首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Heavy metal contamination of agricultural soils resulting from rapid industrialization and urbanization is of great concern because of potential health risk due to dietary intake of contaminated vegetables. The present study aims to evaluate the status of heavy metals contamination of agricultural soils and food crops around an urban-industrial region in India. Transfer factor values of Cu, Cr, Pb, Cd, Zn, and Ni from soil to vegetable was estimated. The mean heavy metal concentrations (mg/kg) in agricultural soils (Cu: 17.8, Cr: 27.3, Pb: 29.8, Cd: 0.43, Zn: 87, Mn: 306.6, Fe: 16984, and Ni: 53.8) were within allowable concentrations for Indian agricultural soil. The concentrations of Pb, Cd, Zn, and Ni in crops/vegetables exceeded the World Health Organization/Food and Agriculture Organization safe limits. Relative orders of transfer of metals from soil to edible parts of the crops/vegetables were Cd > Pb > Ni > Zn > Cu > Cr. The enrichment factors of heavy metals in soil indicated minor to moderately severe enrichment for Pb, Cd, and Ni; minor to moderate enrichment for Zn; no enrichment to minor enrichment for Mn; and no enrichment to moderate enrichment for Cu at different sites. Ecological risk index of soil showed considerable contamination in one of the wastewater irrigated sites.  相似文献   

2.
Abstract

Heavy metals in vegetables are of great concern worldwide due to their potential bioaccumulation in human. This review-based study researched the concentrations of heavy metals in vegetables from all provinces of China between 2004 and 2018, and assessed the health risk for the residents. The results displayed the highest Pb, Cd, Cu, and Zn concentrations in vegetables were 0.192?mg/kg (west area), 0.071?mg/kg (central area), 3.961?mg/kg (central area), and 10.545?mg/kg (central area), which were lower than the maximum allowable concentration. In the national scale, the weighted average level of heavy metals in vegetables was found to be in the order of Zn?>?Cu?>?Pb?>?Cd. The hazard index (HI) of each province showed that beside Anhui and Hunan province, residents in other provinces of China faced a low high risk of Pb, Cd, Cu, and Zn. However, people consuming vegetables faced a high risk of Pb, Cd, Cu, and Zn in Anhui and Hunan provinces. This research may provide insight into heavy metal accumulation in vegetables and forecast to residents to cope with these problems for improved human health.  相似文献   

3.
To assess the extent and potential hazards of heavy metal pollution at Shanghai Laogang Landfill, the largest landfill in China, surface soil samples were collected near the landfill and concentrations of Cu, Zn, Cd, Pb, and Cr were determined. The results revealed that the concentrations of heavy metals, except Pb, were higher in the surface soil near the landfill than in the background soil. Principal component analysis and hierarchical cluster analysis suggested that the enrichment of Cu in soil was probably related to agricultural activities and Cd and Pb to landfill leachates, whereas Zn and Cr concentrations were probably controlled by soil matrix characteristics. The pollution indices (PIs) of the metals were: Cd > Cu > Cr > Zn > Pb. Among the five measured metals, Cd showed the largest toxic response and might cause higher ecological hazards than other metals. The integrated potential eco-risk index (RI) of the five metals ranged from 26.0 to 104.9, suggesting a low-level eco-risk potential. This study indicated the accumulations of Cu, Zn, Cd, Pb, and Cr did not reach high pollution levels, and therefore posed a low eco-risk potential in surface soil near the landfill.  相似文献   

4.
《农业工程》2020,40(1):64-71
Twenty five water samples were collected along the Taizihe River, the concentration and health risks of Zn, Cu, Pb, Cr and Cd were detected and evaluated, and the pollution sources was analyzed through principal components analyses. The results indicated that the order of average concentration of heavy metals was follows: Pb > Cr > Cu > Zn and Cd. Among that, the concentrations of Zn, Cu and Cr were at the permissible levels, but Pb and Cd exceeded grade V standard at some sites. The concentrations of Zn and Cu in the wet season were significant higher than that in the dry season (p < 0.05), but the average concentrations of Pb, Cr and Cd were not significantly different in the two seasons (p > 0.05). The annual average risks of human health caused by Cd and Cr were 10−3/a and 10−4/a, respectively, which were higher than the recommended maximum acceptable risk level. The human health risk values of Zn, Pb and Cu were all concentrated at 10−8/a or 10−9/a levels, which did not exceed the recommended standard. On the whole, Cd and Cr were the main health risk pollutants of Taizihe River. Pollution sources of Pb was different from other heavy metals in wet and dry season, Cd and Cr were similar in the wet and dry season. The mainly pollution source of heavy metals was industry, especially mining, metal smelting and electroplating industry.  相似文献   

