首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Exposure to a sublethal dose of endotoxin offers protection against subsequent oxidative stresses. The cellular mechanisms involved in generating this effect are not well understood. We evaluated the effect of endotoxin on antioxidant enzymes in liver peroxisomes. Peroxisomes have recently been shown to contain superoxide dismutase (SOD) and glutathione peroxidase (GPX) in addition to catalase. Peroxisomes were isolated from liver homogenates by differential and density gradient centrifugations. Endotoxin treatment increased the specific activity of SOD and GPX in peroxisomes to 208% and 175% of control activity, respectively. These findings correlated with increases in peroxisomal SOD and GPX proteins observed by immunoblot. Although the quantity of catalase protein was increased when assessed by immunoblot analysis, the specific activity of catalase was decreased to 68% of control activity. Activation of catalase with ethanol only restored catalase activity to control levels suggesting that catalase had undergone irreversible inactivation. The observed increase in GPX activity may represent a compensatory mechanism triggered by accumulating H2O2. The data presented here suggest for the first time that mammalian peroxisomal antioxidant enzymes are altered during the oxidative injury of endotoxin treatment.  相似文献   

2.
3.
Resveratrol (RSV) is a natural polyphenol that is known as a powerful chemopreventive and chemotherapeutic anticancer molecule. This study focused on the effects of RSV on the activities and expression levels of antioxidant enzymes in the cancer cells. Prostate cancer PC-3 cells, hepatic cancer HepG2 cells, breast cancer MCF-7 cells and the non-cancerous HEK293T kidney epithelial cells were treated with a wide range of RSV concentrations (10-100 μM) for 24–72 h. Cell growth was estimated by trypan blue staining, activities of the antioxidant enzymes were measured spectrophotometrically, expression levels of the antioxidant enzymes were quantified by digitalizing the protein band intensities on Western blots, and the percentage of apoptotic cells was determined by flow cytometry. Treatment with a low concentration of RSV (25 μM) significantly increased superoxide dismutase (SOD) activity in PC-3, HepG2 and MCF-7 cells, but not in HEK293T cells. Catalase (CAT) activity was increased in HepG2 cells, but no effect was found on glutathione peroxidase (GPX) upon RSV treatment. RSV-induced SOD2 expression was observed in cancer cells, although the expression of SOD1, CAT and GPX1 was unaffected. Apoptosis increased upon RSV treatment of cancer cells, especially in PC-3 and HepG2 cells. Together, our data demonstrated that RSV inhibits cancer cell growth with minimal effects on non-cancerous cells. We postulate that the disproportional up-regulation of SOD, CAT and GPX expression and enzymatic activity in cancer cells results in the mitochondrial accumulation of H2O2, which in turn induces cancer cell apoptosis.  相似文献   

4.
Rdr1是出芽酵母Saccharomyces cerevisiae的一个转录抑制因子,参与控制细胞的多重药物耐受性,并可能与细胞胁迫应答相关.利用PCR方法扩增RDR1基因片段,将其克隆至高拷贝表达载体pYES2/NTA上并诱导Rdr1蛋白在酵母细胞中过表达.为了揭示转录抑制因子Rdr1在胁迫应答中的作用,比较了RDR1过表达细胞、RDR1缺失突变体细胞和野生型细胞在过氧化氢处理、热胁迫和高盐处理条件下的生长状态,结果显示,RDR1过表达导致细胞对上述3种胁迫作用更敏感,而RDR1缺失则使细胞对这些胁迫作用的耐受性不受影响或有一定增强.为了揭示上述不同细胞在胁迫条件下生长状态的差异与细胞内抗氧化酶活性之间的关系,测定并比较了RDR1过表达细胞、RDR1缺失突变体细胞和野生型细胞中超氧化物岐化酶(superoxide dismutase SOD)、过氧化氢酶、葡萄糖-6-磷酸脱氢酶(glucose-6-phosphate dehydrogenase G6PDH)、谷胱甘肽还原酶(glutathione reductase GR)的活性.结果表明,RDR1缺失突变体细胞具高活性的SOD、过氧化氢酶、G6PDH和GR,而Rdr1过表达细胞中SOD、过氧化氢酶、G6PDH和GR的活性较低.RDR1对SOD和过氧化氢酶活性的影响要大于G6PDH和GR.细胞抗氧化酶活性的变化初步揭示,RDR1过表达细胞对胁迫的敏感和RDR1缺失突变体细胞对胁迫耐受性增加的原因.为转录抑制因子Rdr1在胁迫应答中的负调控作用及其机理提供了初步的遗传学和生物化学证据.  相似文献   

