首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Declines in oxidative and thermal stress tolerance are well documented in aging systems. It is thought that these alterations are due in part to reductions in antioxidant defenses. Although intracellular thiols are major redox buffers, their role in maintaining redox homeostasis is not completely understood, particularly during aging, where the reliance on antioxidant enzymes and proteins may be altered. To determine whether thiol supplementation improved the antioxidant enzyme profile of aged animals after heat stress, young and old Fischer 344 rats were treated with N-acetylcysteine (NAC; 4 mmol/kg ip) 2 h before heat stress. Liver tissue was collected before and 0, 30, and 60 min after heat stress. Aging was associated with a significant decline in tissue cysteine and glutathione (GSH) levels. There was also an age-related decrease in copper-zinc superoxide dismutase activity. Heat stress did not alter liver GSH, glutathione disulfide, or antioxidant enzyme activity. With NAC treatment, old animals took up more cysteine than young animals as reflected in an increase in liver GSH and a corresponding decrease in glutamate cysteine ligase activity. Catalase activity increased after NAC treatment in both age groups. Copper-zinc superoxide dismutase activity did not change with heat stress or drug treatment, whereas manganese superoxide dismutase activity was increased in old animals only. These data indicate that GSH synthesis is substrate limited in old animals. Furthermore, aged animals were characterized by large fluctuations in antioxidant enzyme balance after NAC treatment, suggesting a lack of fine control over these enzymes that may leave aged animals susceptible to subsequent stress.  相似文献   

2.
The use of antioxidants in tissue regeneration has been studied, but their mechanism of action is not well understood. Here, we analyze the role of the antioxidant N-acetylcysteine (NAC) in retina regeneration. Embryonic chicks are able to regenerate their retina after its complete removal from retinal stem/progenitor cells present in the ciliary margin (CM) of the eye only if a source of exogenous factors, such as FGF2, is present. This study shows that NAC modifies the redox status of the CM, initiates self-renewal of the stem/progenitor cells, and induces regeneration in the absence of FGF2. NAC works as an antioxidant by scavenging free radicals either independently or through the synthesis of glutathione (GSH), and/or by reducing oxidized proteins through a thiol disulfide exchange activity. We dissected the mechanism used by NAC to induce regeneration through the use of inhibitors of GSH synthesis and the use of other antioxidants with different biochemical structures and modes of action, and found that NAC induces regeneration through its thiol disulfide exchange activity. Thus, our results provide, for the first time, a biochemical basis for induction of retina regeneration. Furthermore, NAC induction was independent of FGF receptor signaling, but dependent on the MAPK (pErk1/2) pathway.  相似文献   

3.
4.
Reduced glutathione (GSH) and N-acetylcysteine (NAC), but not other antioxidative or reducing agents, were found to inhibit cell death, both apoptosis and necrosis, induced by hypoxia in naive and nerve growth factor-differentiated PC12 cells. The level of intracellular total GSH decreased time-dependently during hypoxia, but exogenously added GSH prevented such a decrease in GSH. Pretreatment of cells with exogenous GSH or NAC resulted in inhibition of both neutral sphingomyelinase (SMase) activation and ceramide formation during hypoxia. In the in vitro assay system, neutral SMase activity was inhibited dose-dependently by GSH and NAC. Activation of caspase-3 induced by hypoxia was also inhibited by either GSH or NAC. NAC but not GSH inhibited caspase-3 activation induced by C2-ceramide. These results suggest that GSH protects cells from hypoxic injury by direct inhibition of neutral SMase activity and ceramide formation, resulting in inhibition of caspase-3 activation, and that NAC exerts an additional inhibitory effect(s) downstream of ceramide.  相似文献   

