首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Golgi ion homeostasis is tightly regulated to ensure essential cellular processes such as glycosylation, yet our understanding of this regulation remains incomplete. Gdt1p is a member of the conserved Uncharacterized Protein Family (UPF0016). Our previous work suggested that Gdt1p may function in the Golgi by regulating Golgi Ca2 +/Mn2 + homeostasis. NMR structural analysis of the polymannan chains isolated from yeasts showed that the gdt1Δ mutant cultured in presence of high Ca2 + concentration, as well as the pmr1Δ and gdt1Δ/pmr1Δ strains presented strong late Golgi glycosylation defects with a lack of α-1,2 mannoses substitution and α-1,3 mannoses termination. The addition of Mn2 + confirmed the rescue of these defects. Interestingly, our structural data confirmed that the glycosylation defect in pmr1Δ could also completely be suppressed by the addition of Ca2 +. The use of Pmr1p mutants either defective for Ca2 + or Mn2 + transport or both revealed that the suppression of the observed glycosylation defect in pmr1Δ strains by the intraluminal Golgi Ca2 + requires the activity of Gdt1p. These data support the hypothesis that Gdt1p, in order to sustain the Golgi glycosylation process, imports Mn2 + inside the Golgi lumen when Pmr1p exclusively transports Ca2 +. Our results also reinforce the functional link between Gdt1p and Pmr1p as we highlighted that Gdt1p was a Mn2 + sensitive protein whose abundance was directly dependent on the nature of the ion transported by Pmr1p. Finally, this study demonstrated that the aspartic residues of the two conserved motifs E-x-G-D-[KR], likely constituting the cation binding sites of Gdt1p, play a crucial role in Golgi glycosylation and hence in Mn2 +/Ca2 + transport.  相似文献   

2.
We previously reported that Neq A523R DNA polymerase is more efficient in PCR than wild-type Neq DNA polymerase, and amplifies products more rapidly. Neq A523R DNA polymerase also amplifies templates more rapidly than Pfu DNA polymerase, but has a lower fidelity than Pfu DNA polymerase. To improve product yield and the fidelity of amplification simultaneously, we constructed and characterized the double mutant Neq A523R/N540R. The yield of PCR products was greater for Neq A523R/N540R DNA polymerase than wild-type and other mutant DNA polymerases, and the Neq double mutant catalyzed amplification of a 12-kb PCR product from a lambda template with an extension time of 3 min. The PCR error rate of Neq A523R/N540R DNA polymerase (6.3 × 10−5) was roughly similar to that of Pfu DNA polymerase (4.8 × 10−5), but much lower than those of wild-type Neq DNA polymerase (57.2 × 10−5), Neq A523R DNA polymerase (13.1 × 10−5), and Neq N540R DNA polymerase (37.7 × 10−5). These results indicated that A523R and N540R mutations of Neq DNA polymerase had synergistic effects on its fidelity.  相似文献   

3.
The aim of the present study was to assess the effects of different organic and inorganic fertilizers on the functional diversity of soil microbial community under a vegetable production system. The Biolog® Eco-plate technique and indices, such as average well-colour development (AWCD), McIntosh and Shannon diversity were employed to study the diversity of soil microorganisms. The AWCD, i.e. overall utilization of carbon sources, suggested that different organic treatments had a significant impact on the metabolic activity of soil microorganisms. After 120 h, the highest AWCD values were observed in poultry manure (2.5 t·ha?1) + vermicompost (3.5 t·ha?1) (0.63) and farm yard manure (FYM) (10 t·ha?1) + vermicompost (3.5 t·ha?1) (0.61). After 72 h, the highest value of the McIntosh diversity index was recorded in poultry manure (2.5 t·ha?1) + vermicompost (3.5 t·ha?1) (3.87), followed by poultry manure (2.5 t·ha?1) + vermicompost (3.5 t·ha?1) + biofertilizers (Azotobacter 500 g·ha?1 applied as seed treatment) (3.12). In the case of the Shannon diversity index, the highest values were noticed in organic treatments; however, there was no significant differences between organic and inorganic treatments. Biplot analysis showed a clear differentiation of organic treatments from the inorganic control. The amino acids, phenolics and polymer utilizing microorganisms were dominant in organic treatments. Inorganic control recorded the lowest values of the microbial diversity indices. Through this study, we have identified the best combination of organic nutrients, i.e. poultry manure (2.5 t·ha?1) + vermicompost (3.5 t·ha?1) for the stimulation of metabolically active soil microbial communities.  相似文献   

