首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
This research was conducted to assess the water quality and the contamination of heavy metals in water, sediment, fish, and frogs, as well as bioaccumulation factors (BAFs) in fish and frogs around the gold mine area. The water samples were analyzed for water quality (temperature, pH, and dissolved oxygen). The samples were analyzed for heavy metals by inductively coupled plasma optical emission spectrometry. The water quality was within the standard. The concentrations of heavy metals, including As, Cr, Cd, Pb, Ni, Zn, Fe, Mn, and Cu, in water and sediment samples were measured. Three species of fish were collected: Rasbora tornieri, Brachydanio albolineata, and Systomus rubripinnis. The mean heavy metal concentrations of fish were as follows: Fe>Zn>Mn>Cr>Ni>Cu>As>Pb>Cd. The As, Cr, and Pb concentrations in all the fish species exceeded the standard levels. Five species of frogs were collected: Kaloula pulchra, Microhyla heymonsi, Fejervarya limnocharis, Hoplobatrachus rugulosus, and Microhyla pulchra. The mean heavy metal concentrations of frog were as follows: Fe>Cu>Mn>Zn>Cr>Ni>Pb>Cd>As. The Cr, Cd, and Cu concentrations exceeded the standard levels. The BAFs in fish were in order of Cr>Zn>Ni>Cu>Pb>Fe>Cd>As. The BAFs in frogs were Cr>Zn>Ni>Cu>Fe>Pb>Cd>As. The accumulation of heavy metals was higher in the sediment than in the water. Many aquatic organisms take up heavy metals directly from the environment around the gold mine.  相似文献   

3.
The trace metal levels in the tissues of two popular leafy vegetables Amaranthus caudatus and Corchrus olithorus widely consumed in Nigeria were assessed from a cultivated floodplain receiving effluents from diverse factories in Ibadan. Although the leaves are primarily consumed, the stems are usually used as a feed for farm animals while the roots are disposed by burning when dry or by composting. The objective of this work was to evaluate the level of trace elements in the tissues of these vegetables at harvest time when they become available to the human ecosystem for exposure to the accumulated trace metals, especially the leaves which are cooked and eaten as soup. The results of the mean trace metal levels in the analyses show that the leaves of A. caudatus had the highest bioconcentration in the following order Ba>Mn>Zn>Cu>Pb>Cr>Co>Ni>Cd>U>Sb, stems: Ba>Zn>Mn>Cu>Cr>Pb>Ni>Co>Cd>U>Sb, and roots: Mn>Ba>Zn>Cu>Cr>Pb>Ni>Co>U>Cd>Sb. In C. olithorus, the order was Mn>Ba>Zn>Cu>Pb>Cr>Co>Ni>Cd>Sb>U in the leaves, Mn>Zn>Ba>Pb>Cr>Cu>Co>Ni>U>Cd>Sb in the roots, and Mn>Zn>Ba>Cu>Cr>Pb>Co>Ni>Cd>U>Sb in the stems. The final result of the vegetable samples showed that the trace metal concentration was in the range of Cr (0.8–58.7), Mn (35.0–9,495.9), Co (0.3–33.6), Cu (2.3–60.3), Zn (16.0–538.2), Cd (0.000–40.53), Sb (0.000–0.037), Ba (13.0–1,175.6), Pb (0.9–39.7), and U (0.0–2.2). The bioconcentration factors (BF) for the transfer of trace metals from soil to the tissues showed a higher ease of bioaccumulation when compared to previous studies. The element with the highest BF in the study was Ba (6.45) in the leaves while the least was Co (0.09) in the roots of A. caudatus. The level of bioconcentration of trace metals in the leaves in most of the samples exceeds the recommended levels given by the World Health Organization (WHO) and Federal Environmental Protection Agency (FEPA), Nigeria and therefore constitutes a potential public health risk to the populace who consume these vegetables cultivated in effluent-impacted floodplains.  相似文献   

4.
An attempt has been made to analyze some trace elements and electrolytes like Zn, Cu, Mn, Fe, Co, Na, K, Ca, and Li present in the Swertia chirayita roots and leaves. The concentration of Ca in all the samples was more than 1,346.0 mg/kg and the concentration of other elements was found in the order K > Ca > Fe > Na > Mn > Zn > Co > Cu > Li in different samples of S. chirayita.  相似文献   