5.
Pyrrolizidine alkaloid (PA) clivorine, isolated from traditional Chinese medicinal plant Ligularia hodgsonii Hook, has been shown to induce apoptosis in hepatocytes via mitochondrial‐mediated apoptotic pathway in our previous research. The present study was designed to observe the protection of N‐acetyl‐cysteine (NAC) on clivorine‐induced hepatocytes apoptosis. Our results showed that 5 mM NAC significantly reversed clivorine‐induced cytotoxicity via MTT and Trypan Blue staining assay. DNA apoptotic fragmentation analysis and Western‐blot results showed that NAC decreased clivorine‐induced apoptotic DNA ladder and caspase‐3 activation. Further results showed that NAC inhibited clivorine‐induced Bcl‐xL decrease, mitochondrial cytochrome c release and caspase‐9 activation. Intracellular glutathione (GSH) is an important ubiquitous redox‐active reducing sulfhydryl (? SH) tripeptide, and our results showed that clivorine (50 µM) decreased cellular GSH amounts and the ratio of GSH/GSSG in the time‐dependent manner, while 5 mM NAC obviously reversed this depletion. Further results showed that GSH synthesis inhibitor BSO augmented clivorine‐induced cytotoxicity, while exogenous GSH reversed its cytotoxicity on hepatocytes. Clivorine (50 µM) significantly induced cellular reactive oxygen species (ROS) generation. Further results showed that 50 µM Clivorine decreased glutathione peroxidase (GPx) activity and increased glutathione S transferase (GST) activity, which are both GSH‐related antioxidant enzymes. Thioredoxin‐1 (Trx) is also a ubiquitous redox‐active reducing (? SH) protein, and clivorine (50 µM) decreased cellular expression of Trx in a time‐dependent manner, while 5 mM NAC reversed this decrease. Taken together, our results demonstrate that the protection of NAC is major via maintaining cellular reduced environment and thus prevents clivorine‐induced mitochondrial‐mediated hepatocytes apoptosis. J. Cell. Biochem. 108: 424–432, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

6.
The antioxidant N-acetyl cysteine (NAC) is a precursor of intracellular glutathione (GSH) and is also a well known as one of the chemopreventive agents which act through a variety of cellular mechanisms. We examined the effects of NAC on cell cycle progression in the pancreatic carcinoma cell lines, SW1990 and JHP1. Cells were incubated with or without NAC. Cell cycle distribution was analyzed by flow cytometry and immunoblotting. NAC suppressed cell proliferation in a concentration-dependent manner, whereas NAC increased intracellular glutathione content significantly in a dose-dependent manner. The percentage of cells in the G1 phase after treatment with NAC was significantly higher than the percentage seen for control cells. Cyclin D1 expression of carcinoma cells treated with NAC decreased remarkably compared with cells without NAC treatment. Thus, the antiproliferative effect of NAC by prolongation of the G1 phase in human pancreatic carcinoma cells shows its possible utility as an antitumor agent.  相似文献   

7.
Wu W  Abraham L  Ogony J  Matthews R  Goldstein G  Ercal N 《Life sciences》2008,82(21-22):1122-1130
Ionizing radiation is known to cause tissue damage in biological systems, mainly due to its ability to produce reactive oxygen species (ROS) in cells. Many thiol antioxidants have been used previously as radioprotectors, but their application has been limited by their toxicity. In this investigation, we have explored the possible radioprotective effects of a newly synthesized thiol antioxidant, N-acetylcysteine amide (NACA), in comparison with N-acetylcysteine (NAC), a commonly used antioxidant. Protective effects of NACA and NAC were assessed using Chinese hamster ovary (CHO) cells, irradiated with 6 gray (Gy) radiation. Oxidative stress parameters, including levels of reduced glutathione (GSH), cysteine, malondialdehyde (MDA), and activities of antioxidant enzymes like glutathione peroxidase, glutathione reductase, and catalase, were measured. Results indicate that NACA was capable of restoring GSH levels in irradiated cells in a dose dependent manner. In addition, NACA prevented radiation-induced loss in cell viability. NACA further restored levels of malondialdehyde, caspase-3 activity, and antioxidant enzyme activities to control levels. Although NAC affected cells in a similar manner to NACA, its effects were not as significant. Further, NAC was also found to be cytotoxic to cells at higher concentrations, whereas NACA was non-toxic at similar concentrations. These results suggest that NACA may be able to attenuate radiation-induced cytotoxicity, possibly by its ability to provide thiols to cells.  相似文献   