4.
AimsLate phase ischemic preconditioning (LPC) protects the heart against ischemia–reperfusion (I/R) injury. However, its effect on myocardial tissue oxygenation and related mechanism(s) is unknown. The aim of the current study is to determine whether LPC attenuates post-ischemic myocardial tissue hyperoxygenation through preserving mitochondrial oxygen metabolism.Main methodsC57BL/6 mice were subjected to 30 min coronary ligation followed by 60 min or 24 h reperfusion with or without LPC (3 cycles of 5 min I/5 min R): Sham, LPC, I/R, and LPC + I/R group. Myocardial tissue Po2 and redox status were measured with electron paramagnetic resonance (EPR) spectroscopy.Key findingsUpon reperfusion, tissue Po2 rose significantly above the pre-ischemic level in the I/R mice (23.1 ± 2.2 vs. 12.6 ± 1.3 mm Hg, p < 0.01). This hyperoxygenation was attenuated by LPC in the LPC + I/R mice (11.9 ± 2.0 mm Hg, p < 0.01). Activities of NADH dehydrogenase (NADH-DH), succinate-cytochrome c reductase (SCR) and cytochrome c oxidase (CcO) were preserved or increased in the LPC group, significantly reduced in the I/R group, and conserved in the LPC + I/R group. Manganese superoxide dismutase (Mn-SOD) protein expression was increased by LPC in the LPC and LPC + I/R mice compared to that in the Sham control (1.24 ± 0.01 and 1.23 ± 0.01, p < 0.05). Tissue redox status was shifted to the oxidizing state with I/R (0.0268 ± 0.0016/min) and was corrected by LPC in the LPC + I/R mice (0.0379 ± 0.0023/min). Finally, LPC reduced the infarct size in the LPC + I/R mice (10.5 ± 0.4% vs. 33.3 ± 0.6%, p < 0.05).SignificanceThus, LPC preserved mitochondrial oxygen metabolism, attenuated post-ischemic myocardial tissue hyperoxygenation, and reduced I/R injury.  相似文献   

5.
Recently mercury pollution has been increased considerably in aquatic resources throughout the world and it is a growing global concern. In this study, the 96 h LC50 value of waterborne mercuric chloride for Cirrhinus mrigala was found to be 0.34 mg/L (with 95% confidence limits). Fingerlings of C. mrigala were exposed to 0.068 and 0.034 mg/L of mercuric chloride for 96 h to assess the Na+/K+-ATPase activity and ionoregulation (Na+, K+ and Cl?) in gill and brain. Results showed that Na+/K+-ATPase activity and ionic levels (Na+, K+ and Cl?) in gill and brain of fish exposed to different concentrations of mercuric chloride were found to be significantly (p < 0.05) decreased throughout the study period. Mercury inactivates many enzymes by attaching to sulfur atoms in which the enzyme Na+/K+-ATPase is highly sensitive to mercury. The inhibition of gill and brain Na+/K+-ATPase activity might have resulted from the physicochemical alteration of the membrane due to mercury toxicity. Moreover, inhibition of Na+/K+-ATPase may affect the ion transport and osmoregulatory function by blocking the transport of substances across the membrane by active transport. The present study indicates that the alterations in these parameters can be used in environmental biomonitoring of mercury contamination in aquatic ecosystem.  相似文献   

6.

Introduction

Endotoxins, in the form of lipopolysaccharides (LPS), are potent inducers of biliary injury. However the mechanism by which injury develops remains unclear. We hypothesized that hepatic macrophages are pivotal in the development of endotoxin-induced biliary injury and that no injury would occur in their absence.

Material and methods

Clodronate liposomes were used to deplete macrophages from the liver. Forty-eight rats were equally divided across six study groups: sham operation (sham), liposome treatment and sham operation (liposomes + sham), 1 mg/kg LPS i.p. (LPS), liposome treatment and LPS administration (liposomes + LPS), hepatic ischaemia-reperfusion injury with LPS administration (IRI + LPS) and liposome treatment followed by IRI + LPS (liposomes + IRI + LPS). Following 6 h of reperfusion, blood, bile, and liver tissue was collected for further analysis. Small bile duct injury was assessed, serum liver tests were performed and bile composition was evaluated. The permeability of the blood-biliary barrier (BBB) was assessed using intravenously administered horseradish peroxidase (HRP).

