首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
Reactive oxygen species (ROS) and oxidative stress are thought to play a central role in the etiology of cell dysfunction and tissue damage in sepsis. However, there is limited and controversial evidence from in vivo studies that ROS mediate cell signaling processes that elicit acute inflammatory responses during sepsis. Because NADPH oxidase is one of the main cellular sources of ROS, we investigated the role of this enzyme in lipopolysaccharide (LPS)-induced acute inflammation in vivo, utilizing mice deficient in the gp91phox or p47phox subunits of NADPH oxidase. Age-and body weight-matched C57BL/6J wild-type (WT) and gp91phox?/? and p47phox?/? mice were injected ip with 50 μg LPS or saline vehicle and sacrificed at various time points up to 24 h. We found that LPS-induced acute inflammatory responses in serum and tissues were not significantly diminished in gp91phox?/? and p47phox?/? mice compared to WT mice. Rather, genetic deficiency of NADPH oxidase was associated with enhanced gene expression of inflammatory mediators and increased neutrophil recruitment to lung and heart. Furthermore, no protection from LPS-induced septic death was observed in either knockout strain. Our findings suggest that NADPH oxidase-mediated ROS production and cellular redox signaling do not promote, but instead limit, LPS-induced acute inflammatory responses in vivo.  相似文献   

2.
3.
Loss of ovarian function, as occurs in menopause or after ovariectomy (OVX), is associated with insulin resistance. Adipose tissue inflammation is suggested to be a key component of obesity-induced insulin resistance in male rodents. However, little is known about the effect of OVX and diet on insulin resistance in association with immune homeostasis. Thus, we conducted this study to determine how high-fat diet (HFD) and OVX, alone or in combination, impacted adipose tissue inflammation and insulin resistance. Nine-week-old sham and OVX-treated C57Bl/6 mice were fed low-fat diet (LFD) or HFD (60%) up to 16 weeks. Glucose metabolism was assessed, and adipose tissue and spleen were characterized for tissue inflammation and immune cell populations. First, we found that HFD induced glucose intolerance in both OVX mice and, to a lesser extent, sham mice. OVX mice fed LFD showed no difference in glucose intolerance compared to sham mice. Additionally, OVX mice only when exposed to HFD displayed a proinflammatory profile in adipose tissue: increased macrophages together with dominant M1-like phenotype and also increased T cells, B cells and NK cells compared to those with intact ovarian function. Together, our findings indicate that loss of ovarian function coupled with an HFD intake promotes insulin resistance and adipose tissue inflammation by disturbing adipose tissue immune homeostasis. These findings have a clinical implication in the dietary guidance for menopausal women.  相似文献   

4.
Photobiomodulation therapy (PBMT) in the infrared spectrum exerts positive effects on glucose metabolism, but the use of PBMT at the red spectrum has not been assessed. Male Swiss albino mice were divided into low‐fat control and high‐fat diet (HFD) for 12 weeks and were treated with red (630 nm) PBMT or no treatment (Sham) during weeks 9 to 12. PBMT was delivered at 31.19 J/cm2, 60 J total dose per day for 20 days. In HFD‐fed mice, PBMT improved glucose tolerance, insulin resistance and fasting hyperinsulinemia. PBMT also reduced adiposity and inflammatory infiltrate in adipose tissue. Phosphorylation of Akt in epididymal adipose tissue and rectus femoralis muscle was improved by PBMT. In epididymal fat PBMT reversed the reduced phosphorylation of AS160 and the reduced Glut4 content. In addition, PBMT reversed the alterations caused by HFD in rectus femoralis muscle on proteins involved in mitochondrial dynamics and β‐oxidation. In conclusion, PBMT at red spectrum improved insulin resistance and glucose metabolism in HFD‐fed mice.   相似文献   

5.