5.
This study was conducted to investigate heavy metal contamination in agricultural soils and their transfer in a soil-potato system. A total of 59 pairs of potato and soil samples, representing different locations were collected from Hamedan, western Iran and subjected to heavy metals analysis. Average concentrations of Cd, Cu, Fe, Mn, Ni, Pb, and Zn were 1.2, 13.1, 161.4, 13.2, 3.2, 19.5, and 41.5 mg kg?1 dry weight in potato tubers, respectively. A sequence of decreasing plant transfer factors values: Cd > Pb > Cu > Zn > Ni ≥ Mn > Fe was obtained. Furthermore, the health risk index (HRI) values were within the safe limit (<1) except for Cd and Pb. HRI values for Cd and Pb were higher than 1, indicating potential health risk, especially for children. The results indicated that daily intakes of Cd and Pb in potato in the study area may present a future hazard.  相似文献   

6.
Abstract

The purpose of the study was to acquire the source and evaluate the risk posed by heavy metals in road dust of steel industrial city (Anshan), Liaoning, Northeast China. Potential ecological risk index (RI), pollution index (PI) and geo-accumulation index (Igeo) were applied to evaluate the heavy metal pollution level, and the carcinogenic risk (RI) and hazard index (HI) were calculated to estimate the human health risk. The geographic information system maps clearly reveal the hot spots of heavy metal spatial distribution. Principle component analysis (PCA) and cluster analysis (CA) classified heavy metals into three groups. The metal Zn and Pb originate from the traffic emission, while Cd, Cr, Fe, Mn, Ni and Sb primarily come from industrial activities. These two pathways were the major source of heavy metals pollution by positive matrix factorization (PMF). The Igeo and PI values of heavy metals were decreased in the following order: Cd?>?Sb?>?Zn?>?Fe?>?Pb?>?Cu?>?Cr?>?Sn?>?Mn?>?Ni. The RI index showed the heavy metals were moderate to very high potential ecological risk. The HI values for children and adults presented a decreasing order of Cr?>?Pb?>?Ni?>?Cu?>?Cd?>?Zn. The HI also predicted a possibility of non-carcinogenic risk for children living in urban areas in comparison with adults.  相似文献   

7.
The issue of heavy metal pollution is of high concern due to its potential health risks and detrimental effects on human beings, animals, and plants. In this study, farmland soil samples from 79 sampling sites were collected in Karashahar–Baghrash oasis, northwest China, and the contents of eight heavy metal elements (As, Cd, Cr, Cu, Mn, Ni, Pb, and Zn) were determined by standard methods. The spatial distribution, pollution, and ecological risks of heavy metals were analyzed based on Geographical Information System (GIS) technology, contamination factor (CF), pollution load index (PLI), and potential ecological risk index (RI). Results indicated that: (1) The average contents of Cd, Cr, Ni, Pb, and Zn exceeded the background values of irrigation soils of Xinjiang by 54.0, 1.34, 1.39, 3.44, and 5.01 times, respectively. The average contents of Cd exceeded the national standard of China by 10.80 times; (2) The pollution order of CF was ranked as Cd > Zn > Pb > Ni > Cr > Cu > As > Mn, and the ecological risk order of Eri was ranked as Cd > Ni > As > Cu > Ni > Pb > Cr > Zn. The average PLI of the study area showed heavy pollution level, and the average RI of the study area fell into considerable risk; (3) The moderately polluted areas with moderate potential ecological risks distributed in the northern parts, whereas heavily polluted areas with considerable potential ecological risks distributed in the southern parts of the study area; (4) Cr, Cu, and Mn of farmland soils were mainly originated from natural factors. Cd, Ni, and Pb were mainly originated from anthropogenic factors. As and Zn may be associated with both natural and anthropogenic factors. Cd contributed most to the PLI and RI of the farmland soils in the study area.  相似文献   