5.

Background

Islets from adult rat possess weak antioxidant defense leading to unbalance between superoxide dismutase (SOD) and hydrogen peroxide-inactivating enzymatic activities, catalase (CAT) and glutathione peroxidase (GPX) rending them susceptible to oxidative stress. We have shown that this vulnerability is influenced by maternal diet during gestation and lactation.

Methodology/Principal Findings

The present study investigated if low antioxidant activity in islets is already observed at birth and if maternal protein restriction influences the development of islet antioxidant defenses. Rats were fed a control diet (C group) or a low protein diet during gestation (LP) or until weaning (LPT), after which offspring received the control diet. We found that antioxidant enzymatic activities varied with age. At birth and after weaning, normal islets possessed an efficient GPX activity. However, the antioxidant capacity decreased thereafter increasing the potential vulnerability to oxidative stress. Maternal protein malnutrition changed the antioxidant enzymatic activities in islets of the progeny. At 3 months, SOD activity was increased in LP and LPT islets with no concomitant activation of CAT and GPX. This unbalance could lead to higher hydrogen peroxide production, which may concur to oxidative stress causing defective insulin gene expression due to modification of critical factors that modulate the insulin promoter. We found indeed that insulin mRNA level was reduced in both groups of malnourished offspring compared to controls. Analyzing the expression of such critical factors, we found that c-Myc expression was strongly increased in islets from both protein-restricted groups compared to controls.

Conclusion and Significance

Modification in antioxidant activity by maternal low protein diet could predispose to pancreatic islet dysfunction later in life and provide new insights to define a molecular mechanism responsible for intrauterine programming of endocrine pancreas.  相似文献   

6.
Abstract

The objective of this work was to examine the time-dependent pro-oxidant versus antioxidant effect of various doses of vitamin E used commonly in experimental studies. Erythrocyte activity of superoxide dismutase (SOD), glutathione peroxidase (GPX), catalase (CAT) and plasma lipid peroxidation levels were investigated following biweekly intramuscular administration of 100, 300 and 600 mg/kg of vitamin E at a baseline time point, and additionally at 2, 4 and 6 weeks after initiating treatment. Vitamin E had an antioxidant effect when administered at low doses over short time periods, and increased the activity of antioxidant enzymes. At higher doses and over longer time periods, it increased the level of lipid peroxidation, and attenuated the activity of antioxidant enzymes. These results suggest that time-dependent variations in vitamin E effects should be considered in design and interpretation of experimental antioxidant studies, as well as during clinical trials.  相似文献   