8.
Redox imbalance is a primary cause of endothelial dysfunction (ED). Under oxidant stress, many critical proteins regulating endothelial function undergo oxidative modifications that lead to ED. Cellular levels of glutathione (GSH), the primary reducing source in cells, can significantly regulate cell function via reversible protein thiol modification. N-acetylcysteine (NAC), a precursor for GSH biosynthesis, is beneficial for many vascular diseases; however, the detailed mechanism of these benefits is still not clear. From HPLC analysis, NAC significantly increases both cellular GSH and tetrahydrobiopterin levels. Immunoblotting of endothelial NO synthase (eNOS) and DUSP4, a dual-specificity phosphatase with a cysteine as its active residue, revealed that both enzymes are upregulated by NAC. EPR spin trapping further demonstrated that NAC enhances NO generation from cells. Long-term exposure to Cd2+ contributes to DUSP4 degradation and the uncontrolled activation of p38 and ERK1/2, leading to apoptosis. Treatment with NAC prevents DUSP4 degradation and protects cells against Cd2+-induced apoptosis. Moreover, the increased DUSP4 expression can redox-regulate the p38 and ERK1/2 pathways from hyperactivation, providing a survival mechanism against the toxicity of Cd2+. DUSP4 gene knockdown further supports the hypothesis that DUSP4 is an antioxidant gene, critical in the modulation of eNOS expression, and thus protects against Cd2+-induced stress. Depletion of intracellular GSH by buthionine sulfoximine makes cells more susceptible to Cd2+-induced apoptosis. Pretreatment with NAC prevents p38 overactivation and thus protects the endothelium from this oxidative stress. Therefore, the identification of DUSP4 activation by NAC provides a novel target for future drug design.  相似文献   

9.
Abstract

Objectives

Oxidative stress plays critical roles in the pathogeneses of diabetes, hypertension, and atherosclerosis, but its effect on fat accumulation is still unclear. In this study, we analyzed the role of the well-known antioxidant and a glutathione (GSH) precursor N-acetylcysteine (NAC) in fat accumulation and the expression of obesity-associated proteins.

Methods

We studied the effects of 10 µM NAC on obesity-related protein expression in cultured 3T3-L1 preadipocytes, which are able to differentiate into mature adipocytes and accumulate lipids.

Results

NAC treatment inhibited fat accumulation and reduced the expression of obesity-related proteins, including monoamine oxidase A, heat shock protein 70 (HSP70), aminoacylase -1 (ACY-1), and transketolase.

Discussion

Our results suggest that the effects of NAC on triglycerides (Tgs) and protein expression are correlated. In support of this, we showed that NAC treatment affected both the Tg synthesis pathway and the expression levels of proteins implicated in human obesity.  相似文献   

10.
Abstract

Pyrroloquinoline quinone (PQQ), a bacterial redox co-factor and antioxidant, is highly reactive with nucleophilic compounds present in biological fluids. PQQ induced apoptosis in human promonocytic leukemia U937 cells and this was accompanied by depletion of the major cellular antioxidant glutathione and increase in intracellular reactive oxygen species (ROS). Treatment with glutathione (GSH) or N-acetyl-L-cysteine (NAC) did not spare PQQ toxicity but resulted in a 2–5-fold increase in PQQ-induced apoptosis in U937 cells. Cellular GSH levels increased following treatment by NAC alone but were severely depleted by co-treatment with NAC and PQQ. This was accompanied by an increase in intracellular ROS. Alternatively, depletion of glutathione also resulted in increased PQQ cytotoxicity. However, the cells underwent necrosis as evidenced by dual labeling with annexin V and propidium iodide. PQQ-induced cytotoxicity is thus critically regulated by the cellular redox status. An increase in GSH can augment apoptosis and its depletion can switch the mode of cell death to necrosis in the presence of PQQ. Our data suggest that modulation of intracellular GSH can be used as an effective strategy to potentiate cytotoxicity of quinones like PQQ.  相似文献   

