首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Nuclear accidents and terrorism presents a serious threat for mass casualty. While bone-marrow transplantation might mitigate hematopoietic syndrome, currently there are no approved medical countermeasures to alleviate radiation-induced gastrointestinal syndrome (RIGS), resulting from direct cytocidal effects on intestinal stem cells (ISC) and crypt stromal cells. We examined whether bone marrow-derived adherent stromal cell transplantation (BMSCT) could restitute irradiated intestinal stem cells niche and mitigate radiation-induced gastrointestinal syndrome.

Methodology/Principal Findings

Autologous bone marrow was cultured in mesenchymal basal medium and adherent cells were harvested for transplantation to C57Bl6 mice, 24 and 72 hours after lethal whole body irradiation (10.4 Gy) or abdominal irradiation (16–20 Gy) in a single fraction. Mesenchymal, endothelial and myeloid population were characterized by flow cytometry. Intestinal crypt regeneration and absorptive function was assessed by histopathology and xylose absorption assay, respectively. In contrast to 100% mortality in irradiated controls, BMSCT mitigated RIGS and rescued mice from radiation lethality after 18 Gy of abdominal irradiation or 10.4 Gy whole body irradiation with 100% survival (p<0.0007 and p<0.0009 respectively) beyond 25 days. Transplantation of enriched myeloid and non-myeloid fractions failed to improve survival. BMASCT induced ISC regeneration, restitution of the ISC niche and xylose absorption. Serum levels of intestinal radioprotective factors, such as, R-Spondin1, KGF, PDGF and FGF2, and anti-inflammatory cytokines were elevated, while inflammatory cytokines were down regulated.

Conclusion/Significance

Mitigation of lethal intestinal injury, following high doses of irradiation, can be achieved by intravenous transplantation of marrow-derived stromal cells, including mesenchymal, endothelial and macrophage cell population. BMASCT increases blood levels of intestinal growth factors and induces regeneration of the irradiated host ISC niche, thus providing a platform to discover potential radiation mitigators and protectors for acute radiation syndromes and chemo-radiation therapy of abdominal malignancies.  相似文献   

2.
The influence of antibiotic decontamination of Pseudomonas contamination of the GI tract prior to whole-body neutron or gamma irradiation was studied. It was observed that for fission neutron doses greater than 5.5 Gy, cyclotron-produced neutron doses greater than 6.7 Gy, and 137Cs gamma-ray doses greater than 14.4 Gy, the median survival time of untreated rats was relatively constant at 4.2 to 4.5 days, indicating death was due to intestinal injury. Within the dose range of 3.5 to 5.5 Gy of fission neutrons, 4.9 to 6.7 Gy of cyclotron-produced neutrons, and 9.6 to 14.4 Gy of gamma rays, median survival time of these animals was inversely related to dose and varied from 12 to 4.6 days. This change in survival time with dose reflects a transition in the mechanisms of acute radiation death from pure hematopoietic, to a combination of intestinal and hematopoietic, to pure intestinal death. Decontamination of the GI tract with antibiotics prior to irradiation increased median survival time 1 to 5 days in this transitional dose range. Contamination of the intestinal flora with Pseudomonas aeruginosa prior to irradiation reduced median survival time 1 to 5 days in the same radiation dose range. Pseudomonas-contaminated animals irradiated within this transitional dose range had maximum concentrations of total bacteria and Pseudomonas in their livers at the time of death. However, liver bacteria concentration was usually higher in gamma-irradiated animals, due to a smaller contribution of hematopoietic injury in neutron-irradiated animals. The effects of both decontamination of the GI tract and Pseudomonas contamination of the GI tract were negligible in the range of doses in which median survival time was dose independent, i.e., in the pure "intestinal death" dose range. Finally, despite the marked changes in survival time produced by decontamination or Pseudomonas contamination in the "transitional dose range," these treatments had little effect on ultimate survival after irradiation as measured by the LD50/5 day and the LD50/30 day end points. The implications of these results with respect to treatment of acute radiation injury after whole-body irradiation are discussed.  相似文献   

