首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为探索刺楸对受污染土壤重金属的富集和修复效应, 以南京栖霞山的乡土树种刺楸及其根际周边土壤为研究对象, 截取其根基部年轮盘及根际土壤样本, 采用ICP-AES法测定年轮及土壤样本中重金属(Cu、Cd、Cr、Mn、Ni、Pb、Zn)元素含量。结果表明: 栖霞山样地中的土壤受Mn、Pb和Zn污染最为严重, 存在Cu、Cd、Mn、Pb、Zn元素的高度复合污染, Cd、Cr、Cu、Ni、Zn在土壤和年轮中存在相关性, Mn和Pb则没有表现出明显的相关性; 刺楸修复受Cd、Mn、Pb、Zn污染的土壤效果并不显著, 更适用于Cr、Cu、Ni污染的土壤修复; 鉴于Cu元素含量变化特征, 刺楸也可以作为反映当地污染历史的记录载体; 刺楸年轮中的重金属元素之间存在交互作用, 其中Cd与Zn元素含量高度相关(r=0.984, p<0.01), 在刺楸年轮吸收重金属元素的过程中, Cu与Cd、Cr、Mn、Zn元素具有协同作用, Mn元素对其他元素有一定的拮抗作用。  相似文献   

2.
The objective of this study is to assess the spatial distribution and uncertainty of the potential ecological risks of heavy metals in soil using sequential Gaussian simulation (SGS) and the Hakanson potential ecological risk index (PERI). We collected 130 soil samples in an area of 150 km2 in the High-Tech Park of Wuhan, China, and measured the concentrations of five heavy metals in soil (i.e., Cd, Cr, Cu, Pb, and Zn). We then simulated the spatial distribution of each heavy metal using SGS, and calculated Hakanson PERIs for individual metals and multiple metals based on the simulated realizations. The spatial uncertainty of the Cd PERI and its occurrence probabilities in different risk grades were further assessed. Results show that the potential ecological risks of Cr, Cu, Pb, and Zn are relatively low in the study area, but Cd indeed reaches a serious level that deserves much attention and essential treatment. The total PERI of multiple heavy metals indicates a moderate grade in most of the study area. In general, combining SGS and the Hakanson PERI appears to be an effective method for evaluating the potential ecological risks of heavy metals in soil and the priority areas for remediation.  相似文献   

3.
The contamination of coal-mine soil by heavy metals is a widespread problem. This study analyzes the heavy metals (Cu, Zn, Ni, Pb, Cr, Cd, and Hg) found in 33 surface soil samples from Xinzhuangzi, China restored coal-mining land used as cultivated land. The results show that the selected elements were cumulative, especially for Cd. An index of geo-accumulation indicates that the soil was practically uncontaminated by Cu, Zn, Ni, and Hg, uncontaminated to moderately contaminated by Pb and Cr, and moderately to heavily contaminated by Cd. Based on the U.S. Environmental Protection Agency's ecological soil screening levels (Eco-SSLs) for Cu, Zn, Ni, Pb, and Cd and the Dutch Target and Intervention Values for Cr and Hg, the plants and soil invertebrates were not likely greatly influenced by the selected metals. Although the Cd concentration was found to have no significant effect on plants and soil invertebrates, it is the only metal with a concentration significantly above that required by Chinese standards (HJ/T 332–2006) for edible agricultural products, indicating that Cd is the predominant factor that determines the use of the reclaimed coal-mining area for farmland. Thus, employing the reclaimed land as farmland may not be a good option.  相似文献   

4.
Water and muscle tissue samples from two morphotypes of the African large barb Labeobarbus intermedius collected from three sites in Lake Hawassa in 2012–2013 were analysed for eight heavy metals, including Cd, Co, Cr, Cu, Mn, Ni, Pb and Zn. Five metals (Cr, Cu, Mn, Ni and Zn) were detected in fish muscle samples, whereas only Cr, Cu and Ni were detected in water samples. Of the five metals detected in the muscle samples, Cu and Zn were present in higher concentrations in the golden morphotype, whereas Cr, Mn and Ni were found in higher concentrations in the silver morphotype. Bioaccumulation factor (BAF) values indicated that Cr, Cu and Ni have a tendency to accumulate in fish muscle in amounts exceeding those in water. In both morphotypes the highest concentrations of Zn and Mn were detected at the Hospital site, whereas the concentrations of Cr, Cu and Ni were highest at the Tikur Wuha site. Chromium, Cu and Ni concentrations recorded in fish muscle at all sampling sites exceeded the safe limits recommended by FAO/WHO and UNESCO, suggesting that water and fish from Lake Hawassa are contaminated with heavy metals originating from factories, a hospital and agricultural activities in proximity to the lake.  相似文献   