Background

Recent understanding that insulin resistance is an inflammatory condition necessitates searching for genes that regulate inflammation in insulin sensitive tissues. 12/15-lipoxygenase (12/15LO) regulates the expression of proinflammatory cytokines and chemokines and is implicated in the early development of diet-induced atherosclerosis. Thus, we tested the hypothesis that 12/15LO is involved in the onset of high fat diet (HFD)-induced insulin resistance.

Methodology/Principal Findings

Cells over-expressing 12/15LO secreted two potent chemokines, MCP-1 and osteopontin, implicated in the development of insulin resistance. We assessed adipose tissue inflammation and whole body insulin resistance in wild type (WT) and 12/15LO knockout (KO) mice after 2–4 weeks on HFD. In adipose tissue from WT mice, HFD resulted in recruitment of CD11b+, F4/80+ macrophages and elevated protein levels of the inflammatory markers IL-1β, IL-6, IL-10, IL-12, IFNγ, Cxcl1 and TNFα. Remarkably, adipose tissue from HFD-fed 12/15LO KO mice was not infiltrated by macrophages and did not display any increase in the inflammatory markers compared to adipose tissue from normal chow-fed mice. WT mice developed severe whole body (hepatic and skeletal muscle) insulin resistance after HFD, as measured by hyperinsulinemic euglycemic clamp. In contrast, 12/15LO KO mice exhibited no HFD-induced change in insulin-stimulated glucose disposal rate or hepatic glucose output during clamp studies. Insulin-stimulated Akt phosphorylation in muscle tissue from HFD-fed mice was significantly greater in 12/15LO KO mice than in WT mice.

Conclusions

These results demonstrate that 12/15LO mediates early stages of adipose tissue inflammation and whole body insulin resistance induced by high fat feeding.  相似文献   

6.

Background

We and others have demonstrated previously that ghrelin receptor (GhrR) knock out (KO) mice fed a high fat diet (HFD) have increased insulin sensitivity and metabolic flexibility relative to WT littermates. A striking feature of the HFD-fed GhrR KO mouse is the dramatic decrease in hepatic steatosis. To characterize further the underlying mechanisms of glucose homeostasis in GhrR KO mice, we conducted both hyperglycemic (HG) and hyperinsulinemic-euglycemic (HI-E) clamps. Additionally, we investigated tissue glucose uptake and specifically examined liver insulin sensitivity.

Results

Consistent with glucose tolerance-test data, in HG clamp experiments, GhrR KO mice showed a reduction in glucose-stimulated insulin release relative to WT littermates. Nevertheless, a robust 1st phase insulin secretion was still achieved, indicating that a healthy β-cell response is maintained. Additionally, GhrR KO mice demonstrated both a significantly increased glucose infusion rate and significantly reduced insulin requirement for maintenance of the HG clamp, consistent with their relative insulin sensitivity. In HI-E clamps, both LFD-fed and HFD-fed GhrR KO mice showed higher peripheral insulin sensitivity relative to WT littermates as indicated by a significant increase in insulin-stimulated glucose disposal (Rd), and decreased hepatic glucose production (HGP). HFD-fed GhrR KO mice showed a marked increase in peripheral tissue glucose uptake in a variety of tissues, including skeletal muscle, brown adipose tissue and white adipose tissue. GhrR KO mice fed a HFD also showed a modest, but significant decrease in conversion of pyruvate to glucose, as would be anticipated if these mice displayed increased liver insulin sensitivity. Additionally, the levels of UCP2 and UCP1 were reduced in the liver and BAT, respectively, in GhrR KO mice relative to WT mice.