Results

The presence of hepatic macrophages was reduced by 90% in LPS and IRI + LPS groups pre-treated with clodronate liposomes (P < 0.001). Severe small bile duct injury was not affected by macrophage depletion, and persisted in the liposomes + IRI + LPS group (50% of animals) and liposomes + LPS group (75% of animals). Likewise, BBB impairment persisted following macrophage depletion. LPS-induced elevation of the chemokine Mcp-1 in bile was not affected by macrophage depletion.

Conclusions

Depletion of hepatic macrophages did not prevent development of biliary injury following LPS or LPS-enhanced IRI. Cholangiocyte activation rather than macrophage activation may underlie this injury. This article is part of a Special Issue entitled: Cholangiocytes in Health and Diseaseedited by Jesus Banales, Marco Marzioni, Nicholas LaRusso and Peter Jansen.  相似文献   

7.
Store-operated Ca2 + entry (SOCE) mediated by stromal interacting molecule-1 (STIM1) and Orai1 represents a major route of Ca2 + entry in mammalian cells and is initiated by STIM1 oligomerization in the endoplasmic or sarcoplasmic reticulum. However, the effects of nitric oxide (NO) on STIM1 function are unknown. Neuronal NO synthase is located in the sarcoplasmic reticulum of cardiomyocytes. Here, we show that STIM1 is susceptible to S-nitrosylation. Neuronal NO synthase deficiency or inhibition enhanced Ca2 + release-activated Ca2 + channel current (ICRAC) and SOCE in cardiomyocytes. Consistently, NO donor S-nitrosoglutathione inhibited STIM1 puncta formation and ICRAC in HEK293 cells, but this effect was absent in cells expressing the Cys49Ser/Cys56Ser STIM1 double mutant. Furthermore, NO donors caused Cys49- and Cys56-specific structural changes associated with reduced protein backbone mobility, increased thermal stability and suppressed Ca2+ depletion-dependent oligomerization of the luminal Ca2 +-sensing region of STIM1. Collectively, our data show that S-nitrosylation of STIM1 suppresses oligomerization via enhanced luminal domain stability and rigidity and inhibits SOCE in cardiomyocytes.  相似文献   

8.
Hepatic injury is the major limitation of long-term albendazole administration in patients with cystic echinococcosis (CE), which could give rise to cessation of treatment. The objective of the present study was to evaluate the protective effects of Zataria multiflora aromatic water (AW) against the hepatic injury induced by long-term albendazole treatment in mice with CE. Fifty healthy BALB/c female mice were infected intraperitoneally by injection of 1500 protoscoleces per animal. Five months after infection, the infected animals were divided into five treatment groups including Z. multiflora (40 ml/l in drinking water for 90 days), albendazole (200 mg/kg/day for 90 days), Z. multiflora + albendazole 200 (40 ml/l Z. multiflora and 200 mg/kg/day albendazole for 90 days), Z. multiflora + albendazole100 (40 ml/l Z. multiflora and 100 mg/kg/day albendazole for 90 days), and untreated (control) group. At the end of the treatment period, anesthesia was performed and blood samples were collected directly from the heart prior to euthanasia. Liver variables and oxidative stress markers were measured in the blood serum samples. A decrease in serum liver enzyme activity in the both Z. multiflora + albendazole groups was observed when compared to control, Z. multiflora and albendazole groups; however, the results for Z. multiflora + albendazole 100 were significant (p < 0.007) and superior compared to those for Z. multiflora + albendazole 200. No significant differences for oxidative stress markers were observed between the different groups. The results of the present study revealed that a combined therapy with Z. multiflora AW and albendazole is effective against hepatic injury induced by CE and/or long term albendazole administration in mice with cystic echinococcosis.  相似文献   