7.
Seedlings of rice (Oryza sativa L.) cv. Pant-12 grown in sand cultures containing 200 and 400 μM NiSO4, showed a decrease in length and fresh weight of roots and shoots. Nickel was readily taken up by rice seedlings and the concentration was higher in roots than shoots. Nickel-treated seedlings showed increased rates of superoxide anion (O2 •− ) production, elevated levels of H2O2 and thiobarbituric acid reactive substances (TBARS) demonstrating enhanced lipid peroxidation, and a decline in protein thiol levels indicative of increased protein oxidation compared to controls. With progressively higher Ni concentrations, non-protein thiol and ascorbate (AsA) increased, whereas the level of low-molecular-weight thiols (such as glutathione and hydroxyl-methyl glutathione), the ratio of these thiols to their corresponding disulphides, and the ratio of AsA to dehydroascorbic acid declined in the seedlings. Among the antioxidant enzymes studied, the activities of all isoforms of superoxide dismutase (Cu-Zn SOD, Mn SOD and Fe SOD), guaiacol peroxidases (GPX) and ascorbate peroxidase (APX) increased in Ni-treated seedlings, while no clear alteration in catalase activity was evident. Activity of the ascorbate-glutathione cycle enzymes monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR) and glutathione reductase (GR)—significantly increased in Ni-treated seedlings. However such increase was apparently insufficient to maintain the intracellular redox balance. Results suggest that Ni induces oxidative stress in rice plants, resulting in enhanced lipid peroxidation and decline in protein thiol levels, and that (hydroxyl-methyl) glutathione and AsA in conjunction with Cu-Zn SOD, GPX and APX are involved in stress response.  相似文献   

8.
ABSTRACT

Antioxidant enzymes are essential proteins that maintain cell proliferation potential by protecting against oxidative stress. They are present in many organisms including harmful algal bloom (HAB) species. We previously identified the antioxidant enzyme 2-Cys peroxiredoxin (PRX) in the raphidophyte Chattonella marina. This enzyme specifically decomposes a hydrogen peroxide (H2O2). PRX is the only antioxidant enzyme so far identified in C. marina. This study used mRNA-seq, using Trinity assemble and blastx for annotation, to identify a further five antioxidant enzymes from C. marina: Cu Zn superoxide dismutase (Cu/Zn-SOD), glutathione peroxidase (GPX), catalase (CAT), ascorbate peroxidase (APX) and thioredoxin (TRX). In the gene expression analysis of six enzymes (Cu/Zn-SOD, GPX, CAT, APX, TRX and PRX) using light-acclimated (100 μmol photons m?2 s?1) C. marina cells, only PRX gene expression levels were significantly increased by strong light irradiation (1000 μmol photons m?2 s?1). H2O2 concentration and scavenging activity were also increased and significantly positively correlated with PRX gene expression levels. In dark-acclimated cells, expression levels of all antioxidant enzymes except APX were significantly increased by light irradiation (100 μmol photons m?2 s?1). Expression decreased the following day, with the exception of PRX expression. With the exception of CAT, gene expression of antioxidant enzymes was not significantly induced by artificial H2O2 treatment, although average gene expression levels were slightly increased in some enzymes. Thus, we suggest that light is the main trigger of gene expression, but the resultant oxidative stress is also a possible factor affecting the gene expression of antioxidant enzymes in C. marina.  相似文献   

9.
Assessment of the differential expression of antioxidative enzymes and their isozymes, was done in 30 day-old ex vitro raised plants of three highly resistant (DP-25, Jhankri and Duradim) and one highly susceptible (N-118) genotypes of taro [Colocasia esculenta (L.) Schott]. Antioxidative enzymes were assayed in the ex vitro plants, 7 days after inoculation with the spores (15,000 spores ml−1 water) of Phytophthora colocasiae Raciborski to induce taro leaf blight disease. Uninoculated ex vitro plants in each genotype were used as control. The activity of superoxide dismutase (SOD) and guaiacol peroxidase (GPX) increased under induced blight condition when compared with control. Increase in antioxidative enzymes was more (67–92%) in the resistant genotypes than that (21–29%) of the susceptible genotype. The zymograms of SOD and GPX in the resistant genotypes, with pathogenic infection, showed increased activity for anodal isoform of SOD and increased expression and/or induction of either POX 1 or POX 2 isoforms of GPX. In susceptible genotype, expression of the above isoforms was faint for SOD and nearly absent for GPX under both blight free and induced blight conditions. Induction and/or increased activity of particular isoform of SOD and GPX against infection of Phytophthora colocasiae in the resistant genotypes studied led to the apparent conclusion of linkage of isozyme expression with blight resistance in taro. This might be an important criterion in breeding of taro for Phytophthora leaf blight resistance.  相似文献   