Conclusions

These results indicate that improved glucose homeostasis of GhrR KO mice is characterized by robust improvements of glucose disposal in both normal and metabolically challenged states, relative to WT controls. GhrR KO mice have an intact 1st phase insulin response but require significantly less insulin for glucose disposal. Our experiments reveal that the insulin sensitivity of GhrR KO mice is due to both BW independent and dependent factors. We also provide several lines of evidence that a key feature of the GhrR KO mouse is maintenance of hepatic insulin sensitivity during metabolic challenge.  相似文献   

7.
Folic acid (FA) supplementation may protect from obesity and insulin resistance, the effects and mechanism of FA on chronic high-fat-diet-induced obesity-related metabolic disorders are not well elucidated. We adopted a genome-wide approach to directly examine whether FA supplementation affects the DNA methylation profile of mouse adipose tissue and identify the functional consequences of these changes. Mice were fed a high-fat diet (HFD), normal diet (ND) or an HFD supplemented with folic acid (20 μg/ml in drinking water) for 10 weeks, epididymal fat was harvested, and genome-wide DNA methylation analyses were performed using methylated DNA immunoprecipitation sequencing (MeDIP-seq). Mice exposed to the HFD expanded their adipose mass, which was accompanied by a significant increase in circulating glucose and insulin levels. FA supplementation reduced the fat mass and serum glucose levels and improved insulin resistance in HFD-fed mice. MeDIP-seq revealed distribution of differentially methylated regions (DMRs) throughout the adipocyte genome, with more hypermethylated regions in HFD mice. Methylome profiling identified DMRs associated with 3787 annotated genes from HFD mice in response to FA supplementation. Pathway analyses showed novel DNA methylation changes in adipose genes associated with insulin secretion, pancreatic secretion and type 2 diabetes. The differential DNA methylation corresponded to changes in the adipose tissue gene expression of Adcy3 and Rapgef4 in mice exposed to a diet containing FA. FA supplementation improved insulin resistance, decreased the fat mass, and induced DNA methylation and gene expression changes in genes associated with obesity and insulin secretion in obese mice fed a HFD.  相似文献   

8.
Adipose tissue inflammation is considered an important contributor to insulin resistance. Mitogen-activated protein kinase-activated protein kinase 2 (MK2) is a major downstream target of p38 MAPK and enhances inflammatory processes. In line with the role of MK2 as contributor to inflammation, MK2−/− mice are protected against inflammation in different disease models. Therefore, MK2 is considered an attractive therapeutic target for the treatment of chronic inflammatory diseases. This study tested the impact of MK2-deficiency on high-fat diet (HFD)-induced adipose tissue inflammation and insulin resistance. After feeding MK2−/− and WT control mice a HFD (60% energy from fat) for 24 weeks, body weight was not different between groups. Also, liver weight and the amount of abdominal fat remained unchanged. However, in MK2−/− mice plasma cholesterol levels were significantly increased. Surprisingly, macrophage infiltration in adipose tissue was not altered. However, adipose tissue macrophages were more skewed to the inflammatory M1 phenotype in MK2−/− mice. This differerence in macrophage polarization did however not translate in significantly altered expression levels of Mcp-1, Tnfα and Il6. Glucose and insulin tolerance tests demonstrated that MK2−/− mice had a significantly reduced glucose tolerance and increased insulin resistance. Noteworthy, the expression of the insulin-responsive glucose transporter type 4 (GLUT4) in adipose tissue of MK2−/− mice was reduced by 55% (p<0.05) and 33% (p<0.05) on the mRNA and protein level, respectively, compared to WT mice. In conclusion, HFD-fed MK2−/− display decreased glucose tolerance and increased insulin resistance compared to WT controls. Decreased adipose tissue expression of GLUT4 might contribute to this phenotype. The data obtained in this study indicate that clinical use of MK2 inhibitors has to be evaluated with caution, taking potential metabolic adverse effects into account.  相似文献   

