Gas1 is required for normal levels of proliferation in the EGL and the PL, but not for their differentiation. Furthermore, we show that Gas1 is specifically and coordinately expressed in both the EGL and the BGs postnatally. These results support Gas1 as a common genetic component in coordinating EGL cell and BG cell proliferation, a link which has not been previously appreciated.  相似文献   

8.
P400 protein is a 250 kd glycoprotein, characteristic of the cerebellum, which is accumulated at the endoplasmic reticulum, at the plasma membrane and at the post-synaptic density of Purkinje cells. In this study, we purified inositol 1,4,5-trisphosphate (InsP3) receptor from mouse cerebellum and examined the possibility that P400 protein is identical with cerebellar InsP3 receptor protein. InsP3 receptor was solubilized with Triton X-100 from a post-nuclear fraction of ddY mouse cerebellum and was purified with high yield by sequential column chromatography on DE52, heparin-agarose, lentil lectin-Sepharose and hydroxylapatite. In these chromatographies, P400 protein co-migrated completely with the InsP3 binding activity. The purified receptor is a 250 kd protein with a Bmax of 2.1 pmol/microgram and a KD of 83 nM. It reacted with three different monoclonal antibodies against P400 protein, indicating that P400 protein is the same substance as the InsP3 receptor (P400/InsP3 receptor protein). Electron microscopy of the purified receptor showed a square shape with sides approximately 25 nm long. Binding assays of the cerebella of Purkinje cell-degeneration (pcd) mice with [3H]InsP3 demonstrated that the InsP3 binding sites in the cerebellum are distributed exclusively on the Purkinje cells. Immunohistochemical analysis indicated that P400/InsP3 receptor is present at the dendrites, cell bodies, axons and synaptic boutons of the Purkinje cells.  相似文献   

9.
The distribution of cerebellar gangliosides was studied in staggerer (sg/sg) mutant mice, where the majority of granule cells die after completing their migration across the molecular layer. In addition, the external granule cell layer in sg/sg mice persists longer than in normal mice. Moreover, in the sg/sg cerebellum, Purkinje cells are significantly reduced in number, and almost none have tertiary branchlet spines. The loss of Purkinje cells and granule cells in sg/sg mice is accompanied by an early-onset reactive gliosis that continues through adulthood. By correlating changes in ganglioside composition with the well-documented histological events of cerebellar development in normal and sg/sg mice, we obtained strong evidence for a nonrandom cellular distribution of gangliosides. The sharpest reduction in the GD1a content of sg/sg cerebellum occurred after 15 days of age, coincident with granule cell loss. GT1a, on the other hand, was significantly reduced from 15 through 150 days in the sg/sg mice. GD3 is a major ganglioside of the undifferentiated granule cell, but it becomes rapidly displaced by the more complex gangliosides with the onset of granule cell maturation. In the sg/sg mice, GD3 persisted at abnormally high levels from 15 to 28 days and then accumulated through adulthood. These findings, and those from other cerebellar mouse mutants, suggest that GD1a is enriched in granule cells and that GT1a is enriched in Purkinje cells. Our findings also suggest that GT1a is more concentrated in branchlet spines than in other regions of the Purkinje cell membrane. GT1b appears to be enriched in both granule cells and Purkinje cells, whereas GM1 appears to be enriched in myelin. Furthermore, the apparent persistence of the embryonic ganglioside GD3 in sg/sg mice results from an early-onset reactive gliosis, together with a partial retardation in granule cell maturation. The accumulation of GD3 beyond 28 days reflects the continued accretion of GD3 in reactive glia.  相似文献   

10.
The involvement of the retinoblastoma gene product (Rb) and its family members (p107 and p130) in cell cycle exit and terminal differentiation of neural precursor cells has been demonstrated in vitro. To investigate the roles of Rb and p107 in growth, differentiation and apoptosis in the developing and mature cerebellum, we selectively inactivated either Rb alone or in combination with p107 in cerebellar precursor cells or in Purkinje cells. In our mouse models, we show that (1) Rb is required for differentiation, cell cycle exit and survival of granule cell precursors; (2) p107 can not fully compensate for the loss of Rb function in granule cells; (3) Rb and p107 are not required for differentiation and survival of Purkinje cells during embryonic and early postnatal development; (4) Rb function in Purkinje cells is cell autonomous; and (5) loss of Rb deficient CNS precursor cells is mediated by p53-independent apoptosis.  相似文献   