9.
Cardiotonic steroids (CS) are known as modulators of sodium and water homeostasis. These compounds contribute to the excretion of sodium under overload conditions due to its natriuretic property related to the inhibition of the renal Na+/K+-ATPase (NKA) pump α1 isoform. NHE3, the main route for Na+ reabsorption in the proximal tubule, depends on the Na+ gradient generated by the NKA pump. In the present study we aimed to investigate the effects of marinobufagin (MBG) and telocinobufagin (TBG) on the renal function of isolated perfused rat kidney and on the inhibition of NKA activity. Furthermore, we investigated the mechanisms for the cardiotonic steroid-mediated natriuretic effect, by evaluating and comparing the effects of bufalin (BUF), ouabain (OUA), MBG and TBG on NHE3 activity in the renal proximal tubule in vivo. TBG significantly increased GFR, UF, natriuresis and kaliuresis in isolated perfused rat kidney, and inhibits the activity of NKA at a much higher rate than MBG. By stationary microperfusion technique, the perfusion with BUF, OUA, TBG or MBG promoted an inhibitory effect on NHE3 activity, whereas BUF was the most effective agent, and demonstrated a dose-dependent response, with maximal inhibition at 50 nM. Furthermore, our data showed the role of NKA-Src kinase pathway in the inhibition of NHE3 by CS. Finally, a downstream step, MEK1/2-ERK1/2 was also investigated, and, similar to Src inhibition, the MEK1/2 inhibitor (U0126) suppressed the BUF effect. Our findings indicate the involvement of NKA-SRc-Kinase-Ras-Raf-ERK1/2 pathway in the downregulation of NHE3 by cardiotonic steroids in the renal proximal tubule, promoting a reduction of proximal sodium reabsorption and natriuresis.  相似文献   

10.
Three bis(choloyl) conjugates bearing a rigid p-phenylenediamine/p-bis(aminomethyl)benzene linker and amino/acetamido groups were synthesized, and fully characterized on the basis of 1H NMR, ESI-MS and HRMS. Their ionophoric activities were investigated by means of pH discharge assay. The results indicate that these conjugates exhibit potent ionophoric activities across egg-yolk l-α-phosphatidylcholine (EYPC)-based liposomal membranes, via a cation/proton antiport mechanism. They show moderate ion selectivity among alkali metal ions. Of the three conjugates, the ones having amino groups transport alkali metal ions in the order of Na+ > Li+ > K+  Rb+  Cs+, whereas the one having acetamido groups functions in the order of Li+ > Na+ > K+  Rb+  Cs+.  相似文献   

11.
In teleosts, prolactin (PRL) and growth hormone (GH) act at key osmoregulatory tissues to regulate hydromineral balance. This study was aimed at characterizing patterns of expression for genes encoding receptors for the GH/PRL-family of hormones in the gill and kidney of Mozambique tilapia (Oreochromis mossambicus) during freshwater (FW)-acclimation. Transfer of seawater (SW)-acclimated tilapia to FW elicited rapid and sustained increases in plasma levels and pituitary gene expression of PRL177 and PRL188; plasma hormone and pituitary mRNA levels of GH were unchanged. In the gill, PRL receptor 1 (PRLR1) mRNA increased markedly after transfer to FW by 6 h, while increases in GH receptor (GHR) mRNA were observed 48 h and 14 d after the transfer. By contrast, neither PRLR2 nor the somatolactin receptor (SLR) was responsive to FW transfer. Paralleling these endocrine responses were marked increases in branchial gene expression of a Na+/Cl? cotransporter and a Na+/H+ exchanger, indicators of FW-type mitochondrion-rich cells (MRCs), at 24 and 48 h after FW transfer, respectively. Expression of Na+/K+/2Cl? cotransporter, an indicator of SW-type MRCs, was sharply down-regulated by 6 h after transfer to FW. In kidney, PRLR1, PRLR2 and SLR mRNA levels were unchanged, while GHR mRNA was up-regulated from 6 h after FW transfer to all points thereafter. Collectively, these results suggest that the modulation of the gene expression for PRL and GH receptors in osmoregulatory tissues represents an important aspect of FW-acclimation of tilapia.  相似文献   

12.
Afzal, the common smokeless tobacco product (STP) in Oman, is believed to contain toxins that may impair the function of some organs such as liver and kidney. An aqueous extract from Afzal was added to drinking water to be administrated orally to Wistar albino rats (n = 72) young and adult from both genders weighing between 60–80 g and 150–240 g respectively for 8 weeks. Animals were divided into three groups: control (distilled water instead of Afzal extract), low-dose (3 mg nicotine/kg body weight/day) and high-dose (6 mg nicotine/kg body weight/day). The animals were euthanized and their blood, liver and kidney were collected for biochemical and histopathological investigations. Alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were assayed for the liver function, while blood urea nitrogen (BUN) and creatinine (CRT) were assayed for the kidney function. The results showed a significant increase in the ALT, AST, BUN and CRT levels (P < 0.05) in both Afzal-treated groups (low and high doses) compared with the control. Histopathological findings revealed the initial but seem to be serious degenerative alterations of periportal fibrosis in liver and edematous and calcified changes in renal glomerulus among Afzal-treated groups. Additionally, the weight gain of the Afzal-treated groups was lower than the control group. Our findings show that the exposure of Wistar rats to the Afzal extract has the potentials of causing decreased weight gain and dose-dependent functional and structural damage to the biochemical and histological profiles of liver and kidney as well as serious biochemical effects.  相似文献   