5.
1.  The relative abundance in Lake Bonney of the trace elements studied was BM>Fe>Cu>Ni>Mo>Co, with more than 90 per cent of each element in the monimolimnion.
2.  The monimolimnion contains concentrations of B which are probably toxic to phytoplankton, and Cu concentrations which are at least potetially toxic to these organisms.
3.  Concentrations of B, Cu, and Mn in the mixolimnion occassionally reach potentially toxic concentrations, but there exist mitigating influences such as high calcium levels.
4.  The relative amounts of trace elements contributed by the Sollas-Lacroix meltstream to the lake were Mn>Fe>Cu>NiCo>B. Except for Co and Mo, the Sollas-Lacroix meltstream did not appear to contribute trace elements in quantities which would explain the weekly changes found in the mixolimnion.
  相似文献   

6.
The effect of treated municipal wastewater on the roots and the leaves of turnip was studied to compare the 50% and 100% wastewater of 34 ml/d Sewage Treatment Plant (STP) with different doses of potassic fertilizers. Turnip (Brassica rapa) was used as a test plant. A pot experiment was conducted, using a factorial randomized block design to investigate the growth and translocation of heavy metals to the leaves and the roots of turnip. The concentration of heavy metal in wastewater used for irrigation was within the limits. However, the concentration in the plant parts showed a significant rise due to continuous use of wastewater. The concentration of heavy metals in leaves and roots was at excessive levels at 40 and 55 days after sowing (DAS), while at 70 DAS, metal concentration was comparatively low. The range of heavy metals in wastewater irrigated plants was Cd = 1–16.3, Ni = 0–136, Fe = 263–1197, Cu = 0–18, Mn = 37–125, and Zn = 42–141 mg/kg. Concentration of heavy metals in plants was found in the order of Fe>Zn>Ni>Mn>Cu>Cd.  相似文献   

7.
Atomic absorption spectrometry is used to determine the contents of microelements (such as Zn, Cu, Ca, Mg and Fe) in the all-blood and hair of the Han, Uygur, and Kazak people in normal health state. The results show that the above mentioned elements in the hair arranged successively as Ca>Zn>Mg>Fe>Cu and those in the all-blood of the Han people arranged as Fe>Mg>Ca>Zn>Cu; of the Uygur and Kazak people, as Fe>Mg>Ca>Zn>Cu. This paper reports that the content of the microelement Mg in the all-blood and hair of the Uygur and Kazak people is obviously higher than that of the Han people (P<0.05).  相似文献   

8.
Variations of micro- and macrominerals concentration in Swertia speciosa were determined by atomic absorption spectroscopy. The mineral elements showed significant changes in roots and leaves collected from different altitudes. Among all the elements, highest concentration (more than 2,000 mg/kg) of Ca and K were recorded in S. speciosa and the concentration of other elements analyzed in the study decreased in the order Fe>Na>Zn>Co>Li>Cu>Mn.  相似文献   

9.
Concentrations of Fe, Pb, Cu, Zn and Cd were determined during one season in the red alga Gracilaria verrucosa, sediment and seawater from the Thermaikos Gulf, Greece. This region has been subject to change due to increases in industrial and domestic activities. The relative abundance of metals in G. verrucosa and seawater decreased in the order: Fe>Zn>Pb>Cu>Cd and in the sediment: Pb>Fe>Zn>Cu>Cd. Cadmium concentration in the alga correlated positively with that in seawater. There was positive correlation between Fe concentrations in the alga and those of the Zn and Cu. The concentrations of metals in the alga showed no significant differences between the stations. Lead, Zn and Cu concentrations in the alga were slightly higher at Biamyl, whereas Cd was higher at Perea and Fe at Nea Krini. Seasonal variation of metal concentrations in the alga was significant for Cd and Fe. Copper and Fe increased from winter to summer, whereas Cd was the opposite. Zinc concentrations were minimum and Pb concentrations were maximum during spring. These variations are discussed in relation to tissue age, life cycle, ambient concentrations of metals and other environmental conditions. Cd and Pb concentrations inG. verrucosa in the Thermaikos Gulf were higher and those of Cu and Zn were lower than in other species of the genus. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

10.
Dispersion and runoff of mine tailings have serious implications for human and ecosystem health in the surroundings of mines. Water, soils and plants were sampled in transects perpendicular to the Santiago stream in Zimapan, Hidalgo, which receives runoff sediments from two acidic and one alkaline mine tailing. Concentrations of potentially toxic elements (PTE) were measured in water, soils (rhizosphere and non-rhizosphere) and plants. Using diethylenetriaminepentaacetic acid (DTPA) extractable concentrations of Cu, Zn, Ni, Cd and Pb in rhizosphere soil, the bioconcentration and translocation factors were calculated. Ruderal annuals formed the principal element of the herbaceous vegetation. Accumulation was the most frequent strategy to deal with high concentrations of Zn, Cu, Ni, Cd and Pb. The order of concentration in plant tissue was Zn>Pb>Cu>Ni>Cd. Most plants contained concentrations of PTE considered as phytotoxic and behaved as metal tolerant species. Rorippa nasturtium-aquaticum accumulated particularly high concentrations of Cu. Parietaria pensylvanica and Commelina diffusa, common tropical weeds, behaved as Zn hyperaccumulators and should be studied further.  相似文献   

