首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We previously showed that Arabidopsis thaliana histone acetyltransferase TAF1/HAF2 is required for the light regulation of growth and gene expression, and we show here that histone acetyltransferase GCN5 and histone deacetylase HD1/HDA19 are also involved in such regulation. Mutation of GCN5 resulted in a long-hypocotyl phenotype and reduced light-inducible gene expression, whereas mutation of HD1 induced opposite effects. The double mutant gcn5 hd1 restored a normal photomorphogenic phenotype. By contrast, the double mutant gcn5 taf1 resulted in further loss of light-regulated gene expression. gcn5 reduced acetylation of histones H3 and H4, mostly on the core promoter regions, whereas hd1 increased acetylation on both core and more upstream promoter regions. GCN5 and TAF1 were both required for H3K9, H3K27, and H4K12 acetylation on the target promoters, but H3K14 acetylation was dependent only on GCN5. Interestingly, gcn5 taf1 had a cumulative effect mainly on H3K9 acetylation. On the other hand, hd1 induced increased acetylation on H3K9, H3K27, H4K5, and H4K8. GCN5 was also shown to be directly associated with the light-responsive promoters. These results suggest that acetylation of specific histone Lys residues, regulated by GCN5, TAF1, and HD1, is required for light-regulated gene expression.  相似文献   

2.
3.
4.
5.
6.
Seed oils are important natural resources used in the processing and preparation of food. Histone modifications represent key epigenetic mechanisms that regulate gene expression, plant growth and development. However, histone modification events during fatty acid (FA) biosynthesis are not well understood. Here, we demonstrate that a mutation of the histone acetyltransferase GCN5 can decrease the ratio of α‐linolenic acid (ALA) to linoleic acid (LA) in seed oil. Using RNA‐Seq and ChIP assays, we identified FAD3, LACS2, LPP3 and PLAIIIβ as the targets of GCN5. Notably, the GCN5‐dependent H3K9/14 acetylation of FAD3 determined the expression levels of FAD3 in Arabidopsis thaliana seeds, and the ratio of ALA/LA in the gcn5 mutant was rescued to the wild‐type levels through the overexpression of FAD3. The results of this study indicated that GCN5 modulated FA biosynthesis by affecting the acetylation levels of FAD3. We provide evidence that histone acetylation is involved in FA biosynthesis in Arabidopsis seeds and might contribute to the optimization of the nutritional structure of edible oils through epigenetic engineering.  相似文献   

7.
浅谈干扰素(及其诱导物poly 1:C)抗病毒作用的分子基基础   总被引:2,自引:0,他引:2  
陈婷  陆军  孙晖  董梅  韩松岩  黄百渠 《遗传》2003,25(5):567-572
《遗传》杂志是全国性中级学术刊物。其专业领域涉及遗传学各个分支学科。凡有关人类与医学A传、植物遗 传、动物遗传、微生物遗传方面的研究报告、快讯、实验技术与方法、综述、讲座、争鸣、讨论、教学心得等文章,均受 本刊欢迎。质量优秀者优先发表。来稿暂不收审稿费,发表后暂不收版面费,而且照付稿酬,质量优秀的文章稿 酬从优。目前尤其欢迎微生物遗传学方面的稿件,发表优先。  相似文献   

8.
9.
10.
11.
12.
Excess soluble salts in soil are harmful to the growth and development of most plants. Evidence is emerging that the plant cell wall is involved in sensing and responding to salt stress, but the underlying mechanisms are not well understood. We reveal that the histone acetyltransferase General control non‐repressed protein 5 (GCN5) is required for the maintenance of cell wall integrity and salt stress tolerance. The levels of GCN5 mRNA are increased in response to salt stress. The gcn5 mutants exhibited severe growth inhibition and defects in cell wall integrity under salt stress conditions. Combining RNA sequencing and chromatin immunoprecipitation assays, we identified the chitinase‐like gene CTL1, polygalacturonase involved in expansion‐3 (PGX3) and MYB domain protein‐54 (MYB54) as direct targets of GCN5. Acetylation of H3K9 and H3K14 mediated by GCN5 is associated with activation of CTL1, PGX3 and MYB54 under salt stress. Moreover, constitutive expression of CTL1 in the gcn5 mutant restores salt tolerance and cell wall integrity. In addition, the expression of the wheat TaGCN5 gene in Arabidopsis gcn5 mutant plants complemented the salt tolerance and cell wall integrity phenotypes, suggesting that GCN5‐mediated salt tolerance is conserved between Arabidopsis and wheat. Taken together, our data indicate that GCN5 plays a key role in the preservation of salt tolerance via versatile regulation in plants.  相似文献   