9.
Development of brown and beige/brite adipocytes increases thermogenesis and helps to reduce obesity and metabolic syndrome. Our previous study suggests that dietary raspberry can ameliorate metabolic syndromes in diet-induced obese mice. Here, we further evaluated the effects of raspberry on energy expenditure and adaptive thermogenesis and determined whether these effects were mediated by AMP-activated protein kinase (AMPK). Mice deficient in the catalytic subunit of AMPKα1 and wild-type (WT) mice were fed a high-fat diet (HFD) or HFD supplemented with 5% raspberry (RAS) for 10 weeks. The thermogenic program and related regulatory factors in adipose tissue were assessed. RAS improved the insulin sensitivity and reduced fat mass in WT mice but not in AMPKα1-/- mice. In the absence of AMPKα1, RAS failed to increase oxygen consumption and heat production. Consistent with this, the thermogenic gene expression in brown adipose tissue and brown-like adipocyte formation in subcutaneous adipose tissue were not induced by RAS in AMPKα1-/- mice. In conclusion, AMPKα1 is indispensable for the effects of RAS on brown and beige/brite adipocyte development, and prevention of obesity and metabolic dysfunction.  相似文献   

10.
Monoacylglycerol lipase (MGL) is a ubiquitously expressed enzyme that catalyzes the hydrolysis of monoacylglycerols (MGs) to yield FFAs and glycerol. MGL contributes to energy homeostasis through the mobilization of fat stores and also via the degradation of the endocannabinoid 2-arachidonoyl glycerol. To further examine the role of MG metabolism in energy homeostasis, MGL−/− mice were fed either a 10% (kilocalories) low-fat diet (LFD) or a 45% (kilocalories) high-fat diet (HFD) for 12 weeks. Profound increases of MG species in the MGL−/− mice compared with WT control mice were found. Weight gain over the 12 weeks was blunted in both diet groups. MGL−/− mice were leaner than WT mice at both baseline and after 12 weeks of LFD feeding. Circulating lipids were decreased in HFD-fed MGL−/− mice, as were the levels of several plasma peptides involved in glucose homeostasis and energy balance. Interestingly, MGL−/− mice had markedly reduced intestinal TG secretion following an oral fat challenge, suggesting delayed lipid absorption. Overall, the results indicate that global MGL deletion leads to systemic changes that produce a leaner phenotype and an improved serum metabolic profile.  相似文献   

11.
Alterations in the immune cell profile and the induction of inflammation within adipose tissue are a hallmark of obesity in mice and humans. Dual-specificity phosphatase 2 (DUSP2) is widely expressed within the immune system and plays a key role promoting immune and inflammatory responses dependent on mitogen-activated protein kinase (MAPK) activity. We hypothesised that the absence of DUSP2 would protect mice against obesity-associated inflammation and insulin resistance. Accordingly, male and female littermate mice that are either wild-type (wt) or homozygous for a germ-line null mutation of the dusp2 gene (dusp2−/−) were fed either a standard chow diet (SCD) or high fat diet (HFD) for 12 weeks prior to metabolic phenotyping. Compared with mice fed the SCD, all mice consuming the HFD became obese, developed glucose intolerance and insulin resistance, and displayed increased macrophage recruitment and markers of inflammation in epididymal white adipose tissue. The absence of DUSP2, however, had no effect on the development of obesity or adipose tissue inflammation. Whole body insulin sensitivity in male mice was unaffected by an absence of DUSP2 in response to either the SCD or HFD; however, HFD-induced insulin resistance was slightly, but significantly, reduced in female dusp2−/− mice. In conclusion, DUSP2 plays no role in regulating obesity-associated inflammation and only a minor role in controlling insulin sensitivity following HFD in female, but not male, mice. These data indicate that rather than DUSP2 being a pan regulator of MAPK dependent immune cell mediated inflammation, it appears to differentially regulate inflammatory responses that have a MAPK component.  相似文献   

12.

Background

Adipose tissue inflammation fuels the metabolic syndrome. We recently reported that CD40L – an established marker and mediator of cardiovascular disease – induces inflammatory cytokine production in adipose cells in vitro. Here, we tested the hypothesis that CD40L deficiency modulates adipose tissue inflammation in vivo.