13.
Retinoic acid receptor alpha (RAR-α) plays a significant role in a number of diseases, including neuroblastoma. Children diagnosed with high-risk neuroblastoma are treated 13-cis-retinoic acid, which reduces risk of cancer recurrence. Neuroblastoma cell death is mediated via RAR-α, and expression of RAR-α is upregulated after treatment. A molecular imaging probe that binds RAR-α will help clinicians to diagnose and stratify risk for patients with neuroblastoma, who could benefit from retinoid-based therapy. In this study, we report the radiolabeling, and initial in vivo evaluation of [18F]KBM-1, a novel RAR-α agonist. The radiochemical synthesis of [18F]KBM-1 was carried out through KHF2 assisted substitution of [18F]? from aryl-substituted pinacolatoesters-based retinoid precursor. In vitro cell uptake assay in human neuroblastoma cell line showed that the uptake of [18F]KBM-1 was significantly inhibited by all three blocking agents (KBM-1, ATRA, BD4) at all the selected incubation times. Standard biodistribution in mice bearing neuroblastoma tumors demonstrated increased tumor uptake from 5 min to 60 min post radiotracer injection and the uptake ratios for target to non-target (tumor: muscle) increased 2.2-fold to 3.7-fold from 30 min to 60 min post injection. Tumor uptake in subset of 30 min blocking group was 1.7-fold lower than unblocked. These results demonstrate the potential utility of [18F]KBM-1 as a RAR-α imaging agent.  相似文献   

14.
Four novel Gram-stain-positive, non spore forming and fructose-6-phosphate phosphoketolase-positive strains were isolated from the faeces of a cotton top tamarin (Saguinus oedipus) and an emperor tamarin (Saguinus imperator). Phylogenetic analyses based on 16S rRNA revealed that bifidobacterial strains TRE 1T exhibit close phylogenetic relatedness to Bifidobacterium catulorum DSM 103154 (96.0%) and Bifidobacterium tissieri DSM 100201 (96.0%); TRE DT and TRE HT were closely related to Bifidobacterium longum subsp. longum ATCC 15708T with similarity values of 97.4% and 97.5%, respectively; TRI 7T was closely related to Bifidobacterium tissieri DSM 100201 (96.0%). The Average Nucleotide Identity (ANI) and in silico DDH (isDDH) analysis with closest neighbour supported an independent phylogenetic position of all strains with values ranged from 74 to 85% for ANI and from 24 to 28% for isDDH. DNA base composition of the four strains was in the range of 58.3–63.5 mol% G + C. Based on the phylogenetic, genotypic and phenotypic data, the strains TRE 1T, TRE DT, TRE HT and TRI 7T clearly represent four novel taxa within the genus Bifidobacterium for which the names Bifidobacterium primatium sp. nov. (type strain TRE 1T = DSM 100687T = JCM 30945T), Bifidobacterium scaligerum sp. nov. (type strain TRE DT = DSM 103140T = JCM 31792T), Bifidobacterium felsineum sp. nov. (type strain TRE HT = DSM 103139T = JCM 31789T) and Bifidobacterium simiarum sp. nov. (type strain TRI 7T = DSM 103153T = JCM 31793) are proposed.  相似文献   