11.
Eighteen metals were estimated in the scalp hair samples from cancer patients (n = 111) and normal donors (n = 113). Nitric acid–perchloric acid wet digestion procedure was used for the quantification of the selected metals by flame atomic absorption spectrophotometry. In the scalp hair of cancer patients, highest average levels were found for Ca (861 μg/g), followed by Na (672 μg/g), Zn (411 μg/g), Mg (348 μg/g), Fe (154 μg/g), Sr (129 μg/g), and K (116 μg/g), whereas in comparison, the dominant metals in the scalp hair of normal donors were Ca (568 μg/g), Zn (177 μg/g), Mg (154 μg/g), Fe (110 μg/g), and Na (103 μg/g). The concentrations of Ca, Cd, Co, Cr, Fe, K, Mg, Mn, Na, Ni, Pb, Sb, Sr, and Zn were notably higher in the hair of cancer patients as compared with normal donors, which may lead to a number of physiological disorders. Strong positive correlations were found in Mn–Pb (0.83), Cd–Cr (0.82), Cd–Li (0.57), Fe–Pb (0.56), and Fe–Mn (0.55) in the hair of cancer patients whereas Na–Cd, Li–Cr, Li–Co, Co–Cd, Li–Cd, Na–Co, Na–Li, Ca–Mg and Na–Cr exhibited strong relationships (r > 0.50) in the hair of normal donors. Principal Component Analysis (PCA) of the data revealed seven PCs, both for cancer patients and normal donors, but with significantly different loadings. Cluster Analysis (CA) was also used to support the PCA results. The study evidenced significantly different pattern of metal distribution in the hair of cancer patients in comparison with normal donors. The role of trace metals in carcinogenesis was also discussed.  相似文献   

12.
Abstract

Sequential extraction was carried out to determine the concentrations of some trace metals (Mn, Cu, Fe, Pb and Cd) in the Kainji lake sediments from seven different locations in four fractions: exchangeable, bound to iron and manganese oxide, bound to organic matters and residual. This was to undertaken to assess the environmental fate of these trace metals. The BCR technique, a modified form of the Tessier method of sequential extraction was used.

The proportion of the mean metal concentrations of the bioavailable metals follows the order Fe>Cu>Pb>Mn>Cd. Generally, Fe was most abundant metal in the sediment and about 40% was found in its bioavailable form. Although Cd contributed least to the bioavailable content, a greater percentage (~60%) was found in the bioavailable fraction. This suggests that Cd is highly mobile and, since it is known to be toxic, its concentration in the bioavailable form constitutes an environmental threat.

The contribution of metals bound to organic matter was found to be high and of the same magnitude as those bound to oxides and constitutes about 70% of the non-bioavailable metal contents. The petrological analysis of the sediments revealed that the sediments were predominantly quartz and rock clays with percussion marks and indentations.  相似文献   

13.
Summary Aluminum toxicity is an important growth limiting factor for upland rice production on oxisols of cerrado region in Brazil. Data related to the effect of Al on uptake of nutrients for rice crop are limited. The effect of five Al concentrations (0, 10, 20, 40 and 60 ppm) in culture solution on the chemical composition of 30 upland rice cultivars was studied.Aluminum concentration and content in plant tissues were increased with higher levels of Al in all cultivar. In the roots Al content was higher as compared with the tops. Critical toxic level of Al in the tops of 21 days old plants varied from 100 to 417 ppm depending on the cultivars. Rice cultivars responded differently to Al treatments with respect to nutrients uptake. Increased Al concentrations in the solution exerted an inhibiting effect on the concentrations and contents of N, P, K, Ca, Mg, S, Na, Zn, Fe, Mn, B and Cu. Thus the inhibition was more effective for macronutrients in the plant tops in following order: Mg>Ca>P>K>N>S>Na. Whereas for micronutrients it was in the order of Mn>Zn>Fe>Cu>B. Morphological, physiological and biochemical effects of Al, toxicity responsible for the reduction in plant nutrient uptake, are discussed.  相似文献   