3.
Radiation therapy in the treatment of cancer is dose limited by radiation injury in normal tissues such as the intestine and the heart. To identify the mechanistic involvement of transforming growth factor-beta 1 (TGF-β1) in intestinal and cardiac radiation injury, we studied the influence of pharmacological induction of TGF-β1 with xaliproden (SR 57746A) in rat models of radiation enteropathy and radiation-induced heart disease (RIHD). Because it was uncertain to what extent TGF-β induction may enhance radiation injury in heart and intestine, animals were exposed to irradiation schedules that cause mild to moderate (acute) radiation injury. In the radiation enteropathy model, male Sprague-Dawley rats received local irradiation of a 4-cm loop of rat ileum with 7 once-daily fractions of 5.6 Gy, and intestinal injury was assessed at 2 weeks and 12 weeks after irradiation. In the RIHD model, male Sprague-Dawley rats received local heart irradiation with a single dose of 18 Gy and were followed for 6 months after irradiation. Rats were treated orally with xaliproden starting 3 days before irradiation until the end of the experiments. Treatment with xaliproden increased circulating TGF-β1 levels by 300% and significantly induced expression of TGF-β1 and TGF-β1 target genes in the irradiated intestine and heart. Various radiation-induced structural changes in the intestine at 2 and 12 weeks were significantly enhanced with TGF-β1 induction. Similarly, in the RIHD model induction of TGF-β1 augmented radiation-induced changes in cardiac function and myocardial fibrosis. These results lend further support for the direct involvement of TGF-β1 in biological mechanisms of radiation-induced adverse remodeling in the intestine and the heart.  相似文献   

4.
Intestinal protection in mice against radiation injury by M. piperita (1 g/kg body weight/day) was studied from day 1 to day 20 after whole body gamma irradiation (8 Gy). Villus height, goblet cells/villus section, total cells, mitotic cells and dead cells/crypt section in the jejunum are good parameters for the assessment of radiation damage. There was significant decrease in the villus height, number of total cells and mitotic cells/crypt section, whereas goblet cells and dead cells showed significant increase after irradiation. Mentha pretreatment resulted in a significant increase in villus height, total cells and mitotic cells, whereas goblet cells and dead cells showed a significant decrease from respective irradiated controls at each autopsy day. The results suggest that Mentha pretreatment provides protection against radiation induced alterations in intestinal mucosa of Swiss albino mice.  相似文献   

5.

Background

Radiation-induced gastrointestinal syndrome (RIGS) results from a combination of direct cytocidal effects on intestinal crypt and endothelial cells and subsequent loss of the mucosal barrier, resulting in electrolyte imbalance, diarrhea, weight loss, infection and mortality. Because R-spondin1 (Rspo1) acts as a mitogenic factor for intestinal stem cells, we hypothesized that systemic administration of Rspo1 would amplify the intestinal crypt cells and accelerate the regeneration of the irradiated intestine, thereby, ameliorating RIGS.

Methods and Findings

Male C57Bl/6 mice received recombinant adenovirus expressing human R-spondin1 (AdRspo1) or E.coli Lacz (AdLacz), 1–3 days before whole body irradiation (WBI) or abdominal irradiation (AIR). Post-irradiation survival was assessed by Kaplan Meier analysis. RIGS was assessed by histological examination of intestine after hematoxilin and eosin staining, immunohistochemical staining of BrdU incorporation, Lgr5 and β-catenin expression and TUNEL staining. The xylose absorption test (XAT) was performed to evaluate the functional integrity of the intestinal mucosal barrier. In order to examine the effect of R-spondin1 on tumor growth, AdRspo1 and AdLacZ was administered in the animals having palpable tumor and then exposed to AIR. There was a significant increase in survival in AdRspo1 cohorts compared to AdLacZ (p<0.003) controls, following WBI (10.4 Gy). Significant delay in tumor growth was observed after AIR in both cohorts AdRspo1 and AdLacZ but AdRspo1 treated animals showed improved survival compared to AdLacZ. Histological analysis and XAT demonstrated significant structural and functional regeneration of the intestine in irradiated animals following AdRspo1 treatment. Immunohistochemical analysis demonstrated an increase in Lgr5+ve crypt cells and the translocation of β-catenin from the cytosol to nucleus and upregulation of β-catenin target genes in AdRspo1-treated mice, as compared to AdLacz-treated mice.