8.
In this study, paddy soil and rice grain samples were collected from the vicinity around the Xinqiao mine in Tongling, China to test for the presence of heavy metals (Cd, Ni, Cr, Cu, Zn, and Pb) in soil-rice system. Results indicated that the soil samples were primarily contaminated with Cd and Cu and followed with Zn and Pb. In rice grains, Cd, Cu, and Cr concentrations exceeded recommended guidelines. However, the regional distribution of heavy metals in rice grains and soil was inconsistent. The bioaccumulation factor of heavy metals in rice grains decreased in the order of Cd > Zn > Cu > Ni > Cr > Pb. The BAF was significantly positively correlated with TCLP-extractable metals and significantly negatively correlated with soil pH. However, the relationship between soil organic matter and the BAF in rice grains was complex. Health risk assessment through rice intake showed that hazard quotients of Cu and Cd were greater than 1 and could pose a considerable non-cancer health risk to adults and children; meanwhile, Cr, Ni, and Cd could pose an unacceptable cancer risk. The results indicated that the government must take measures to reduce heavy metal contents in paddy soil and rice.  相似文献   

9.
Heavy metals found in construction waste can enter soil and water bodies through surface runoff and leachate, where they represent an environmental hazard. In this study, we investigate the pollution characteristics and ecological risks of eight heavy metals (Cd, Cr, Cu, Mn, Ni, Pb, Zn, and As) in the soils of an unofficial construction waste landfill site in Beijing, China. The results indicate that long-term disposal of construction waste in the dry riverbed can reduce the pH value of the soil, increase the soil organic carbon content, and affect the total amount and distribution of heavy metals. Moreover, the landfill site pollutes the external soil environment, with Cd, Zn, Pb, and Cu as the characteristic pollutants. According to the Nemerow comprehensive pollution index and potential ecological risk assessment, heavy metal pollution decreases in the following order: internal soil > bottom soil > boundary soil. Cd, Zn, Pb, and Cu pollution is higher in the internal region, with single heavy-metal pollution indexes (Pi) of 1.41, 1.65, 1.26, and 1.28, respectively. Conversely, the Pi for Cr is higher in boundary and bottom soils (1.91 and 1.94, respectively). Risk assessment codes indicate that Cd and Mn pose the greatest environmental risk (31.9% and 17.8%, respectively) as they have the highest effective content, bioavailability, and mobility. Thus, environmental monitoring is a necessity for these metals.  相似文献   

10.
The present study was conducted to assess the suitability of sewage sludge amendment (SSA) in soil for Beta vulgaris var. saccharifera (sugar beet) by evaluating the heavy metal accumulation and physiological responses of plants grown at a 10%, 25%, and 50% sewage sludge amendment rate. The sewage sludge amendment was modified by the physicochemical properties of soil, thus increasing the availability of heavy metals in the soil and consequently increasing accumulation in plant parts. Cd, Pb, Ni, and Cu concentrations in roots were significantly higher in plants grown at 25% as compared to 50% SSA; however, Cr and Zn concentration was higher at 50% than 25% SSA. The concentrations of heavy metal showed a trend of Zn > Ni > Cu > Cr > Pb > Cd in roots and Zn > Cu > Ni > Cr > Pb > Cd in leaves. The only instance in which the chlorophyll content did not increase after the sewage sludge treatments was 50%. There were approximately 1.12-fold differences between the control and 50% sewage sludge application for chlorophyll content. The sewage sludge amendment led to a significant increase in Pb, Cr, Cd, Cu, Zn, and Ni concentrations of the soil. The heavy metal accumulation in the soil after the treatments did not exceed the limits for the land application of sewage sludge recommended by the US Environmental Protection Agency (US EPA). The increased concentration of heavy metals in the soil due to the sewage sludge amendment led to increases in heavy metal uptake and the leaf and root concentrations of Ni, Zn, Cd, Cu, Cr, Pb, and Zn in plants as compared to those grown on unamended soil. More accumulation occurred in roots and leaves than in shoots for most of the heavy metals. The concentrations of Cd, Cr, and Pb were more than the permissible limits of national standards in the edible portion of sugar beet grown on different sewage sludge amendment ratios. The study concludes that the sewage sludge amendment in the soil for growing sugar beet may not be a good option due to risk of contamination of Cr, Pb, and Cd.  相似文献   