15.
The study of environmental conditions is one of the most important measures in the field of reforestation. The present study was undertaken to assess the environmental status of the mangrove forest of Alibaug, Maharashtra, India with respect to different sixteen physicochemical parameters of water using Geographical information system (GIS) for rehabilitation, conservation and development of the destructed area of the mangrove forest. The Base map of study area was prepared using topographic map and the remote sensing data of Landsat 7 ETM + for spatial analysis. The distributions of water pollutants were assigned using a GIS approach of Inverse Distance Weighted (IDW). The results showed that the amounts of EC, COD, hardness, O&G, Cl?, Na+, Ca2 +, Mg2 +, NO3? and PO43? are higher than the normal ranges in mangrove forest due to natural processes and human activity, industrial and domestic wastewater disposal, oil spillage and agricultural runoff which all eventually affect the water quality of mangrove forest of Alibaug. To identify the areas within the normal ranges of 16 studied parameter, suitability map of water was prepared through an integration of 16 suitability maps of the studied parameters. The suitability map of water classified the water to six classes of suitability in order of moderate > moderate to high > low to moderate > high > low suitable. The areas with classes of 1 and 2 were suitable for the protective measures. Classes 3 and 4 were suitable for replantation and restoration of native mangrove species as well as local communities' cooperation in the participatory protection measures. The areas of classes 5 and 0 need to be designed an urgent management and mitigation plan to reduce impact of human activities. The result of the study also proves the use of GIS as a powerful tool in addressing assessment and monitoring programs of the water quality in the mangrove ecosystems.  相似文献   

16.
Two new species of Gram-positive cocci were isolated from the uropygial glands of wild woodpeckers (Dendrocopos major) originating from different locations in Germany. A polyphasic approach confirmed the affiliation of the isolates to the genus Kocuria. Phylogenetic analysis based on the 16S rRNA gene showed high degree of similarity to Kocuria koreensis DSM 23367T (99.0% for both isolates). However, low ANIb values of <80% unequivocally separated the new species from K. koreensis. This finding was further corroborated by DNA fingerprinting and analysis of polar lipid profiles. Furthermore, growth characteristics, biochemical tests, MALDI-TOF MS analysis, and G + C contents clearly differentiated the isolates from their known relatives. Besides, the woodpecker isolates significantly differed from each other in their whole-cell protein profiles, DNA fingerprints, and ANIb values. In conclusion, the isolated microorganisms constitute members of two new species, for which the names Kocuria uropygioeca sp. nov. and Kocuria uropygialis sp. nov. are proposed. The type strains are 36T (DSM 101740T = LMG 29265T) and 257T (=DSM 101741T = LMG 29266T) for K. uropygialis sp. nov. and K. uropygioeca sp. nov., respectively.  相似文献   

17.
BackgroundMitochondrial membrane permeabilisation (MMP) is classically considered as a point of no return in several forms of cell death and is involved in numerous diseases such as cancer, neurodegenerative disorders or ischemia/reperfusion injuries. Many studies established that reactive oxygen species (ROS) and Ca2 + were the prominent inducers of MMP. However, the mechanisms connecting ROS and Ca2 + to the players of MMP are still a matter of debate.Scope of reviewThe aim of this review is to summarise the various studies related to the mechanisms of ROS- and Ca2 +-induced MMP. Several lines of evidence suggest that ROS and Ca2 + cooperate to induce MMP but the molecular details of the ROS–Ca2 +-MMP network remain controversial. We then discuss recent data depicting this topic.Major conclusionsCytotoxic stimuli may be transduced within the cell by ROS and Ca2 + increases. In most models, Ca2 + and ROS can cooperate to induce MMP. Moreover, several data suggest that MMP increases mitochondrial Ca2 + and ROS which therefore amplify the cytotoxic signal. Intriguingly, many reports have identified players of MMP as direct ROS targets. On the contrary, direct targets of Ca2 + remain elusive. At the same time, the mechanisms by which mitochondrial Ca2 + overload induces ROS generation are well documented. Upon these observations, we hypothesise that Ca2 + cannot directly induce MMP and requires ROS production as a mandatory step.General significanceGiven the importance of Ca2 +- and ROS-induced MMP in diseases, we expect that a better understanding of this process will lead to the development of novel therapies.  相似文献   

18.
Insects lose ion and water balance during chilling, but the mechanisms underlying this phenomenon are based on patterns of ion and water balance observed in the later stages of cold exposure (12 or more hours). Here we quantified the distribution of ions and water in the hemolymph, muscle, and gut in adult Gryllus field crickets during the first 12 h of cold exposure to test mechanistic hypotheses about why homeostasis is lost in the cold, and how chill-tolerant insects might maintain homeostasis to lower temperatures. Unlike in later chill coma, hemolymph [Na+] and Na+ content in the first few hours of chilling actually increased. Patterns of Na+ balance suggest that Na+ migrates from the tissues to the gut lumen via the hemolymph. Imbalance of [K+] progressed gradually over 12 h and could not explain chill coma onset (a finding consistent with recent studies), nor did it predict survival or injury following 48 h of chilling. Gryllus veletis avoided shifts in muscle and hemolymph ion content better than Gryllus pennsylvanicus (which is less chill-tolerant), however neither species defended water, [Na+], or [K+] balance during the first 12 h of chilling. Gryllus veletis better maintained balance of Na+ content and may therefore have greater tissue resistance to ion leak during cold exposure, which could partially explain faster chill coma recovery for that species.  相似文献   