14.
Trace element content in hair is affected by the age of the donor. Hair samples of subjects from four counties in China where people are known to have long lifespan (“longevity counties”) were collected and the trace element content determined. Samples were subdivided into three age groups based on the age of the donors from whom these were taken: children (0–15 years); elderly (80–99 years); and centenarians (≥100 years). We compared the trace element content in hair of different age groups of subjects. Support vector machine classification results showed that a non-linear polynomial kernel function could be used to classify the three age groups of people. Age did not have a significant effect on the content of Ca and Cd in human hair. The content of Li, Mg, Mn, Zn, Cr, Cu, and Ni in human hair changed significantly with age. The magnitude of the age effect on trace element content in hair was in the order Cu > Zn > Ni > Mg > Mn > Cr > Li. Cu content in hair decreased significantly with increasing age. The hair of centenarians had higher levels of Li and Mn, and lower levels of Cr, Cu, and Ni comparing with that of the children and elderly subjects. This could be a beneficial factor of their long lifespan.  相似文献   

15.
The study presented here reports for the first time cytosolic metal and protein levels in the gastrointestinal tissue of field-collected European chub (Squalius cephalus), living in low metal-contaminated river section. In two sub-cellular fractions (untreated cytosol and heat-treated cytosol), isolated from the whole gastrointestinal tract of indigenous chubs collected during spawning (April/May 2006) and post-spawning period (September 2006), seasonal or gender related differences of trace metals and proteins were determined. In both fractions, cytosol and heat-treated cytosol, metal levels decrease as follows: Zn > Fe > Cu > Mn > Cd and are significantly higher during the spawning period. Besides that, the level of heat-sensitive proteins (metalloenzymes) in cytosolic fractions is also significantly higher during the spawning period in both male and female specimens. Higher condition indices of chubs in the spawning period imply higher feeding activity, energy reserves and recent growth of indigenous chubs. Metallothionein levels, determined in the heat-treated cytosol, are comparable in gastrointestinal tract of feral chubs collected in both seasons and confine the background metallothionein levels, on average 3 mg g1 wet tissue. Chub spawning has been identified as a confounding factor, having an impact on cytosolic metal and protein levels, presumably due to enhanced food supply (higher condition indices) and fish spawning (higher gonadosomatic indices in some male specimens).  相似文献   

16.
Bioaccumulation and heavy metal resistance of Cd2+, Cu2+, Ni2+, Zn2+ and Mn2+ ions by thermophilic Geobacillus toebii subsp. decanicus and Geobacillus thermoleovorans subsp. stromboliensis were investigated. The metal resistance from the most resistant to the most sensitive was found as Mn > Ni > Cu > Zn > Cd for both Geobacillus thermoleovorans subsp. stromboliensis and Geobacillus toebii subsp. decanicus. It was determined that the highest metal bioaccumulation was performed by Geobacillus toebii subsp. decanicus for Zn (36,496 μg/g dry weight cell), and the lowest metal bioaccumulation was performed by Geobacillus toebii subsp. decanicus for Ni (660.3 μg/g dry weight cell). Moreover, the dead cells were found to biosorbe more metal in their membranes compared to the live cells. In the presence of 7.32 mg/l Cd concentration, the levels of Cd absorbed in live and dead cell membranes were found as 17.44 and 46.2 mg/g membrane, respectively.  相似文献   

17.
In order to explore the associations between trace elements in dietary intake and the other three biological media (blood, urine, or feces) and inter-element interactions among the latter, we simultaneously collected 72-h diet duplicates, whole blood, and 72-h urine and feces from 120 free-living healthy males in China. Correlations among the toxic (cadmium [Cd], lead [Pb]), and nutritionally essential (zinc [Zn], copper [Cu], iron [Fe], manganese [Mn], selenium [Se], iodine [I]) elements were evaluated using Spearman rank correlation analysis based on analytical data determined by inductively coupled plasma-mass spectrometry. Dietary Cd intakes were highly correlated with the fecal Cd and blood Cd levels. Inverse correlations were found for Fe–Cd and Fe–Pb in both diet versus blood and diet versus feces. Cd–Zn and Cd–Se were significantly directly correlated in the urine and feces. Cd–Se and Pb–Se were negatively correlated in blood. In addition, there existed an extremely significant association between urinary Se and urinary I. Moreover, the other two highly direct correlations were found for Se–Fe and for I–Fe in urine. Improved knowledge regarding their mutual associations is considered to be of fundamental importance to understand more the complex interrelationships in trace element metabolism.  相似文献   