11.
Trace heavy metals such as Cr(III), Ni(II), Cd(II), Zn(II), Pb(II), and Cu(II) are hazardous pollutants and are rich in areas with high anthropogenic activities. Their concentrations were analyzed using atomic absorption spectroscopy, and it was found that their concentrations were several fold higher in downstream Swan River water samples of the Kahuta Industrial Triangle as compared to upstream. Heavy metal soil concentrations taken from the downstream site were 149% for Cr, 131% for Ni, 176% for Cd, 139% for Zn, 224% for Pb, and 182% for Cu when compared to samples from the upstream site. Quantitative analysis concluded that these metals were higher in milk samples collected from downstream as compared to the samples from upstream water-irrigated sites. The order of metal in milk was as Zn > Cr > Cu > Cd > Pb = Ni. Heavy metal contaminations may affect the drinking water quality, food chain, and ecological environment. It was also suggested that the toxicity due to such polluted water, soil, and milk are seriously dangerous to human health in future.  相似文献   

12.
在综合考虑深圳市城市功能区分异特征的基础上,进行全市表层土壤系统采样,全面监测土壤表层8种重金属元素污染状况,分析不同重金属元素含量的统计学特征,探讨不同城市功能区对土壤表层重金属污染的影响,采用内梅罗指数和潜在生态危害指数评估不同重金属元素和不同城市功能区的生态风险水平,分别进行基于两种方法的全市重金属污染生态风险分区。结果表明: 1)深圳市土壤表层的Mn、Ni、Cr和Pb 4种元素受人为活动的影响程度较低,Cd、Zn、Cu和As 4类元素受人为活动影响较大。地表环境约束因素背景下的高强度城市化和工业化过程,是各种重金属污染区域分异和功能区分异的决定性因素。2)深圳市土壤重金属污染风险较高的重金属元素为Cd、Zn、Cu和Pb,特别是Pb污染问题尤为突出,必须加强管控工作。深圳市总体土壤表层重金属污染风险水平高于国内相关城市,需要引起足够重视。3)内梅罗指数法和潜在生态危害指数法的侧重点不同,在单一重金属元素风险判断、不同城市功能区生态风险的总体评价,以及市域土壤重金属污染生态风险分级评价方面结果差异较大,组合使用效果更好。  相似文献   

13.
The study of the concentrations of Cr, Zn, Cd, Pb, Ni, and Cu in soils under different land uses in rural, semi-urban, and urban zones in the Niger Delta was carried out with a view to providing information on the effects of the different land uses on the concentrations of trace elements in soils. Our results indicate significant variability in concentrations of these metals in soils under different land uses in rural, semi-urban, and urban zones. The maximum concentrations of metals in the examined soil samples were 707.5 mg.kg?1, 161.0 mg.kg?1, 2.6 mg.kg?1, 59.6 mg.kg?1, 1061.3 mg.kg?1, and 189.2 mg.kg?1 for Cr, Zn, Cd, Pb, Ni, and Cu, respectively. In the rural zone, the cassava processing mill is a potent source of Ni, Cr, Cu, and Zn while agricultural activities are a source of Cd, and automobile emissions and the use of lead oxide batteries constitute the major sources of Pb. In the urban zone, soils around the wood processing mill showed elevated concentrations of Cu, Cr, Zn, and Ni, while soils around automobile mechanic works and motor parks showed elevated levels of Pb. Elevated Cd concentrations were observed in soils under the following land uses: urban motor park, playground, welding and fabrication sheds, and metallic scrap dump. The contamination/pollution index of metals in the soil follows the order: Ni > Cd > Cr > Zn > Cu > Pb. The multiple pollution index of metals at different sites were greater than 1, indicating that these soils fit into “slight pollution” to “excessive pollution” ranges with significant contributions from Cr, Zn, Cd, Ni, and Cu.  相似文献   