10.
Se-dependent glutathione peroxidase-1 (GPX1) and Cu,Zn-superoxide dismutase (SOD1) are two major intracellular antioxidant enzymes. The purpose of this study was to elucidate the biochemical mechanisms for the 40% loss of hepatic GPX1 activity in SOD1−/− mice. Compared with the wild type (WT), the SOD1−/− mice showed no change in the total amount of GPX1 protein. However, their total enzyme protein exhibited 31 and 38% decreases (P < 0.05) in the apparent kcat for hydrogen peroxide and tert-butylperoxide (at 2 mM GSH), respectively. Most striking, mass spectrometry revealed two chemical forms of the 47th residue of GPX1: the projected native selenocysteine (Sec) and the Se-lacking dehydroalanine (DHA). The hepatic GPX1 protein of the SOD1−/− mice contained 38% less Sec and 77% more DHA than that of WT and showed aggravated dissociation of the tetramer structure. In conclusion, knockout of SOD1 elevated the conversion of Sec to DHA in the active site of hepatic GPX1, leading to proportional decreases in the apparent kcat and activity of the enzyme protein as a whole. Our data reveal a structural and kinetic mechanism for the in vivo functional dependence of GPX1 on SOD1 in mammals and provide a novel mass spectrometric method for the assay of oxidative modification of the GPX1 protein.  相似文献   

11.
The influences of selenium deficiency (Se-D), chronic training, and an acute bout of exercise on hepatic and skeletal muscle antioxidant enzymes, i.e., superoxide dismutase (SOD), catalase, and glutathione peroxidase (GPX), as well as glutathione S-transferase (GST) and tissue lipid peroxidation, were investigated in post-weaning male Sprague-Dawley rats. Se-D per se depleted GPX in both liver and skeletal muscle but had no effect on SOD or catalase activity. One hour of treadmill running (20 m/min, 0% grade and 27 m/min, 15% grade for untrained and trained rats, respectively) significantly elevated hepatic catalase and cytosolic SOD activity; more prominent activations were found in the Se-D or untrained rats, whereas skeletal muscle antioxidant enzymes were little affected. Ten weeks of training (1 h/day, 5 days/week at 27 m/min, 15% grade) increased hepatic mitochondrial SOD by 23% (P less than 0.05) in Se-D rats. Both hepatic mitochondrial and cytosolic GPX were decreased by training whereas GPX was increased twofold in skeletal muscle mitochondria. Se-independent GPX was elevated by training only in the skeletal muscle mitochondria of Se-D rats. Lipid peroxidation (malondialdehyde formation) was increased by an acute bout of exercise in hepatic mitochondria of the untrained rats and in skeletal muscle mitochondria of the Se-D rats. These data indicate that antioxidant enzymes in liver and skeletal muscle are capable of adapting to selenium deficiency and exercise to minimize oxidative injury caused by free radicals.  相似文献   

12.
The effect of salt, pH, and temperature stress on the cellular level of antioxidant enzymes, catalase and superoxide dismutase (SOD) and glycerol-3-phosphate dehydrogenase (G3PDH) was studied in Debaryomyces nepalensis NCYC 3413, a halotolerant yeast. The catalase activity increased in different phases, while SOD and G3PDH activities declined in late stationary phase. A significant increase in SOD activity was observed under different stress as compared to control. Salt and temperature stress enhanced the catalase activity where as it was suppressed by pH stress. G3PDH level increased with salt stress, however, no significant change was observed under pH and temperature stress. The observations recorded in this investigation suggested that D. nepalensis has an efficient protective mechanism of antioxidant enzymes and G3PDH against salt, pH, and temperature stresses.  相似文献   