11.
High dose, acute radiation exposure, as in radiation accidents, induces three clinical syndromes that reflect consequences of oxidative protein, lipid, and DNA damage to tissues such as intestine, lung, and liver. In the present study, we irradiated C57BL/6 mice with 18 Gy whole-body radiation (XRT) and evaluated N-acetyl cysteine (NAC) isomers LNAC and DNAC as potential radioprotectors under conditions that would model the gastrointestinal syndrome. We focused on tissues thought not immediately involved in the gastrointestinal syndrome. Both LNAC and DNAC protected the lung and red blood cells (RBC) from glutathione (GSH) depletion following radiation exposure. However, only LNAC also supplemented the spleen GSH levels following XRT. Protection from increased malondialdehyde (MDA) levels (lung) and increased 8-hydroxy-deoxyguanosine (8-oxo-dG) presence (liver) following XRT was observed with treatment by either isomer of NAC. These results imply that either NAC isomer can act as a radioprotectant against many aspects of oxidative damage; chirality is only important for certain aspects. This pattern would be consistent with direct action of NAC in many radioprotection and repair processes, with a delimited role for NAC in GSH synthesis in some aspects of the problem.  相似文献   

12.
Sun L  Gu L  Wang S  Yuan J  Yang H  Zhu J  Zhang H 《PloS one》2012,7(3):e32503
The activation of group I metabotropic glutamate receptor (group I mGlus) has been shown to produce neuroprotective or neurotoxic effects. In this study, we investigated the effects of N-acetylcysteine (NAC), a precursor of the antioxidant glutathione, on group I mGlus activation in apoptosis of glial C6 and MN9D cell lines, and a rat model of Parkinson's disease (PD). We demonstrated that NAC protected against apoptosis through modulation of group I mGlus activity. In glial C6 cells, NAC promoted phosphorylation of ERK induced by (s)-3,5-dihydroxy-phenylglycine (DHPG), an agonist of group I mGlus. NAC enhanced the group I mGlus-mediated protection from staurosporine (STS)-induced apoptosis following DHPG treatment. Moreover, in rotenone-treated MN9D cells and PD rat model, NAC protected against group I mGlus-induced toxicity by compromising the decrease in phosphorylation of ERK, phosphorylation or expression level of TH. Furthermore, the results showed that NAC prohibited the level of ROS and oxidation of cellular GSH/GSSG (E(h)) accompanied by activated group I mGlus in the experimental models. Our results suggest that NAC might act as a regulator of group I mGlus-mediated activities in both neuroprotection and neurotoxicity via reducing the oxidative stress, eventually to protect cell survival. The study also suggests that NAC might be a potential therapeutics targeting for group I mGlus activation in the treatment of PD.  相似文献   

13.
Antioxidant therapy has been shown to be beneficial in neurological disorders including Alzheimer's disease and cerebral ischemia. Glutamate-induced cytotoxicity in HT-4 neuronal cells has been previously demonstrated to be due to oxidative stress caused by depletion of cellular glutathione (GSH). The present study demonstrates that a wide variety of antioxidants inhibit glutamate-induced cytotoxicity in HT-4 neuronal cells. Low concentrations of α-tocopherol and its analogs were highly effective in protecting neuronal cells against cytotoxicity. Purified flavonoids and herbal extracts of Gingko biloba (EGb 761) and French maritime pine bark (Pycnogenol®) were also effective. We have previously shown that pro-glutathione agents can spare GSH and protect cells from glutamate insult in a C6 glial cell model. The protective effects of nonthiol-based antioxidants tested in the HT-4 line were not mediated via GSH level modulation. In contrast, protective effects of thiol-based pro-glutathione agents α-lipoic acid (LA) and N-acetyl cysteine (NAC) corresponded with a sparing effect on GSH levels in glutamate-treated HT-4 cells. Glutamate-induced cytotoxicity in HT-4 cells is a useful model system for testing compounds or mixtures for antioxidant activity.  相似文献   