13.
14.
15.
16.
17.
HD2 proteins are plant specific histone deacetylases. Four HD2 proteins, HD2A, HD2B, HD2C, and HD2D, have been identified in Arabidopsis. It was found that the expression of HD2A, HD2B, HD2C, and HD2D was repressed by ABA and NaCl. To investigate the function of HD2 proteins further, two HD2C T-DNA insertion lines of Arabidopsis, hd2c-1 and hd2c-3 were identified. Compared with wild-type plants, hd2c-1 and hd2c-3 plants displayed increased sensitivity to ABA and NaCl during germination and decreased tolerance to salt stress. These observations support a role of HD2C in the ABA and salt-stress response in Arabidopsis. Moreover, it was demonstrated that HD2C interacted physically with a RPD3-type histone deacetylase, HDA6, and bound to histone H3. The expression of ABA-responsive genes, ABI1 and ABI2, was increased in hda6, hd2c, and hda6/hd2c-1 double mutant plants, which was associated with increased histone H3K9K14 acetylation and decreased histone H3K9 dimethylation. Taken together, our results suggested that HD2C functionally associates with HDA6 and regulates gene expression through histone modifications.  相似文献   

18.
GCN2 is a protein kinase that stimulates translation of GCN4 mRNA in amino acid-starved cells by phosphorylating the alpha subunit of translation initiation factor 2 (eIL-2). We isolated multicopy plasmids that overcome the defective derepression of GCN4 and its target genes caused by the leaky mutation gcn2-507. One class of plasmids contained tRNA(His) genes and conferred efficient suppression only when cells were starved for histidine; these plasmids suppressed a gcn2 deletion much less efficiently than they suppressed gcn2-507. This finding indicates that the reduction in GCN4 expression caused by gcn2-507 can be overcome by elevating tRNA(His) expression under conditions in which the excess tRNA cannot be fully aminoacylated. The second class of suppressor plasmids all carried the same gene encoding a mutant form of tRNA(Val) (AAC) with an A-to-G transition at the 3' encoded nucleotide, a mutation shown previously to reduce aminoacylation of tRNA(Val) in vitro. In contrast to the wild-type tRNA(His) genes, the mutant tRNA(Val) gene efficiently suppressed a gcn2 deletion, and this suppression was independent of the phosphorylation site on eIF-2 alpha (Ser-51). Overexpression of the mutant tRNA(Val) did, however, stimulate GCN4 expression at the translational level. We propose that the multicopy mutant tRNA(Val) construct leads to an accumulation of uncharged tRNA(Val) that derepresses GCN4 translation through a pathway that does not involve GCN2 or eIF-2 alpha phosphorylation. This GCN2-independent pathway was also stimulated to a lesser extent by the multicopy tRNA(His) constructs in histidine-deprived cells. Because the mutant tRNA(Val) exacerbated the slow-growth phenotype associated with eIF-2 alpha hyperphosphorylation by an activated GCN2c kinase, we suggest that the GCN2-independent derepression mechanism involves down-regulation of eIF-2 activity.  相似文献   

19.
The chromatin elements targeted by the ATPdependent, Swi-Snf nucleosome-remodeling complex are unknown. To address this question, we generated mutations in yeast histone H2B that suppress phenotypes associated with the absence of Swi-Snf. Sin- (Swi-Snf-independent) mutations occur in residues involved in H2A-H2B dimer formation, dimer- tetramer association, and in the H2B N-terminus. The strongest and most pleiotropic Sin- mutation removed 20 amino acid residues from the H2B N-terminus. This mutation allowed active chromatin to be formed at the SUC2 locus in a snf5Delta mutant and resulted in hyperactivated levels of SUC2 mRNA under inducing conditions. Thus, the H2B N-terminus may be an important target of Swi-Snf in vivo. The GCN5 gene product, the catalytic subunit of several nuclear histone acetytransferase complexes that modify histone N-termini, was also found to act in conjunction with Swi-Snf. The phenotypes of double gcn5Deltasnf5Delta mutants suggest that histone acetylation may play both positive and negative roles in the activity of the Swi-Snf-remodeling factor.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号