5.
为了了解不同土壤重金属浓度梯度及污染梯度下香樟不同器官的富集特征,测定了香樟树叶、树枝、树干和根际土壤中6种重金属元素(Cu、Zn、Pb、Cr、Mn、Ni)的含量.结果表明: 香樟地上部分重金属含量因器官、元素种类、根际土壤重金属浓度的不同而存在差异.香樟树叶和树枝重金属含量的大小顺序均为:Mn>Zn>Cu>Cr>Pb>Ni,树干重金属含量为:Mn>Zn>Cr>Pb>Ni>Cu.树叶对Mn的富集系数较高,为2.409;树干对Ni的富集系数较高,分别为树叶、树枝的8.6和17倍,且在不同土壤重金属浓度梯度下,香樟树干对Cu、Zn、Pb、Cr、Ni的富集系数均明显高于其他器官.香樟地上部分器官对Cu、Zn、Pb、Cr、Mn、Ni 6种重金属元素的综合富集能力大小顺序为:树叶>树干>树枝.随着土壤重金属污染等级的增加,香樟地上部分各器官的富集系数均逐渐降低.研究区域平均胸径为22 cm的单株香樟对重金属元素富集效能的大小顺序为:树叶>树干>树枝,其中树干对Cu、Zn、Pb、Cr、Ni的积累量均显著高于树叶和树枝.表明香樟对6种重金属元素均有一定的富集能力,并且树干对Pb和Ni的富集效能明显,分别占地上部分总积累量的82.7%和91.9%,能很好地富集并稳固土壤中的Pb和Ni,可作为修复治理土壤重金属污染的备选树种.  相似文献   

6.
In this study, the content characteristics, comprehensive pollution assessment, and morphological distribution characteristics of heavy metals (Mn, Cd, Cr, Pb, Ni, Zn, and Cu) were researched based on the processes of field investigation, sample collection, and experimental analysis. Results showed that the mean concentrations of Mn, Pb, Cr, Cu, Cd, Zn, and Ni in surface soils were 522.77, 22.56, 55.10, 25.41, 0.25, 57.02, and 48.47 mg kg?1, respectively. The surface soil from Sunan mining area was contaminated by Cu, Cd, and Ni in different degrees, and high CV values of Cd, Zn, Pb, and Ni were influenced by local human activities possibly. The evaluation results suggested that the mean Igeo values were in the sequence of Cd (0.657) > Ni (0.052) > Cu (?0.293) > Mn (?0.626) > Zn (?0.761) > Cr (?0.884) > Pb (?0.899). Besides, Cd was the most significant potential risk factor among all elements. Nevertheless, the Cd of bioavailable speciations with higher proportion had stronger migration and toxicity, and was more easier to be absorbed and enriched than other elements by some crops (e.g., vegetables, rice), and being at a relatively higher potential ecological risk in soil.  相似文献   

7.
A total of 59 topsoil and corresponding maize plants were collected from this study area. The spatial distribution, correlation analysis, and multiple linear regression of heavy metals were researched detailedly in this article. The results showed that distribution characteristics of heavy metals (Pb, Cd, and Ni) in different parts of maize plants (immature stage) accumulated mostly in stems, with Pb mainly accumulated in roots (mature period), and Cd and Ni mostly in leaves. Except for the southeastern local region of this mining area, Mn and Cu possessed roughly similar spatial distribution characteristics. The results of partial correlation analysis indicated that Cu, Cd in the roots of the tested maize plants and Ni in soil may have antagonistic effects, Cu (soil)–Cu (stem) and Ni (soil)–Pb (stem) had a certain promoting effect. Besides, Cu, Pb, and Ni in soil promoted the absorption of Cu, Pb, and Ni in the leaves, whereas Cr and Pb in soil can promote the enrichment of Mn in maize grains. Our findings suggested that the concentrations of heavy metals in maize organs could be predicted accurately using the established models.  相似文献   