13.
Paraquat is most extensively used methyl viologen herbicide to control weeds in the rice-Azolla ecosystem. The effects of different paraquat (PQ) dosages on growth, lipid peroxidation, and activity of antioxidant enzymes of Azolla microphylla Kaul. were investigated. The results indicated that Azolla fronds survived only at the concentrations of 2–6 μM PQ. Frond fragmentation and browning occurred after 24 h at 8 μM PQ. At 24 h, the amount of proteins decreased by 48.7 % in Azolla fronds exposed to 10 μM PQ than that in control fronds. The supplementation of 10 μM PQ increased the activities of superoxide dismutase (SOD), catalase (CAT), guaiacol peroxidase (GPX), and ascorbate peroxidase (APX) by 2,4-, 1,8-, 3,0-, and 2,2-fold, respectively, as compared with control. The content of PQ and activities of SOD, CAT, GPX, and APX were found to be positively correlated. Our study showed that PQ (2–6 μM) caused ROS overproduction in Azolla fronds, which were scavenged by induced activities of antioxidant enzymes.  相似文献   

14.
To understand the functions of antioxidant enzymes during leaf development in sweetpotato, we investigated the activities of several antioxidant enzymes such as superoxide dismutase (SOD), peroxidase (POX), ascorbate peroxidase (APX) and catalase (CAT). Significant increases were observed in the activities of SOD, POX and APX during the late stage of leaf development, whereas CAT activity increased during the early developmental stage. By RT-PCR analysis, various POX and APX genes showed differential expression patterns during leaf development. Four POX genes swpa3, swpa4, swpa6, swpb4 and one APX gene swAPX1 exhibited high levels of gene expression during the senescence stage of leaf development, but two POX genes, swpa1 and swpa7 were preferentially expressed at both the mature green and the late senescence stages of leaf development. These results indicate that hydrogen peroxide (H2O2)-related antioxidant enzymes are differentially regulated in the process of leaf development of sweetpotato.  相似文献   

15.
Abstract: To understand the possible mechanism of nitric oxide (NO)-mediated cytotoxicity, we investigated the effect of NO on the endogenous antioxidant enzymes (AOEs) catalase, glutathione peroxidase (GPX), and CuZn- and Mn-superoxide dismutases (SODs) in rat C6 glial cells under conditions in which these cells expressed oligodendrocyte-like properties as evidenced by the expression of 2′,3′-cyclic-nucleotide 3′-phosphohydrolase. The 24-h treatment with S-nitroso-N-acetylpenicillamine (SNAP), a NO donor, decreased the activities and the protein levels of catalase, GPX, and Mn-SOD in a dose-dependent manner. Alternatively, the activity and the protein level of CuZn-SOD were increased. 2-Phenyl-4,4, 5,5-tetramethylimidazoline-1-oxyl-3-oxide (PTIO), a NO scavenger, blocked the effect of SNAP. Moreover, the treatment of C6 cells with sodium nitroprusside, another NO donor, or with a combination of lipopolysaccharide (LPS) and interferon-γ (IFN-γ), which induce excessive production of NO, also significantly modulated the AOE activities in a manner similar to that seen with SNAP treatment. The compounds/enzymes that inhibit the production of NO (e.g., N-nitro-l -arginine methyl ester hydrochloride, arginase, and PTIO) blocked the effects of LPS and IFN-γ on the activities of AOEs. Treatment with SNAP and a combination of LPS and IFN-γ also modulated the mRNA levels of AOEs, parallel to the changes in their protein levels and activities, except for Mn-SOD where the combination of LPS and IFN-γ markedly stimulated the mRNA expression. In spite of the stimulation of mRNA level, LPS and IFN-γ significantly inhibited the activity of Mn-SOD within the first 24 h of incubation; however, Mn-SOD activity gradually increased with the increase in time of incubation. These results suggest that alterations in the status of AOEs by NO may be the basis of NO-induced cytotoxicity in disease states associated with excessive NO production.  相似文献   