Methodology/Principal Findings

WT or CD40L−/− mice consumed a high fat diet (HFD) for 20 weeks. Inflammatory cell recruitment was impaired in mice lacking CD40L as shown by a decrease of adipose tissue macrophages, B-cells, and an increase in protective T-regulatory cells. Mechanistically, CD40L-deficient mice expressed significantly lower levels of the pro-inflammatory chemokine MCP-1 both, locally in adipose tissue and systemically in plasma. Moreover, levels of pro-inflammatory IgG-antibodies against oxidized lipids were reduced in CD40L−/− mice. Also, circulating low-density lipoproteins and insulin levels were lower in CD40L−/− mice. However, CD40L−/− mice consuming HFD were not protected from the onset of diet-induced obesity (DIO), insulin resistance, and hepatic steatosis, suggesting that CD40L selectively limits the inflammatory features of diet-induced obesity rather than its metabolic phenotype. Interestingly, CD40L−/− mice consuming a low fat diet (LFD) showed both, a favorable inflammatory and metabolic phenotype characterized by diminished weight gain, improved insulin tolerance, and attenuated plasma adipokine levels.

Conclusion

We present the novel finding that CD40L deficiency limits adipose tissue inflammation in vivo. These findings identify CD40L as a potential mediator at the interface of cardiovascular and metabolic disease.  相似文献   

13.
Bioactive components from bitter melon (BM) have been reported to improve glucose metabolism in vivo, but definitive studies on efficacy and mechanism of action are lacking. We sought to investigate the effects of BM bioactives on body weight, muscle lipid content and insulin signaling in mice fed a high-fat diet and on insulin signaling in L6 myotubes. Male C57BL/6J mice were randomly divided into low-fat diet control (LFD), high-fat diet (HFD) and HFD plus BM (BM) groups. Body weight, body composition, plasma glucose, leptin, insulin and muscle lipid profile were determined over 12 weeks. Insulin signaling was determined in the mouse muscle taken at end of study and in L6 myotubes exposed to the extract. Body weight, plasma glucose, insulin, leptin levels and HOMA-IR values were significantly lower in the BM-fed HFD group when compared to the HFD group. BM supplementation significantly increased IRS-2, IR β, PI 3K and GLUT4 protein abundance in skeletal muscle, as well as phosphorylation of IRS-1, Akt1 and Akt2 when compared with HFD (P<.05 and P<.01). BM also significantly reduced muscle lipid content in the HFD mice. BM extract greatly increased glucose uptake and enhanced insulin signaling in L6 myotubes. This study shows that BM bioactives reduced body weight, improved glucose metabolism and enhanced skeletal muscle insulin signaling. A contributing mechanism to the enhanced insulin signaling may be associated with the reduction in skeletal muscle lipid content. Nutritional supplementation with this extract, if validated for human studies, may offer an adjunctive therapy for diabetes.  相似文献   

14.

Background

Clinical studies suggest that short-term insulin treatment in new-onset type 2 diabetes (T2DM) can promote prolonged glycemic control. The purpose of this study was to establish an animal model to examine such a “legacy” effect of early insulin therapy (EIT) in long-term glycemic control in new-onset T2DM. The objective of the study was to investigate the role of diet following onset of diabetes in the favorable outcomes of EIT.

Methodology

As such, C57BL6/J male mice were fed a high-fat diet (HFD) for 21 weeks to induce diabetes and then received 4 weeks of daily insulin glargine or sham subcutaneous injections. Subsequently, mice were either kept on the HFD or switched to a low-fat diet (LFD) for 4 additional weeks.

Principal Findings

Mice fed a HFD gained significant fat mass and displayed increased leptin levels, increasing insulin resistance (poor HOMA-IR) and worse glucose tolerance test (GTT) performance in comparison to mice fed a LFD, as expected. Insulin-treated diabetic mice but maintained on the HFD demonstrated even greater weight gain and insulin resistance compared to sham-treated mice. However, insulin-treated mice switched to the LFD exhibited a better HOMA-IR compared to those mice left on a HFD. Further, between the insulin-treated and sham control mice, in spite of similar HOMA-IR values, the insulin-treated mice switched to a LFD following insulin therapy did demonstrate significantly better HOMA-B% values than sham control and insulin-treated HFD mice.