18.
Abstract

Two root crops: carrot (Daucus carota) and spring onion (Allium fistulosum) and soil samples were selected from the agricultural fields located near Islamabad, Pakistan to determine their elemental content. Field soil speciation of the two crops was also carried out to analyse the correlation of the elements in field crop and soil. Concentrations of selected elements were evaluated in the leaf, stem, root and flowering part of the crops using flame atomic absorption spectrophotometry. The results showed that elements are mostly concentrated in soil rather than crop parts following the sequence Zn>Cu>Pb>Ni>Cr>Cd. Furthermore, soil speciation showed that Ni and Cr are more prevalent in the Fe–Mn oxide fraction, Zn and Cd as the carbonate bound fraction and Cu is found in the organic bound form. However, concentrations of Pb are similar across the carbonate, Fe–Mn oxide and organic bound fractions. The highest average concentration of Zn is found as the carbonate bound fraction (2.09 ± 0.005 mg kg?1) and Cu as the organic bound (1.51 ± 0.029 mg kg?1) in soil samples taken from the agricultural field of Daucus carota.  相似文献   

19.
Comparison of Source Identification of Metals in Road-Dust and Soil   总被引:1,自引:0,他引:1  
Source identification of toxic metals is very critical for pollution prevention and human health protection. Many studies only use either road dust metal data or soil metal data to evaluate metal contamination and identify pollution sources, and this may lead to the exclusion of some important information. In this study, the differences of metal spatial distribution and source identification between road dust and associated soil in an industrial area were investigated.

Results indicate the metal concentrations in road dust were generally higher than those in soil. Based on the average concentrations, the order for dust metal concentrations was Fe>>Zn>>Pb>Cu>Cr>Ni. The order for soil metal concentrations was slightly different, namely Fe>>Zn>>Cu~Pb>Ni>Cr. The spatial distributions of metals in the road dust were very different from those in the soil, except for Fe. The GIS results indicate that elevated levels of Fe, Zn, and Pb were present in road dust near a steel plant. High concentrations of Cu, Cr, and Ni appeared at a road intersection. Elevated metal concentrations of Fe, Zn, Pb, Cu, and Cr were present in soil around the steel plant. A coal-fired power plant did not seem to be a significant metal source in this study. Significant correlations for dust metals imply that these were well mixed in the study area. The metal sources identified by PCA with soil metal data were obviously different from those identified with road dust metal data. When road dust metal data were used, the changes of PCA analyzed areas slightly influenced the source identification. The PCA results were obviously influenced by changes of analyzed areas when soil metal data were used.  相似文献   


20.
Abstract

The purpose of this study was to investigate the distribution of total and bioavailable metals (Cd, Cu, Cr, Fe, Mn, Pb and Zn) in sediments of the Abelardo L. Rodríguez (ALR) dam located in the eastern part of the city of Hermosillo, Sonora, Mexico. Seventy two sediment samples were collected in 2009 during four sampling campaigns in February (spring), May (summer), September (end of summer) and December (winter) in five different areas within the dam surface (Zones I, II, III, IV and V), including the Gate Station. Determination of heavy metals was carried out by flame atomic absorption spectrophotometry (FAAS). The results indicate high levels of total heavy metals in the following order: Fe>Mn>Zn>Pb>Cu>Cr>Cd. This is indicative of the impact of human activities located in areas surrounding the reservoir, specifically urban and industrial. The distribution and state of accumulation of trace metals in the sediment is largely dominated by the residual and Fe/Mn oxides geochemical phases. Fraction I (exchangeable) also presented high concentrations of metals (Cu, Fe, Mn and Zn). From enrichment factor analysis, the study area is prevalently enriched in Cd, Cu and Pb in Zones I, II, III, IV and Gate Station. This indicates that the sediments are impacted by anthropogenic activities such as downloads, domestic and industrial wastewater. Geoaccumulation index (Igeo) indicates that Zones I, II, III, IV and V (including Gate Station) do not show contamination by Cr, Fe, Mn and Zn. However, there is a moderate to heavy contamination by Cd, Cu and Pb (Igeo: 2–4) in all areas of study. The comparison between the results obtained with the sediment quality criteria (LEL and SEL), indicate that Zones I, II, III, IV, V and Gate Station, are contaminated with Cd, Cu and Pb, and severely contaminated by Fe.

The elevated levels of heavy metals detected in the sediment of the ALR Dam require special attention, since in the exchangeable fraction, the metals are specifically adsorbed on the sediment and can be released when the ionic composition of water changes. However, additional studies are required in this reservoir on the chemistry and toxicology of metals for a full assessment of potential risks posed to biota and man.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号