16.
谷胱甘肽转移酶和半胱氨酸合成酶在清除活性氧(reactive oxygen species,ROS)中起重要作用。采用0.36mol·L^-1 NaHCO3对西伯利亚蓼(Polygonum sibiricum)进行胁迫处理,荧光定量PCR分析表明这2个基因的表达受盐胁迫强烈诱导。为了分析2个基因是否具有抗盐能力以及其相互协同能力,从cDNA文库中获得谷胱甘肽转移酶(GST)和半胱氨酸合成酶(Cs)2个基因,分别将GST、CS和GST+CS转入酿酒酵母(Saccharomyces cerevisiae)中,并分别命名转基因酵母为ty-gst、tycs和ty-gc。在1mol·L^-1 Na2C03和5mol·L^-1 NaCl胁迫处理下,转基因酵母(ty-gst、ty-cs和ty-gc)的耐盐能力均明显高于野生型酵母(㈣,而三者之间并无显著差别。在0.4mol·L^-1 NaCl胁迫处理下,转基因酵母(ty-gst、ty-cs和ty-gc)的抗氧化酶类相关基因SOD1、SOD2、GPX1和GPX3的表达量均低于野生型酵母(对照)(wy),而CTA7表达量均高于野生型酵母(对照)(wy)。转基因酵母ty-cs在0.4mol·L^-1 NaCl胁迫处理前后其超氧化物歧化酶(superoxide dismutase,SOD)、过氧化氢酶(catalase,CAT)和谷胱甘肽过氧化物酶(glutathione peroxJdase,GPX)的活性均表现为最高。  相似文献   

17.
谷胱甘肽转移酶和半胱氨酸合成酶在清除活性氧(reactive oxygen species,ROS)中起重要作用。采用0.36 mol.L-1NaHCO3对西伯利亚蓼(Polygonum sibiricum)进行胁迫处理, 荧光定量PCR分析表明这2个基因的表达受盐胁迫强烈诱导。为了分析2个基因是否具有抗盐能力以及其相互协同能力, 从cDNA文库中获得谷胱甘肽转移酶(GST)和半胱氨酸合成酶(CS)2个基因, 分别将GST、CS和GST+CS转入酿酒酵母(Saccharomyces cerevisiae)中, 并分别命名转基因酵母为ty-gst、tycs和ty-gc。在1 mol.L-1 Na2CO3和5 mol.L-1 NaCl胁迫处理下, 转基因酵母(ty-gst、ty-cs和ty-gc)的耐盐能力均明显高于野生型酵母(wy), 而三者之间并无显著差别。在0.4 mol.L-1 NaCl胁迫处理下, 转基因酵母(ty-gst、ty-cs和ty-gc)的抗氧化酶类相关基因SOD1、SOD2、GPX1和GPX3的表达量均低于野生型酵母(对照)(wy), 而CTA1表达量均高于野生型酵母(对照)(wy)。转基因酵母ty-cs在0.4 mol.L-1 NaCl胁迫处理前后其超氧化物歧化酶(superoxide dismutase, SOD)、过氧化氢酶(catalase, CAT)和谷胱甘肽过氧化物酶(glutathione peroxidase, GPX)的活性均表现为最高。  相似文献   

18.
镉对长江华溪蟹肝胰腺抗氧化酶活力的影响   总被引:9,自引:0,他引:9  
闫博  王兰  李涌泉  刘娜  王茜 《动物学报》2007,53(6):1121-1128
重金属对环境的污染已成为全球面临的首要问题之一,其中镉(Cd2 )是一种广泛存在的毒性污染物,能通过消化道和呼吸道进入生物体,对机体造成损伤(Zyadah and Abdel-Baky,2000)。研究表明,Cd2 可以通过Ca2 通道穿过细胞膜进入机体(Roesijadi and Robinson,1994),诱导产生大量自由基和活性氧(ROS),从而形成氧胁迫(Toppi andGabbrielli,1994;Hegedus et al.,2001)。ROS可以与体内脂质、蛋白质和核酸反应,导致脂质过氧化、细胞膜损伤并且影响多种酶的活力,对生物体造成威胁。由于在水生生态系统中生物富集污染物的作用明显,故相对于陆地生…  相似文献   