11.
Cerebellar granule neurons migrate from the external granule cell layer (EGL) to the internal granule cell layer (IGL) during postnatal morphogenesis. This migration process through 4 different layers is a complex mechanism which is highly regulated by many secreted proteins. Although chemokines are well-known peptides that trigger cell migration, but with the exception of CXCL12, which is responsible for prenatal EGL formation, their functions have not been thoroughly studied in granule cell migration. In the present study, we examined cerebellar CXCL14 expression in neonatal and adult mice. CXCL14 mRNA was expressed at high levels in adult mouse cerebellum, but the protein was not detected. Nevertheless, Western blotting analysis revealed transient expression of CXCL14 in the cerebellum in early postnatal days (P1, P8), prior to the completion of granule cell migration. Looking at the distribution of CXCL14 by immunohistochemistry revealed a strong immune reactivity at the level of the Purkinje cell layer and molecular layer which was absent in the adult cerebellum. In functional assays, CXCL14 stimulated transwell migration of cultured granule cells and enhanced the spreading rate of neurons from EGL microexplants. Taken together, these results revealed the transient expression of CXCL14 by Purkinje cells in the developing cerebellum and demonstrate the ability of the chemokine to stimulate granule cell migration, suggesting that it must be involved in the postnatal maturation of the cerebellum.  相似文献   

12.
The acid-sensing ion channels (ASICs) are members of the DEG/ENaC superfamily of Na+ channels. Acid-gated cation currents have been detected in neurons from multiple regions of the brain including the cerebellum, but little is known about their molecular identity and function. Recently, one of ASICs (ASIC1a) was implicated in synaptic plasticity. In this study we examined the subcellular distribution of ASIC2a in rat cerebellum by immunostaining and confocal microscopy. Monoclonal antibodies for labeling of defined brain structures, for example, astroglia, Purkinje cell dendrites, nuclei, and presynaptic terminals were used for colocalization analyses. In the gray matter, the anti-ASIC2a antibody intensively stained dendrite branches of Purkinje cells evenly distributed throughout the entire molecular layer (ML). In the granule cell layer (GL), anti-ASIC2a antibody stained synaptic glomeruli. Neuronal localization of ASIC2a was confirmed by lack of co-staining with glial fibrillary acidic protein. Anti-ASIC2a staining in the ML colocalized with metabotropic glutamate receptor 1alpha (mGluR1alpha) in Purkinje cell dendrites and dendritic spines. Both proteins, mGluR1alpha and ASIC2a, were enriched in a crude synaptic membrane fraction prepared from cerebellum, suggesting synaptic expression of these proteins. Dual staining with anti-syntaxin 1A and anti-ASIC2a antibodies demonstrates characteristic complementary distribution of two proteins in both ML and GL. Because syntaxin 1A localized in presynaptic membranes and synaptic vesicles, complementary distribution with ASIC2a suggests postsynaptic localization of ASIC2a in these structures. This study shows specific localization of ASIC2a in both Purkinje and granule cell dendrites of the cerebellum and enrichment of ASIC2a in a crude cerebellar synaptic membrane fraction. The study is the first report of synaptic localization of ASIC2a in the CNS. The synaptic localization of ASIC2a in the cerebellum makes this channel a candidate for a role in motor coordination and learning.  相似文献   