Conclusion

Rspo1 promoted radioprotection against RIGS and improved survival of mice exposed to WBI. The mechanism was likely related to induction of the Wnt-β-catenin pathway and promotion of intestinal stem cell regeneration. Rspo1 has protective effect only on normal intestinal tissue but not in tumors after AIR and thereby may increase the therapeutic ratio of chemoradiation therapy in patients undergoing abdominal irradiation for GI malignancies.  相似文献   

6.
Risk of colorectal cancer (CRC) after exposure to low linear energy transfer (low-LET) radiation such as γ-ray is highlighted by the studies in atom bomb survivors. On the contrary, CRC risk prediction after exposure to high-LET cosmic heavy ion radiation exposure is hindered due to scarcity of in vivo data. Therefore, intestinal tumor frequency, size, cluster, and grade were studied in APCMin/+ mice (n = 20 per group; 6 to 8 wks old; female) 100 to 110 days after exposure to 1.6 or 4 Gy of heavy ion 56Fe radiation (energy: 1000 MeV/nucleon) and results were compared to γ radiation doses of 2 or 5 Gy, which are equitoxic to 1.6 and 4 Gy 56Fe respectively. Due to relevance of lower doses to radiotherapy treatment fractions and space exploration, we followed 2 Gy γ and equitoxic 1.6 Gy 56Fe for comparative analysis of intestinal epithelial cell (IEC) proliferation, differentiation, and β-catenin signaling pathway alterations between the two radiation types using immunoblot, and immunohistochemistry. Relative to controls and γ-ray, intestinal tumor frequency and grade was significantly higher after 56Fe radiation. Additionally, tumor incidence per unit of radiation (per cGy) was also higher after 56Fe radiation relative to γ radiation. Staining for phospho-histone H3, indicative of IEC proliferation, was more and alcian blue staining, indicative of IEC differentiation, was less in 56Fe than γ irradiated samples. Activation of β-catenin was more in 56Fe-irradiated tumor-free and tumor-bearing areas of the intestinal tissues. When considered along with higher levels of cyclin D1, we infer that relative to γ radiation exposure to 56Fe radiation induced markedly reduced differentiation, and increased proliferative index in IEC resulting in increased intestinal tumors of larger size and grade due to preferentially greater activation of β-catenin and its downstream effectors.  相似文献   

7.
This report is designed to explore the molecular mechanism by which dihydroartemisinin (DHA) and ionizing radiation (IR) induce apoptosis in human lung adenocarcinoma A549 cells. DHA treatment induced a concentration- and time-dependent reactive oxygen species (ROS)-mediated cell death with typical apoptotic characteristics such as breakdown of mitochondrial membrane potential (Δψm), caspases activation, DNA fragmentation and phosphatidylserine (PS) externalization. Inhibition of caspase-8 or -9 significantly blocked DHA-induced decrease of cell viability and activation of caspase-3, suggesting the dominant roles of caspase-8 and -9 in DHA-induced apoptosis. Silencing of proapoptotic protein Bax but not Bak significantly inhibited DHA-induced apoptosis in which Bax but not Bak was activated. In contrast to DHA treatment, low-dose (2 or 4 Gy) IR induced a long-playing generation of ROS. Interestingly, IR treatment for 24 h induced G2/M cell cycle arrest that disappeared at 36 h after treatment. More importantly, IR synergistically potentiated DHA-induced generation of ROS, activation of caspase-8 and -3, irreparable G2/M arrest and apoptosis, but did not enhance DHA-induced loss of Δψm and activation of caspase-9. Taken together, our results strongly demonstrate the remarkable synergistic efficacy of combination treatment with DHA and low-dose IR for A549 cells in which IR potentiates DHA-induced apoptosis largely by enhancing the caspase-8-mediated extrinsic pathway.  相似文献   