8.
In this study, paddy soil and rice grain samples were collected from the vicinity around the Xinqiao mine in Tongling, China to test for the presence of heavy metals (Cd, Ni, Cr, Cu, Zn, and Pb) in soil-rice system. Results indicated that the soil samples were primarily contaminated with Cd and Cu and followed with Zn and Pb. In rice grains, Cd, Cu, and Cr concentrations exceeded recommended guidelines. However, the regional distribution of heavy metals in rice grains and soil was inconsistent. The bioaccumulation factor of heavy metals in rice grains decreased in the order of Cd > Zn > Cu > Ni > Cr > Pb. The BAF was significantly positively correlated with TCLP-extractable metals and significantly negatively correlated with soil pH. However, the relationship between soil organic matter and the BAF in rice grains was complex. Health risk assessment through rice intake showed that hazard quotients of Cu and Cd were greater than 1 and could pose a considerable non-cancer health risk to adults and children; meanwhile, Cr, Ni, and Cd could pose an unacceptable cancer risk. The results indicated that the government must take measures to reduce heavy metal contents in paddy soil and rice.  相似文献   

9.
Abstract

The distribution, contamination status, and ecological risks of heavy metals in Tahaddart estuary were investigated. 24 surface sediment samples and two cores were collected and analyzed for major (Al and Fe), heavy metals (As, Cd, Cr, Cu, Ni, Pb, and Zn), and grain size composition. The heavy metals assessment was carried out using different environmental indices. The results indicated that the spatial distribution patterns of Al, Fe, and Zn were mainly determined by the distribution of the finer grained fraction (<63?μm) in the sediment. In contrast, As, Cd, Cr, Cu, Ni, and Pb concentrations were controlled by anthropogenic activities (vehicular traffic from Highway Bridge and thermal power plant). The distribution of heavy metals in sediment cores showed an upward enrichment in heavy metals with high concentration found in the uppermost may related to the increasing in human activities. The pollution indexes confirmed that the Tahaddart estuary sediment was considerably to high contaminated by heavy metals near to different anthropogenic inputs. Similarly, the potential ecological risk index and the biological risk index present 21% probability of toxicity posing potential risk to the aquatic organisms. These results provide basic information that can be used to protect and improve the quality of this ecosystem.  相似文献   

10.
Plant and Soil - Many sites inside a protected area in Apulia region (Italy) have been contaminated with heavy metals (Cd, Cr, Cu, Ni, Pb, Zn) because an inadequate disposal of a variety of wastes...  相似文献   

11.
Abstract

Heavy metal pollution in the atmosphere is a major environmental problem, which has important impacts on ecosystems and human health. In this study, the atmospheric deposition of cadmium (Cd), chromium (Cr), copper (Cu), nickel (Ni), lead (Pb), vanadium (V), and zinc (Zn) in Suqian, China, was investigated by using the moss Haplocladium microphyllum as a bioindicator. The survey was carried out during the summer of 2017 at 40 homogenously distributed sampling sites. Cr, Cu, Ni, Pb, V, and Zn were analyzed by inductively coupled plasma atomic emission spectrometry, and Cd was analyzed by inductively coupled plasma mass spectrometry. Wide variations in heavy metals (Cd, Pb, and Zn) indicated that the concentrations of elements are influenced by local emission sources. Spatial distribution maps of the elements were constructed using geographic information system technology. The pollution load index showed that the study area was moderately polluted to unpolluted. Significant positive correlations (p?<?.01) and weak positive correlations (p?<?.05) were identified among some of the elements, indicating that they originated from common sources. A principal component analysis classified the heavy metals into natural and anthropogenic sources, and identified four primary sources: nature soil dust, industry activities, traffic emission, and agricultural activities.  相似文献   

12.
贵州兴仁煤矿区农田土壤重金属化学形态及风险评估   总被引:2,自引:0,他引:2  
为了解煤矿区周边农田土壤重金属污染状况,采集了贵州省兴仁县某典型煤矿区农田土壤样品64份,测定了土样中重金属(As、Cr、Pb、Zn、Cd、Hg、Cu、Ni)总量及各形态含量,采用单因子指数法、潜在生态风险指数法(Hkanson法)和风险评估编码法(RAC)对研究区主要土壤利用类型(水稻土、薏米地、植烟土和菜园土)中重金属进行潜在生态风险评估和环境风险评价.结果表明: 不同利用类型土壤中重金属含量除Zn外,其他元素均明显超过贵州省背景值.单因子指数法评价结果表明,As、Pb、Hg和Cu污染较为严重,均属重度污染.形态分析表明,土壤中重金属形态构成差异明显,酸可提取态As、酸可提取态Cd所占比例较高;Cr、Zn、Cu、Ni主要以残渣态为主;Pb主要以可还原态和残渣态为主;而Hg的酸可提取态、可还原态、可氧化态均占有相当比例,三者之和大于55%.重金属可利用度大小顺序为:As(63.6%)>Hg(57.3%)>Cd(56.4%)>Pb(52.5%)>Cu(45.7%)>Zn(32.8%)>Ni(26.2%)>Cr(13.2%).潜在生态风险指数表明,各类型土壤潜在生态风险(RI)〖JP2〗为:菜园土(505.19)>薏米地(486.06)>植烟土(475.33)>水稻土(446.86),均处于较高风险.风险评估编码法结果显示,As在水稻土、薏米地及植烟土中均处于高风险,在菜园土中处于中等风险;Cd、Hg均处于中等风险,Cr、Pb、Zn、Cu和Ni均处于低风险.因此,对该区域农田土壤进行管控时应重点考虑As、Cd和Hg污染.  相似文献   