13.
Some neurons, including cerebellar Purkinje cells, are completely ensheathed by astrocytes. When granule cell neurons and functional glia were eliminated from newborn mouse cerebellar cultures by initial exposure to a DNA synthesis inhibitor, Purkinje cells lacked glial sheaths and there was a tremendous sprouting of Purkinje cell recurrent axon collaterals, terminals of which hyperinnervated Purkinje cell somata, including persistent somatic spines, and formed heterotypical synapses with Purkinje cell dendritic spines, sites usually occupied by parallel fiber (granule cell axon) terminals. Purkinje cells in such preparations failed to develop complex spikes when recorded from intracellularly, and their membrane input resistances were low, making them less sensitive to inhibitory input. If granule cells and oligodendrocytes were eliminated, but astrocytes were not compromised, sprouting of recurrent axon collaterals occurred and their terminals projected to Purkinje cell dendritic spines, but the Purkinje cells had astrocytic sheaths, their somata were not hyperinnervated, the somatic spines had disappeared, complex spike discharges predominated, and membrane input resistance was like that of Purkinje cells in untreated control cultures. When cerebellar cultures without granule cells and glia were transplanted with granule cells and/or glia from another source, a series of changes occurred that included stripping of excess Purkinje cell axosomatic synapses by astrocytic processes, reduction of heterotypical axospinous synapses in the presence of astrocytes, disappearance of Purkinje cell somatic spines with astrocytic ensheathment, and proliferation of Purkinje cell dendritic spines after the introduction of astrocytes. Dendritic spine proliferation was followed by formation of homotypical axospinous synapses when granule cells were present or persistence as unattached spines in the absence of granule cells. The results of these studies indicate that astrocytes regulate the numbers of Purkinje cell axosomatic and axospinous synapses, induce Purkinje cell dendritic spine proliferation, and promote the structural and functional maturation of Purkinje cells.  相似文献   

14.
A procedure for the separation of cyclic AMP phosphodiesterase from a commercially available preparation and for raising antibodies against this enzyme in rabbits is described. An antiserum thus obtained was used for the immunocytochemical detection of cyclic nucleotide phosphodiesterase in rat cerebellum. The molecular layer, the granular layer and the cerebellar white matter exhibited different degrees of immunoreactivity. Only a few cell bodies (possibly glial cells) were stained. Most of the antigenic sites were present in the neuropil of the molecular layer and around Purkinje cells. Cerebellar glomeruli, sites of synaptic interactions between mossy fibres, Golgi cells and granule cells, were also stained by this antiserum. Control reactions using preimmune serum were consistently negative.  相似文献   

15.
Characterization of Annexins in Mammalian Brain   总被引:3,自引:2,他引:1  
Three annexins--p68, endonexin, and p32--have been isolated from porcine brain using their calcium-dependent affinity for membranes. Large amounts (20-50 mg/kg of tissue) of p68 and p32 can be isolated from cerebrum and cerebellum. The p68 is present as up to 0.3% of total porcine brain protein. The p68 and p32 from porcine brain bind to phosphatidic acid (half-maximal binding at 6 and 34 microM free calcium, respectively) and to phosphatidylserine (8 and 34 microM, respectively). They do not bind to phosphatidylcholine at calcium concentrations up to 1 mM. Two other major proteins (Mr 180,000 and Mr 76,000) were isolated with the annexins in a calcium-dependent manner but do not bind to phospholipids. The 180-kilodalton protein is the heavy chain of clathrin. From immunohistochemical studies, p68 is strongly associated with the plasma membranes of Purkinje cell bodies and dendrites in porcine cerebellum. It is also an intracellular component of Purkinje cells localized to perinuclear structures. Staining of axons in the white matter and granule cell layer was also seen. In contrast, p32 is completely absent from Purkinje cells and their dendrites; it is predominantly located in the molecular layer and in white matter of the cerebellar folds. The distribution of p32 may be consistent with a predominantly glial localization.  相似文献   

16.
The structurally related cell adhesion molecules L1 and Nr-CAM have overlapping expression patterns in cerebellar granule cells. Here we analyzed their involvement in granule cell development using mutant mice. Nr-CAM-deficient cerebellar granule cells failed to extend neurites in vitro on contactin, a known ligand for Nr-CAM expressed in the cerebellum, confirming that these mice are functionally null for Nr-CAM. In vivo, Nr-CAM-null cerebella did not exhibit obvious histological defects, although a mild size reduction of several lobes was observed, most notably lobes IV and V in the vermis. Mice deficient for both L1 and Nr-CAM exhibited severe cerebellar folial defects and a reduction in the thickness of the inner granule cell layer. Additionally, anti-L1 antibodies specifically disrupted survival and maintenance of Nr-CAM-deficient granule cells in cerebellar cultures treated with antibodies. The combined results indicate that Nr-CAM and L1 play a role in cerebellar granule cell development, and suggest that closely related molecules in the L1 family have overlapping functions.  相似文献   