8.
Exposure to high-dose radiation results in detrimental effects on survival. The effects of combined trauma, such as radiation in combination with hemorrhage, the typical injury of victims exposed to a radiation blast, on survival and hematopoietic effects have yet to be understood. The purpose of this study was to evaluate the effects of radiation injury (RI) combined with hemorrhage (i.e., combined injury, CI) on survival and hematopoietic effects, and to investigate whether hemorrhage (Hemo) enhanced RI-induced mortality and hematopoietic syndrome. Male CD2F1 mice (10 weeks old) were given one single exposure of γ- radiation (60Co) at various doses (0.6 Gy/min). Within 2 hr after RI, animals under anesthesia were bled 0% (Sham) or 20% (Hemo) of total blood volume via the submandibular vein. In these mice, Hemo reduced the LD50/30 for 30-day survival from 9.1 Gy (RI) to 8.75 Gy (CI) with a DMF of 1.046. RI resulted in leukocytopenia, thrombopenia, erythropenia, and bone marrow cell depletion, but decreased the caspase-3 activation response. RI increased IL-1β, IL-6, IL-17A, and TNF-α concentrations in serum, bone marrow, ileum, spleen, and kidney. Some of these adverse alterations were magnified by CI. Erythropoietin production was increased in kidney and blood more after CI than RI. Furthermore, CI altered the global miRNAs expression in kidney and the ingenuity pathway analysis showed that miRNAs viz., let-7e, miR-30e and miR-29b that were associated with hematopoiesis and inflammation. This study provides preliminary evidence that non-lethal Hemo exacerbates RI-induced mortality and cell losses associated with high-dose γ-radiation. We identified some of the initial changes occurring due to CI which may have facilitated in worsening the injury and hampering the recovery of animals ultimately resulting in higher mortality.  相似文献   

9.
We investigated the potency of exogenous bone marrow mesenchymal stem cells (MSCs) to engraft into irradiated intestine, as well as these cells’ effects on radiation-induced enteric injury. MSCs from β-Gal-transgenic mice were transplanted into C57BL/6J recipient mice that received abdominal irradiation (13 Gy). At different time points, recipient intestines were examined for the engraftment of donor-derived cells by immunofluorescence analysis. Additionally, the expression status of chemokines induced by radiation injury was analyzed in the irradiated intestine. Next, MSCs were transduced with an adenoviral vector encoding a certain chemokine receptor gene in order to promote the engraftment rate via chemotaxis. The intestinal permeability and histomorphological alterations were measured to evaluate the therapeutic effect of MSC transplantation. The results demonstrated that infused MSCs possessed the potency to engraft into irradiated enteric mucosa, but the engraftment rate was too low to produce a therapeutic effect. The expression of stromal cell-derived factor-1 (SDF-1) was up-regulated in irradiated intestine. MSCs genetically modified by CXCR4 (the receptor for SDF-1) engrafted into irradiated intestine at a significantly elevated level and ameliorated the intestinal permeability and histopathological damage.  相似文献   

10.
The purpose of this study was to further elucidate the radioprotective role of granulocyte colony-stimulating factor (G-CSF) induced in response to irradiation. The induction of G-CSF and interleukin-6 (IL-6) in response to radiation exposure was evaluated in mice. The level of cytokine in serum was determined by multiplex Luminex. The role of G-CSF on survival and tissue injury after total body gamma-irradiation was evaluated by administration of neutralizing antibody to G-CSF before radiation exposure. An isotype control was used for comparison and survival was monitored for 30 d after irradiation. Jejunum samples were used for immunohistochemistry. Ionizing radiation exposure induced significant levels of the hematopoietic cytokines G-CSF and IL-6, in mice receiving 9.2 Gy radiation. Maximal levels of G-CSF were observed in peripheral blood of mice 8h after irradiation. IL-6 levels were maximum at 12h after irradiation. Administration of G-CSF antibody significantly enhanced mortality in irradiated mice. G-CSF antibody-treated mice had higher numbers of CD68(+) cells and apoptotic cells in intestinal villi. Our results confirm that radiation exposure induces elevations of circulating G-CSF and IL-6. Neutralizing antibody to G-CSF exacerbates the deleterious effects of radiation, indicating that G-CSF induced in response to irradiation plays an important role in recovery.  相似文献   

11.
An impairment of the survival of mice subjected to whole-body gamma-irradiation with a lethal dose of 10 Gy and treated with a repeated postirradiation administration of prostaglandin synthesis inhibitors (PGSIs), indomethacin or diclofenac, was observed. Morphological examination of the gastrointestinal tract and the estimation of blood loss into its lumen in animals treated with diclofenac did not show serious damage such as haemorrhages or perforation, but revealed structural injury to the intestinal mucosa indicating inflammatory processes. The lesions found are supposed to be connected with increased intestinal permeability which leads to endotoxin escape from the gut and a subsequent increased mortality rate of irradiated animals. It may be concluded that PGSIs are not suitable for the management of radiation sickness after an exposure to lethal doses of ionizing radiation.  相似文献   