Conclusion/Interpretation

Early insulin treatment in HFD-induced T2DM in C57BL6/J mice was only beneficial in animals that were switched to a LFD after insulin treatment which may explain why a similar legacy effect in humans is achieved clinically in only a portion of cases studied, emphasizing a vital role for diet adherence in diabetes control.  相似文献   

15.
16.

Background

Insulin resistance is manifested in muscle, adipose tissue, and liver and is associated with adipose tissue inflammation. The cellular components and mechanisms that regulate the onset of diet-induced insulin resistance are not clearly defined.

Methodology and Principal Findings

We initially observed osteopontin (OPN) mRNA over-expression in adipose tissue of obese, insulin resistant humans and rats which was normalized by thiazolidinedione (TZD) treatment in both species. OPN regulates inflammation and is implicated in pathogenic maladies resulting from chronic obesity. Thus, we tested the hypothesis that OPN is involved in the early development of insulin resistance using a 2–4 week high fat diet (HFD) model. OPN KO mice fed HFD for 2 weeks were completely protected from the severe skeletal muscle, liver and adipose tissue insulin resistance that developed in wild type (WT) controls, as determined by hyperinsulinemic euglycemic clamp and acute insulin-stimulation studies. Although two-week HFD did not alter body weight or plasma free fatty acids and cytokines in either strain, HFD-induced hyperleptinemia, increased adipose tissue inflammation (macrophages and cytokines), and adipocyte hypertrophy were significant in WT mice and blunted or absent in OPN KO mice. Adipose tissue OPN protein isoform expression was significantly altered in 2- and 4-week HFD-fed WT mice but total OPN protein was unchanged. OPN KO bone marrow stromal cells were more osteogenic and less adipogenic than WT cells in vitro. Interestingly, the two differentiation pathways were inversely affected by HFD in WT cells in vitro.

Conclusions

The OPN KO phenotypes we report reflect protection from insulin resistance that is associated with changes in adipocyte biology and adipose tissue inflammatory status. OPN is a key component in the development of HFD-induced insulin resistance.  相似文献   

17.
Inflammation and metabolic disorder are common pathophysiological conditions, which play a vital role in the development of obesity and type 2 diabetes. The purpose of this study was to explore the effects of caspase recruitment domain (CARD) 9 in the high fat diet (HFD)‐treated mice and attempt to find a molecular therapeutic target for obesity development and treatment. Sixteen male CARD9?/? and corresponding male WT mice were fed with normal diet or high fat diet, respectively, for 12 weeks. Glucose tolerance, insulin resistance, oxygen consumption and heat production of the mice were detected. The CARD9/MAPK pathway‐related gene and protein were determined in insulin‐responsive organs using Western blotting and quantitative PCR. The results showed that HFD‐induced insulin resistance and impairment of glucose tolerance were more severe in WT mice than that in the CARD9?/? mice. CARD9 absence significantly modified O2 consumption, CO2 production and heat production. CARD9?/? mice displayed the lower expression of p38 MAPK, JNK and ERK when compared to the WT mice in both HFD‐ and ND‐treated groups. HFD induced the increase of p38 MAPK, JNK and ERK in WT mice but not in the CARD9?/? mice. The results indicated that CARD9 absence could be a vital protective factor in diet‐induced obesity via the CARD9/MAPK pathway, which may provide new insights into the development of gene knockout to improving diet‐induced obesity and metabolism disorder.  相似文献   