14.
BackgroundMetals can disturb the integrity of physiological and biochemical mechanisms in fish. Thus components of defense as an antioxidant system are significant biomarkers due to their vital role in coping with metal stress. The aim of the current study is to investigate the direct effects of Cd, Cu, and Zn sublethal exposures (in vitro) on the antioxidant system parameters in the liver and kidney of Nile tilapia.MethodsThe antioxidant enzyme activities and GSH levels were analyzed after in vitro sublethal metal (200 and 400 μg/L Cd, Cu, and Zn) treatments of Oreochromis niloticus liver and kidney supernatants.ResultsMetals even at lower levels caused significant changes in the levels of antioxidant system parameters due to concentration, metal, and tissue type. GSH metabolism parameters were more responsive to the metal effect. TBARS levels and GPX activity were mostly increased while CAT, SOD, rGSH, and GSH/GSSG levels decreased. The kidney was more affected than the liver in vitro conditions. Cu was more effective in the liver whereas it was Zn for the kidney. Cd caused negative correlations among the antioxidant enzymes. Significant correlations were found between enzymes and GSH levels upon Zn and Cu exposures.ConclusionsDirect metal effects may trigger different response trends due to their nature and tissue differences. The current data provide a knowledge about which antioxidant biomarkers can define better the oxidative stress caused by direct metal effect for further studies including in vivo experiments.  相似文献   

15.
Thiols are known to act as protectants in the biological system for their involvement in a number of metabolic regulations. In this study, we investigated the effect of a new and potent thiol-chelating agent, monoisoamyl 2,3-dimercaptosuccinic acid (MiADMSA), an analog of meso 2,3-dimercaptosuccinic acid, to find out if it could act as a prooxidant (because of its lipophilic character) or antioxidant (because of thiol moiety) that could supplement its chelating properties in different age groups of male rats (young, adult, and old rats) and produce effective clinical recoveries in the treatment of metal intoxication. Animals were treated with 25, 50, and 100 mg/kg of MiADMSA, i.p, once daily for 1 week to assess the effect on the antioxidant system in major organs based on sensitive biochemical variables indicative of oxidative stress. Results suggested that MiADMSA administration increased the activity of d-aminolevulinic acid dehydratase in all the age groups and increased blood glutathione (GSH) levels in young rats. MiADMSA also potentiated the synthesis of metallothioneine in liver and kidneys and GSH levels in liver and brain. Apart from this it also significantly reduced the glutathione disulfide levels in tissues. However, administration of MiADMSA caused some concern over the copper loss. MiADMSA was found to be safe in rats of all ages.  相似文献   

16.
Perennial pepperweed (Lepidium latifolium Linn.) is a preferred ‘phytofood’ that is available for the longest period of a year in Ladakh. Present study was undertaken to identify the mechanism of redox homeostasis and understand factors responsible for its biochemical superiority during low temperatures. Results reveal that despite the stressful environment at higher altitude, the cellular conditions are more reducing for this plant. The reducing environment is maintained by significant induction of GSH rather than changes in its oxidation state, which changes the redox potential by 12 mV. Lower ratio of NADP+/NADPH and induction of new antioxidative isozymes at Leh (3,505 m) suggest crucial role of redox regulation in adaptation. These new proteins have higher thiol content and could provide an efficient redox sensing mechanism in Lepidium latifolium that respond through GSH/NADPH redox buffers. In vitro feeding experiment suggested that GSH plays an important role in induction of antioxidant enzymes, which may not be the direct consequence of H2O2 accumulation. It needs to be further investigated whether its responsive redox metabolism has some role in its invasive growth in riparian plains of America.  相似文献   

17.
TNF is a major mediator in the pathogenesis of endotoxic shock, and its inhibition has a protective effect in various animal models of sepsis or endotoxin (lipopolysaccharide, LPS) toxicity. LPS treatment also induces an oxidative damage mediated by increased production of reactive oxygen intermediates. N-Acetylcysteine (NAC) is an antioxidant and a precursor of the synthesis of glutathione (GSH) and was reported to protect against LPS toxicity and LPS-induced pulmonary edema. In this study we investigated the effect of NAC on TNF production and LPS lethality in mice. The results indicated that oral administration of NAC protects against LPS toxicity and inhibits the increase in serum TNF levels in LPS-treated mice. The inhibition was not confined to the released form of TNF, since NAC also inhibited LPS-induced spleen-associated TNF. On the other hand, the inhibitor of GSH synthesis, DL-buthionine-(SR)-sulfoximine (BSO), had the opposite effect of potentiating LPS-induced TNF production, and this was associated with a decrease in liver GSH levels. Repletion of liver GSH with NAC reversed this effect. NAC was also active in inhibiting TNF production and hepatotoxicity in mice treated with LPS in association with a sensitizing dose of Actinomycin D. These data indicate that GSH can be an endogenous modulator of TNF production in vivo. On the other hand, NAC pretreatment did not inhibit other effects of LPS, particularly induction of serum IL-6, spleen IL-1 alpha, and corticosterone, in the same experimental model, suggesting that the observed effect could be specific for TNF.  相似文献   