12.
The testes of the B6C3F1 hybrid strain mice were irradiated with 0.05 Gy of 16O8+ ion as the pre-exposure dose (D1), and were then irradiated with 2 Gy of 16O8+ ion as challenging radiation dose (D2) at 4 h after per-exposure. Testicular morphology was observed by light microscope at 35th day after radiation. The results showed that irradiation of mouse testes with 2 Gy of 16O8+ ion significantly impaired, mainly reduction of tubule diameter and decrease or loss of germ cells in various developing stages, especially spermatogenic elements. Pre-exposure to a low-dose (0.05 Gy) of 16O8+ ion significantly alleviated above mentioned damage on testicular morphology induced by subsequent a high-dose (2 Gy) radiation.  相似文献   

13.
Ionizing radiation (IR)-induced intestinal damage is the major and common injury of patients receiving radiotherapy. Urolithin A (UroA) is a metabolite of the intestinal flora of ellagitannin, a compound found in fruits and nuts such as pomegranates, strawberries and walnuts. UroA shows the immunomodulatory and anti-inflammatory capacity in various metabolic diseases. To evaluate the radioprotective effects, UroA(0.4, 2 and 10 mg/kg) were intraperitoneally injected to C57BL/6 male mice 48, 24, 1 h prior to and 24 h after 9.0Gy TBI. The results showed that UroA markedly upregulated the survival of irradiated mice, especially at concentration of 2 mg/kg. UroA improved the intestine morphology architecture and the regeneration ability of enterocytes in irradiated mice. Then, UroA significantly decreased the apoptosis of enterocytes induced by radiation. Additionally, 16S rRNA sequencing analysis showed the effect of UroA is associated with the recovery of the IR-induced intestinal microbacteria profile changes in mice. Therefore, our results determinated UroA could be developed as a potential candidate for radiomitigators in radiotherapy and accidental nuclear exposure. And the beneficial functions of UroA might be associated with the inhibition of p53-mediated apoptosis and remodelling of the gut microbes.  相似文献   

14.
15.
为了了解小剂量重离子辐射诱导小鼠睾丸结构的适应性反应,采用小剂量(0.05Gy)~(16)O~(8 )离子照射B6C3F_1雄性小鼠睾丸。4h后,再给予2Gy~(16)O~(8 )离子照射。照射后第35天取材在光镜下观察睾丸结构。结果显示,大剂量(2Gy)照射明显损伤睾丸组织,主要表现为曲精细管直径几乎减小一半,精管内各发育阶段的生殖细胞减少或消失,特别是精原细胞几乎完全消失。而Leydig细胞和Sertoli细胞仅有轻度核固缩及胞浆减少。提示睾丸生殖细胞的辐射敏感性明显高于其间质组织细胞。预先给予小剂量(0.05Gy)照射可明显减轻随后大剂量(2Gy)辐射对睾丸组织的损伤。提示小剂量重离子辐射可诱导小鼠睾丸结构明显的适应性反应。  相似文献   

16.
The intestinal epithelium is sensitive to radiation injury. Damage to the intestinal epithelium is dose limiting in radiation therapy of abdominal cancers. There is a need for agents that can be given before radiation therapy to protect the intestinal epithelium. C57BL6 mice were subjected to 12 Gy of total body radiation. Some mice received intraperitoneal hyaluronic acid (HA) before radiation. Mice were killed 6 h after radiation to assess radiation-induced apoptosis in the intestine; other mice were killed at 84 h to assess crypt survival. Total body radiation (12 Gy) resulted in increased expression of HA synthases and HA in the intestine and increased plasma HA (5-fold). Intraperitoneal injection of HA (30 mg/kg) before radiation resulted in a 1.8-fold increase in intestinal crypt survival and a decrease in radiation-induced apoptosis. The radioprotective effects of HA were not seen in Toll-like receptor 4 (TLR4)- or cyclooxygenase-2 (COX-2)-deficient mice. Intraperitoneal injection of HA induced a 1.5-fold increase in intestinal COX-2 expression, a 1.5-fold increase in intestinal PGE?, and the migration of COX-2-expressing mesenchymal stem cells from the lamina propria in the villi to the lamina propria near the crypt. We conclude that 1) radiation induces increased HA expression through inducing HA synthases, 2) intraperitoneal HA given before radiation reduces radiation-induced apoptosis and increases crypt survival, and 3) these radioprotective effects are mediated through TLR4, COX-2, and the migration of COX-2-expressing mesenchymal stem cells.  相似文献   