18.
Zinc plays a role in alleviating oxidative stress. However, the related mechanisms remain to be further elucidated. The present study was conducted to investigate whether the recovery of oxidative stress in high-fat-diet (HFD)-pretreated mice was affected by zinc. Male mice received either an HFD or a low-fat-diet (LFD) for 8 weeks. Then, the mice fed with HFD and LFD were both assigned to either a control diet (30 mg zinc, ZD) or a no-added zinc diet (NZD) for an additional 4 weeks. The results showed that after feeding with NZD for 4 weeks, the HFD-pretreated mice had the highest plasma glucose and insulin concentrations, while had the lowest CuZn-SOD and glutathione concentrations. Moreover, after feeding with NZD for 4 weeks, the HFD-pretreated mice had the highest hepatic ROS and homocysteine concentrations, while had the lowest glutathione and methionine concentrations. Furthermore, the HFD-pretreated mice fed with NZD for 4 weeks had the lowest gene and protein expression of betaine homocysteine-S-methyltransferase (BHMT), cystathionine β-synthase, and Sp1. The results suggested that zinc was critical for oxidative stress alleviation and homocysteine clearance in HFD-pretreated mice. It was further elucidated that improved Sp1 and BHMT expression are involved in the effects of zinc on oxidative stress.  相似文献   

19.
Monocyte chemotactic protein-1 (MCP-1) is an adipokine with demonstrated carcinogenic potential. However, there is a lack of evidence whether adipose-produced MCP-1 contributes to breast cancer. We tested the hypothesis that adipose-produced MCP-1 contributes to mammary tumorigenesis in this study. In a breast cancer model of mouse mammary tumor virus-polyomavirus middle T-antigen (MMTV-PyMT), mice with or without adipose MCP-1 knockout [designated as Mcp-1−/− or wild-type (WT)] were fed the standard AIN93G diet (16% of energy from soybean oil) or a high-fat diet (HFD, 45% of energy from soybean oil). Adipose MCP-1 knockout reduced Mcp-1 expression in adipose tissue and concentrations of MCP-1 in plasma. Mcp-1−/− mice fed the HFD had less body fat than their WT counterparts. Adipose MCP-1 knockout attenuated HFD-enhanced mammary tumorigenesis, evidenced by lower mammary tumor volume. Furthermore, Mcp-1−/− mice, regardless of diet, had a longer tumor latency and less tumor weight than WT mice. When fed the HFD, Mcp-1−/− mice, compared to WT mice, exhibited lower concentrations of insulin, leptin, resistin, vascular endothelial growth factor and hepatic growth factor in plasma. In summary, adipose MCP-1 deficiency attenuated HFD-enhanced MMTV-PyMT mammary tumorigenesis. This attenuation can be attributed to less body adiposity, improvement in insulin sensitivity and down-regulation in protumorigenic inflammation cytokines and angiogenic factors in Mcp-1−/− mice. It concludes that adipose-produced MCP-1 contributes to mammary tumorigenesis in the MMTV-PyMT mouse model.  相似文献   

20.
Consumption of a high-fat diet (HFD) is associated with white adipose tissue (WAT) inflammation, which contributes to key components of the metabolic syndrome, including insulin resistance (IR) and hepatic steatosis (HS). To determine the differential effects of exercise training (EX), low-fat diet (LFD), and their combination on WAT inflammation, Balb/cByJ male mice (n = 34) were fed an HFD for 12 wks before they were randomized into one of four intervention groups: HFD-EX, LFD-EX, HFD-sedentary (SED), or LFD-SED. EX mice performed 12 wks of exercise training on a motorized treadmill (1 h/d, 5 d/wk, 12 m/min, 5% grade, 65% VO2 max), while SED mice remained sedentary in their home cages. WAT gene expression of adipokines was assessed using rt-PCR. IR was measured using HOMA-IR, and HS via hepatic triglyceride content. EX significantly reduced (53%) WAT gene expression of MCP-1, and LFD significantly reduced (50%) WAT gene expression of the macrophage specific marker, F4/80 as well as the adipocytokine IL-1ra (25%). EX independently improved IR, while both EX and LFD improved HS. These findings suggest that both diet and exercise have unique beneficial effects on WAT inflammatory markers and the mechanism by which each treatment improves metabolic complications associated with chronic consumption of an HFD may be different.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号