19.
Huntington's disease (HD) is caused by an expansion of CAG repeats in the HTT gene, leading to expression of mutant huntingtin (mHTT) and selective striatal neuronal loss, frequently associated with mitochondrial dysfunction and decreased support of brain-derived neurotrophic factor (BDNF). New neurons derived from the subventricular zone (SVZ) are apparently not able to rescue HD pathological features. Thus, we analyzed proliferation, migration and differentiation of adult SVZ-derived neural stem/progenitor cells (NSPC) from mild (6 month-old (mo)) and late (10 mo) symptomatic HD YAC128 mice expressing full-length (FL)-mHTT versus age-matched wild-type (WT) mice. SVZ cells derived from 6 mo YAC128 mice exhibited higher migratory capacity and a higher number of MAP2 + and synaptophysin + cells, compared to WT cells; MAP2 labeling was enhanced after exposure to BDNF. However, BDNF-evoked neuronal differentiation was not observed in 10 mo YAC128 SVZ-derived cells. Interestingly, 6 mo YAC128 SVZ-derived cells showed increased intracellular Ca2+ levels in response to KCl, which was potentiated by BDNF, evidencing the presence of differentiated neurons. In contrast, KCl depolarization-induced intracellular Ca2+ increase in 10 mo YAC128 SVZ-derived cells was shown to be increased only in BDNF-treated YAC128 SVZ-derived cells, suggestive of decreased differentiation capacity. In addition, BDNF-untreated NSPC from 10 mo YAC128 mice exhibited lower mitochondrial membrane potential and increased mitochondrial Ca2+ accumulation, in relation with NSPC from 6 mo YAC128 mice. Data evidence age-dependent reduced migration and decreased acquisition of a neuronal phenotype, accompanied by decreased mitochondrial membrane potential in SVZ-derived cells from YAC128 mice through HD symptomatic phases.  相似文献   

20.
This study investigated possible mechanisms for cardioprotective effects of lipoic acid (LA), quercetin (Q) and resveratrol (R) on oxidative stress related to thyroid hormone alterations in long-term obesity. Female C57BL/6 mice were fed on high-fat diet (HFD), HFD + LA, HFD + R, HFD + Q and normal diet for 26 weeks. Body weight, blood pressure, thyroid hormones, oxidative stress markers, angiotensin converting enzyme (ACE), nitric oxide synthase (NOS) and ion pump activities were measured, and expression of cardiac genes was analyzed by real-time polymerase chain reaction. HFD induced marked increase (P < .05) in body weight, blood pressure and oxidative stress, while plasma triidothyronine levels reduced. ACE activity increased (P < .05) in HFD mice (0.69 ± 0.225 U/mg protein) compared with controls (0.28 ± 0.114 U/mg protein), HFD + LA (0.231 ± 0.02 U/mg protein) and HFD + Q (0.182 ± 0.096 U/mg protein) at 26 weeks. Moreover, Na+/K+-ATPase and Ca2 +-ATPase activities increased in HFD mice whereas NOS reduced. A 1.5-fold increase in TRα1 and reduction in expression of the deiodinase iodothyronine DIO1, threonine protein kinase and NOS3 as well as up-regulation of AT1α, ACE, ATP1B1, GSK3β and Cja1 genes also occurred in HFD mice. Conversely, LA, Q and R inhibited weight gain; reduced TRα1 expression as well as increased DIO1; reduced ACE activity and AT1α, ATP1B1 and Cja1 gene expression as well as inhibited GSK3β; increased total antioxidant capacity, GSH and catalase activity; and reduced blood pressure. In conclusion, LA, resveratrol and quercetin supplementation reduces obesity thereby restoring plasma thyroid hormone levels and attenuating oxidative stress in the heart and thus may have therapeutic potential in heart diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号