18.
Azathioprine (AZA) is an important drug used in the therapy of autoimmune system disorders. It induces hepatotoxicity that restricts its use. The rationale behind this study was the proven efficacy of N-acetylcysteine (NAC; a replenisher of sulfhydryls) and reports on the antioxidant potential of aminoguanidine (AG; an iNOS inhibitor), that might be useful to protect against the toxic implications of AZA. AG (100 mg/kg; i.p.) or NAC (100 mg/kg; i.p.) were administered to the Wistar male rats for 7 days and after that AZA (15 mg/kg, i.p.) was given as a single dose. This caused an increase in the activity of hepatic aminotransferases (AST and ALT) in the serum 24 h after AZA treatment. AZA (7.5 or 15 mg/kg, i.p.) also caused an increase in rat liver lipid peroxides and a lowering of reduced glutathione (GSH) contents. In the other part of experiment, protective effects of AG and NAC were observed on AZA induced hepatotoxicity. NAC significantly protected against the toxic effects produced by AZA. Pretreatment with NAC prevented any change in the activities of both the aminotransferases after AZA. This pretreatment also resulted in a significant decline in the contents of lipid peroxides and a significant elevation in GSH level was evident after AZA treatment. In the group with AG pretreatment the activities of AST and ALT did not increase significantly after AZA when compared to control. However, the lipid peroxides and GSH levels did not have any significant difference when compared to AZA group. These observations also indicate that the improvement in the GSH levels by NAC is the most significant protective mechanism rather than any other mechanistic profile. The protective effect of AG against the enzyme leakage seems to be through the liver cell membrane permeability restoration and is independent of any effects on liver GSH contents.  相似文献   

19.
N-Acetylcysteine (NAC) has been used as an antioxidant to prevent apoptosis triggered by different stimuli in different cell types. It is common opinion that cellular redox, which is largely determined by the ratio of oxidized and reduced glutathione (GSH), plays a significant role in the propensity of cells to undergo apoptosis. However, there are also contrasting opinions stating that intracellular GSH depletion or supplemented GSH alone are not sufficient to lead cells to apoptosis or conversely protect them. Unexpectedly, this study shows that NAC, even if it maintains the peculiar characteristics of an agent capable of reducing cell proliferation and increasing intracellular GSH content, increases apoptosis induced by H(2)O(2) treatment and mo-antiFas triggering in a 3DO cell line. We found that 24 h of NAC pre-treatment can shift cellular death from necrotic to apoptotic and determine an early expression of FasL in a 3DO cell line treated with H(2)O(2).  相似文献   

20.
The antioxidant potential of N-acetylcysteine amide (NACA), also known as AD4, was assessed by employing different in vitro assays. These included reducing power, free radical scavenging capacities, peroxidation inhibiting activity through linoleic acid emulsion system and metal chelating capacity, as compared to NAC and three widely used antioxidants, α-tocopherol, ascorbic acid and butylated hydroxytoluene (BHT). Of the antioxidant properties that were investigated, NACA was shown to possess higher 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) radical scavenging ability and reducing power than NAC, at all the concentrations, whereas the scavenging ability of H2O2 differed with concentration. While NACA had greater H2O2 scavenging capacity at the highest concentration, NAC was better than NACA at lower concentrations. NAC and NACA had a 60% and 55% higher ability to prevent β-carotene bleaching, respectively, as compared to control. The chelating activity of NACA was more than 50% that of the metal chelating capacity of EDTA and four and nine times that of BHT and α-tocopherol, respectively. When compared to NACA and NAC; α-tocopherol had higher DPPH scavenging abilities and BHT and α-tocopherol had better β-carotene bleaching power. These findings provide evidence that the novel antioxidant, NACA, has indeed enhanced the antioxidant properties of NAC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号