14.
新疆焉耆盆地辣椒地土壤重金属污染及生态风险预警   总被引:5,自引:0,他引:5  
从新疆加工辣椒主产地(焉耆盆地)采集105个辣椒地典型土壤样品,测定其中As、Cd、Cr、Cu、Mn、Ni、Pb和Zn等8种重金属元素的含量。采用污染负荷指数(Pollution load index,PLI)、潜在生态风险指数(Potential ecological risk index,RI)和生态风险预警指数(Ecological risk warning index,I_(ER))对辣椒地土壤重金属污染及生态风险进行评价。结果表明:(1)焉耆盆地辣椒地土壤Cd、Cr、Ni、Pb和Zn含量的平均值分别超出新疆灌耕土背景值的1.65、1.40、1.32、3.21、6.42倍。辣椒地土壤Pb和Zn呈现重度污染,Cd、Cr和Ni轻度污染,As、Mn和Cu无污染。(2)土壤PLI平均值为1.40,呈现轻度污染。各重金属元素单项生态风险指数从大到小依次为:Cd、Ni、As、Cu、Pb、Cr、Zn。土壤RI平均值为18.40,属于轻微生态风险态势,IER平均值为-4.78,属于无警态势;博湖县辣椒地污染水平、潜在生态风险程度与生态风险预警等级最高,焉耆县污染水平、潜在生态风险程度与生态风险预警等级最低。(3)辣椒地土壤As、Cd、Pb与Zn主要受到人类活动的影响,Cr、Cu、Mn和Ni主要受到土壤地球化学作用的控制。Cd是焉耆盆地辣椒地生态风险等级最高的重金属元素,研究区农业生产过程中要防范Cd的污染风险。  相似文献   

15.
Shengting Rao  Jia Fang  Keli Zhao 《Phyton》2022,91(12):2669-2685

Soil is an essential resource for agricultural production. In order to investigate the pollution situation of heavy metals in the soil-crop system in the e-waste dismantling area, the crop and soil samples (226 pairs, including leaf vegetables, solanaceous vegetables, root vegetables, and fruits) around the e-waste dismantling area in southeastern Zhejiang Province were collected. The concentrations of Cd, Cu, Pb, and Cr were determined. The average concentrations of Cd, Cu, Pb, and Cr in soils were 0.94, 107.79, 80.28, and 78.14 mg kg-1, respectively, and their corresponding concentrations in crops were 0.024, 0.7, 0.041, and 0.06 mg kg-1, respectively. The transfer capacity of leaf vegetables was significantly higher than that of non-leaf vegetables, and the accumulation of four heavy metals in crops tended to be Cd > Cu > Cr/Pb. The pollution index’s results revealed that the soil pollution degree under different land uses ranked as root vegetables soil > leaf vegetables soil > solanaceous vegetables soil > fruit soil. The carcinogenic and non-carcinogenic risks of heavy metal exposure were ranked as food intake > accidental ingestion > dermal contact > inhalation. The comprehensive non-carcinogenic risk was ranked as Cr > Cd > Pb/Cu. Our results could be used to provide useful information for further crop cultivation layout in the study area, which can guarantee the local residents’ health and food safety.

  相似文献   

16.
A total of 195 farmland soil samples were collected in Yanqi Basin, Xinjiang, northwest China, and the concentrations of As, Cd, Cr, Cu, Ni, Pb, and Zn were analyzed for their concentrations and pollution levels using the Nemerow comprehensive index. The health risk assessment model introduced by USEPA was utilized to evaluate the human health risks of heavy metals. Results indicated that the average concentrations of these seven metals were lower than the allowed soil environmental quality standards of China, while the average concentrations of Cd, Cr, Ni, Pb and Zn exceeded the background values of irrigation soils in Xinjiang. The average contamination factor (CF) for Pb indicated the heavy pollution, whereas the CF for Cd, Zn, Ni, Cu and Cr indicated the moderate pollution. The average PLI of heavy metals indicated the low pollution. The non-carcinogenic hazard index were below the threshold values, and the total carcinogenic risks due to As and Cr were within the acceptable range for both children and adults. As and Pb were the main non-carcinogenic factors, while As was the main carcinogenic factor in the study area. Special attentions should be paid to these priority control metals in order to target the lowest threats to human health.  相似文献   