19.
Knockout of copper, zinc-superoxide dismutase (SOD1) and (or) cellular glutathione peroxidase (GPX1) has been reported to have dual impacts on coping with free radical-induced oxidative injury. Because bacterial endotoxin lipopolysaccharide (LPS) triggers inflammatory responses involving the release of cytokines, nitric oxide and superoxide in targeted organs such as liver, in this study we used SOD1 knockout (SOD1−/−), GPX1 knockout (GPX1−/−), GPX1 and SOD1 double-knockout (DKO) and their wild-type (WT) mice to investigate the role of these two antioxidant enzymes in LPS-induced oxidative injury in liver. Mice of the four genotypes (2 month old) were killed at 0, 3, 6 or 12 h after an i.p. injection of saline or 5 mg LPS/kg body weight. The LPS injection caused similar increase in plasma alanine aminotransferase among the four genotypes. Hepatic total glutathione (GSH) was decreased (P < 0.05) compared with the initial values by the LPS injection at all time points in the WT mice, but only at 6 and 12 h in the other three genotypes. The GSH level in the DKO mice was higher (P < 0.05) than in the WT at 6 h. Although the LPS injection resulted in substantial increases in plasma NO in a time-dependent manner in all genotypes, the NO level in the DKO mice was lower (P < 0.05) at 3, 6 and 12 h than in the WT. The level in the GPX1−/− and SOD1−/− mice was also lower (P < 0.05) than in the WT at 3 h. The LPS-mediated hepatic protein nitration was detected in the WT and GPX1−/− mice at 3, 6 or 12 h, but not in the SOD1−/−. In conclusion, knockout of SOD1 and (or) GPX1 did not potentiate the LPS-induced liver injury, but delayed the induced hepatic GSH depletion and plasma NO production.  相似文献   

20.
Increasing data suggest that oxidative stress, due to an increased production of reactive oxygen species and/or a decrease in antioxidants, is involved in the pathophysiology of pulmonary hypertension. Several antioxidant systems regulate the presence of oxidant species in vivo, and of primary interest are the superoxide dismutases (SOD) and catalase. However, little is known about the expression of antioxidant enzymes during the development of pulmonary hypertension. This study uses our lamb model of increased postnatal pulmonary blood flow, secondary to in utero aortopulmonary graft placement (shunt lambs), to investigate the expression patterns as well as activities of antioxidant enzymes during the early development of pulmonary hypertension. Protein levels of catalase, SOD1, SOD2, and SOD3 were evaluated by Western blot, and the activities of catalase and SOD were also quantified. In control lambs, protein expression and activities of catalase and SOD2 increased postnatally (P < 0.05). However, SOD1 and SOD3 protein levels did not change. In shunt lambs, catalase, SOD1, and SOD2 protein levels all increased over the first 8 wk of life (P < 0.05). However, SOD3 did not change. This was associated with an increase in the activities of catalase and SOD2 (P < 0.05). Compared with control lambs, catalase and SOD2 protein levels were decreased in 2-wk-old shunt lambs and this was associated with increased levels of hydrogen peroxide (H(2)O(2)) and superoxide (P < 0.05). Developmentally superoxide but not H(2)O(2) levels significantly increased in both shunt and control lambs with levels being significantly higher in shunt compared with control lambs at 2 and 4 but not 8 wk. These data suggest that the antioxidant enzyme systems are dynamically regulated postnatally, and this regulation is altered during the development of pulmonary hypertension secondary to increased pulmonary blood flow. An increased understanding of these alterations may have important therapeutic implications for the treatment of pulmonary hypertension secondary to increased pulmonary blood flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号