17.
Primary neurons are difficult to cultivate because they are often part of a complex tissue, and synaptically connected to numerous other cell types. These circumstances often prevent us from unveiling molecular and metabolic mechanisms of distinct cells, as functional signals or assays cannot clearly be correlated with them due to interfering signals from other parts of the culture. We therefore present an up-to-date method for obtaining a highly purified neuronal culture of Purkinje cells. In the past, Purkinje cells were successfully isolated from young mouse cerebella, but this protocol was never adapted to other mammals. We therefore provide an updated and adjusted protocol for Purkinje cell isolation from rat instead of mouse cerebella. To purify Purkinje cells, we obtained perinatal rat cerebella, dissociated them and performed a Percoll gradient centrifugation to segregate the smaller and larger cell fractions. In a second step, we performed an immunopanning procedure to enrich only Purkinje cells from the large cell fraction. Based on former protocols, we used a different antibody for the immunopanning procedure and adjusted several aspects from the initial protocol to improve the yield and vitality of Purkinje cells. We provide RT-qPCR-based purity data obtained with this protocol and show the behaviour and the growth of these purified Purkinje cells. We provide a highly reproducible purification protocol for Purkinje cell cultures of high purity that allows functional analysis and downstream assays on living rat Purkinje cells and further morphological growth analysis in future.  相似文献   

18.
The behavior of granule cells in mature cerebellar cultures derived from newborn mice was studied by light and electron microscopy. Many granule cells remained in the explants as an external granular layer. These cells were differentiated, as evidenced by formation of bundles of parallel fibers and by development of synapses between granule cell axons and Purkinje cell branchlet spines, and between Golgi cell axons and granule cell dendrites. Although the over-all architecture of the cerebellar explants after 18–33 days in vitro was similar to that of the newborn mouse, the evident differentiation of the granule cells suggested that interneuronal relationships resemble those of the mature cerebellum in vivo.  相似文献   

19.
Nuclear receptors and their coregulators play a critical role in brain development by regulating the spatiotemporal expression of their target genes. The arginine-glutamic acid dipeptide repeats gene (Rere) encodes a nuclear receptor coregulator previously known as Atrophin 2. In the developing cerebellum, RERE is expressed in the molecular layer, the Purkinje cell layer and the granule cell layer but not in granule cell precursors. To study RERE''s role in cerebellar development, we used RERE-deficient embryos bearing a null allele (om) and a hypomorphic allele (eyes3) of Rere (Rere om/eyes3). In contrast to wild-type embryos, formation of the principal fissures in these RERE-deficient embryos was delayed and the proliferative activity of granule cell precursors (GCPs) was reduced at E18.5. This reduction in proliferation was accompanied by a decrease in the expression of sonic hedgehog (SHH), which is secreted from Purkinje cells and is required for normal GCP proliferation. The maturation and migration of Purkinje cells in Rere om/eyes3 embryos was also delayed with decreased numbers of post-migratory Purkinje cells in the cerebellum. During the postnatal period, RERE depletion caused incomplete division of lobules I/II and III due to truncated development of the precentral fissure in the cerebellar vermis, abnormal development of lobule crus I and lobule crus II in the cerebellar hemispheres due to attenuation of the intercrural fissure, and decreased levels of Purkinje cell dendritic branching. We conclude that RERE-deficiency leads to delayed development of the principal fissures and delayed maturation and migration of Purkinje cells during prenatal cerebellar development and abnormal cerebellar foliation and Purkinje cell maturation during postnatal cerebellar development.  相似文献   

20.
Summary A procedure for the separation of cyclic AMP phosphodiesterase from a commercially available preparation and for raising antibodies against this enzyme in rabbits is described. An antiserum thus obtained was used for the immunocytochemical detection of cyclic nucleotide phosphodiesterase in rat cerebellum. The molecular layer, the granular layer and the cerebellar white matter exhibited different degrees of immunoreactivity. Only a few cell bodies (possibly glial cells) were stained. Most of the antigenic sites were present in the neuropil of the molecular layer and around Purkinje cells. Cerebellar glomeruli, sites of synaptic interactions between mossy fibres, Golgi cells and granule cells, were also stained by this antiserum. Control reactions using preimmune serum were consistently negative.Dedicated to Professor Dr. T.H. Schiebler on the occasion of his 65th birthday.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号