17.
Whole-body and organ fluid compartment sizes and plasma sodium concentrations were measured in conventional, GI decontaminated, bile duct ligated, and choledochostomized rats at different times after various doses of gamma radiation. In addition, sodium excretion was measured in rats receiving lethal intestinal radiation injury. After doses which were sublethal for 3-5 day intestinal death, transient decreases occurred in all the fluid compartments measured (i.e., total body water, extracellular fluid space, plasma volume). No recovery of these fluid compartments was observed in rats destined to die from intestinal radiation injury. The magnitude of the decreases in fluid compartment sizes was dose dependent and correlated temporally with the breakdown and recovery of the intestinal mucosa but was independent of the presence or absence of enteric bacteria or bile acids. Associated with the loss of fluid was an excess excretion of 0.83 meq of sodium between 48 and 84 h postirradiation. This represents approximately 60% of the sodium lost from the extracellular fluid space in these animals during this time. The remaining extracellular sodium loss was due to redistribution of sodium to other spaces. It is concluded that radiation-induced breakdown of the intestinal mucosa results in lethal losses of fluid and sodium as evidenced by significant decreases in total body water, extracellular fluid space, plasma volume, and plasma sodium concentration, with hemoconcentration. These changes are sufficient to reduce tissue perfusion leading to irreversible hypovolemic shock and death.  相似文献   

18.
19.
The genomic instability (GI) in somatic cells of the progeny (F1 generation) of male mice chronically exposed to low-dose gamma-radiation was studied by comparative analysis of chromosome damage. BALB/C male mice exposed to 0.1 Gy (0.01 Gy/day) and 0.5 Gy (0.01 and 0.05 Gy/day) were mated with unirradiated females 15 days after irradiation. For comparison of radiosensitivity, two-month-old males, the descendants of irradiated and unirradiated animals, were subjected to irradiation with a dose of 1.5 Gy (0.47 Gy/min) from a 60Co source. GI was revealed by the standard scheme of adaptive response. The experiments indicated that, by using the test "adaptive response", it is possible to detect the transition of gamma-radiation-induced genomic instability in sex cells of male parent into somatic cells of mice (F1 generation) either from changes in radiosensitivity or by the absence of the adaptive response induced by a standard scheme.  相似文献   

20.
Tissue consequences of radiation exposure are dependent on radiation quality and high linear energy transfer (high-LET) radiation, such as heavy ions in space is known to deposit higher energy in tissues and cause greater damage than low-LET γ radiation. While radiation exposure has been linked to intestinal pathologies, there are very few studies on long-term effects of radiation, fewer involved a therapeutically relevant γ radiation dose, and none explored persistent tissue metabolomic alterations after heavy ion space radiation exposure. Using a metabolomics approach, we report long-term metabolomic markers of radiation injury and perturbation of signaling pathways linked to metabolic alterations in mice after heavy ion or γ radiation exposure. Intestinal tissues (C57BL/6J, female, 6 to 8 wks) were analyzed using ultra performance liquid chromatography coupled with electrospray quadrupole time-of-flight mass spectrometry (UPLC-QToF-MS) two months after 2 Gy γ radiation and results were compared to an equitoxic 56Fe (1.6 Gy) radiation dose. The biological relevance of the metabolites was determined using Ingenuity Pathway Analysis, immunoblots, and immunohistochemistry. Metabolic profile analysis showed radiation-type-dependent spatial separation of the groups. Decreased adenine and guanosine and increased inosine and uridine suggested perturbed nucleotide metabolism. While both the radiation types affected amino acid metabolism, the 56Fe radiation preferentially altered dipeptide metabolism. Furthermore, 56Fe radiation caused upregulation of ‘prostanoid biosynthesis’ and ‘eicosanoid signaling’, which are interlinked events related to cellular inflammation and have implications for nutrient absorption and inflammatory bowel disease during space missions and after radiotherapy. In conclusion, our data showed for the first time that metabolomics can not only be used to distinguish between heavy ion and γ radiation exposures, but also as a radiation-risk assessment tool for intestinal pathologies through identification of biomarkers persisting long after exposure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号