17.
The reclamation of subsidence area was regarded as a useful pathway to rebuild landscape and ecosystem. However, the elevated concentrations of heavy metals in the reclaimed area may lead to potential environmental and health risks. This study was aimed at investigating the accumulation of heavy metals in the soils and vegetables, and evaluate the potential health risks to human beings via consuming these vegetables. The concentrations of heavy metals (Cd, Cu, Pb, and Zn) were measured by using inductively coupled plasma mass spectrometry. The elevated concentrations of heavy metals were found in the soil from the reclaimed area when compared with the background value. The concentrations of heavy metals were various among the different vegetable species. The heavy metal tolerance could be found in all the selected vegetables. The elevated concentrations of Cu, Pb, and Zn in the edible part of the selected vegetables indicated that the consumption of these vegetables may lead to potential health risk. The intake of soybean, radish, sweet potato, and mugwort may lead to potential health risks due to the elevated target health quotients. Chinese cabbage and pepper were regarded as the suitable vegetables which may help in reducing the potential health risk.  相似文献   

18.
The aim of this study was to quantify the levels of toxic heavy metals and sodium in topsoil of farmlands around the Urmia Lake. A total of 96 topsoil samples were collected, pre-treated, and analyzed for metals using ICP-AES.

Median concentrations of As, Cd, Cu, Ni, Pb, Zn, and Na in sampling sites were 5, 0.26, 30, 40, 13, 84, and 251 mg/kg, respectively. The enrichment factor, geoaccumulation index, and contamination factor of the metals ranked them in the order of: Na > Pb > Cu > As > Cd > Zn > Ni, indicating minor contamination for them except Na and Pb with moderate contamination. Furthermore, the spatial analysis indicated that Cd, Cu, Pb, Ni, and Zn had similar distribution patterns in the north and northwest lands of the lake. Principal component analysis revealed anthropogenic sources for Cd, Cu, Ni, Pb, and Zn in the soil, whereas, sources of As and Na were most likely related to the dust emitting from the dried bed of Urmia Lake and from a cement industry. Potential ecological risk index in 7% of the sampling sites was at serious or considerable pollution level, and Cd and Pb were identified as the main pollutants.  相似文献   


19.
Heavy metal distribution, bioavailability, and ecological risk in the surface sediment of Taihu Lake were evaluated. Samples were collected from eight representative sites in September 2011 and February 2012. In the surface sediment, average metal contents were in the order of Cr > Zn > Ni > Pb > Cu. Spatially, Zhushan Bay maintained higher Cu, Ni, and Zn contents and Xiaomeikou maintained higher Cr and Pb contents than other sites. Spatial and temporal variation were observed in the bioavailable metals determined by acid-soluble fraction of BCR extraction. The labile metals in Zhushan Bay and Xiaomeikou were quantified by diffusive gradients in thin films (DGT) and DGT-labile concentrations of Zn, Ni, Cu, Pb, and Cd were in descending order, indicating the inconsistence of labile concentrations of different heavy metals with the total metal contents and that the toxic effect of Cd in sediment should be given attention. The ecological risk assessed by Hakanson potential ecological risk index showed that Zhushan Bay suffered the most serious pollution and should be given special attention. Bioavailability of metals should be taken into account during risk assessment for more accurate estimation.  相似文献   

20.
不同土壤生境下斑茅对重金属的富集特征   总被引:1,自引:0,他引:1  
为了筛选Cu、Zn、Pb、Cd多重金属离子的富集植物,对不同土壤生境(铜铁矿、钨矿、铅锌矿和无矿场污染)的优势种斑茅(Saccharum arundinaceum(Retz.)Jeswiet)对Cu、Zn、Pb、Cd离子富集情况进行了调查。结果表明,斑茅对Cu、Zn、Pb、Cd离子有富集优势并以Cu富集显著,斑茅根系土壤与斑茅地上部Cu含量存在相关性(P<0.05),斑茅对Pb和Cd的富集与转运存在极显相关性(P<0.01);在强酸、多金属污染弃耕农田土壤中,斑茅不仅符合Cu超富集植物的特征,而且其对Zn、Pb和Cd3种重金属的富集系数和转运系数均>1。在Cd、Cu、Pb和Zn均低于国家土壤环境质量二级标准(GB15618-1995)的弃耕农田中,斑茅对Cu、Zn和Cd的富集系数均>1。研究表明,斑茅可以作为Cu、Zn、Pb、Cd多金属污染土壤的富集植物进行人工修复。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号