13.
Kattedan is an industrial area near Hyderabad, Andhra Pradesh, India, contaminated with high concentrations of metals attributed to industrial sources (battery manufacturing, metal plating, textile and pharmaceuticals production and others). Twelve different locations in the Kattedan industrial area were assessed for concentrations of metals (Zn, Cr, Cu, Ni, Co, Pb, Hg, Cd, and As) in soils, waters, and vegetation. Application of sequential extraction technique for the soils revealed relatively high percentages of Zn, Cu, and Cr associated with mobile fractions, and correspondingly high concentrations of Zn, Cr, Cu, and Pb in forage grass samples and a high degree of bioavailability to humans. Human exposure assessment revealed high concentrations of Pb, Zn, and Cr in blood and urine samples from the residents of the study area showing a direct pathway and a potential for toxicological hazard due to heavy metal pollution.  相似文献   

14.
成都平原北部水稻土重金属含量状况及其潜在生态风险评价   总被引:13,自引:0,他引:13  
秦鱼生  喻华  冯文强  王正银  涂仕华 《生态学报》2013,33(19):6335-6344
为了解成都平原水稻土重金属含量状况和潜在的生态风险,选取成都平原北部水稻土典型区域为研究对象,采集了158个表层土壤样品,分析了土壤中pH值和Cd、Cu、As、Hg、Pb、Cr、Ni 7种重金属元素含量,以20世纪80年代测定的成都平原土壤重金属元素背景值为评价标准,采用Hakanson潜在生态危害指数法对研究区域的重金属潜在生态风险进行了评价。结果表明:研究区域水稻土Cd、Hg、Ni、Cu、Pb、Cr和As平均含量分别为0.709、0.187、32.08、34.12、31.52、82.13 mg/kg和7.25 mg/kg;Cd、Ni、Cu和Hg 4种重金属超过《土壤环境质量标准》(GB15618-1995) Ⅱ级标准值样本比例分别为87.34%、8.23%、3.80%和3.80%,Cd含量超标严重。7种重金属元素变异系数幅度为18.35%-49.03%,由大到小依次为Cd、Hg、Cu、As、Ni、Cr、Pb。75.32%的样本达到中度或较强重金属潜在生态风险,区域整体表现为中度潜在生态风险(RI平均值为198.65),Cd和Hg为高生态风险元素,对潜在生态风险贡献率分别为62.27%和20.78%,As、Pb、Cu、Ni、Cr为低生态风险元素;风险概率图显示城区周边和绵远河沿线的潜在生态风险等级较高。因此,成都平原水稻土农业生产中应采取一定的措施防控农产品Cd和Hg污染。  相似文献   

15.
王波  毛任钊  曹健  王元仲  高云风  李冬梅 《生态学报》2006,26(12):4082-4090
随着工业和农业的快速发展,农田受到重金属污染的压力越来越大,其土壤环境质量的及时监测和掌握重金属在其空间的变异规律对农业生产具有十分重要的意义。利用地统计学和GIS技术对海河低平原区(肥乡县)农田土壤耕层(0—20Cm)8种重金属含量空间变异性进行了研究。结果表明:去除异常值后,8种重金属含量都符合正态分布,且其含量算术平均值未超过国家土壤环境质量二级标准。通过变异函数分析,Ph和Cr具有纯块金效应,Cu和Zn符合指数模型,Ni和Cd符合球状模型,地和As符合带基台值的线性模型。在该地区以2.0km为取样间距较大,以后调查时应该缩小间隔。Zn和Cd的空间变异性受人为因素影响较小,而Cu、Ni、Hg和As的空间变异性受人为因素影响较大,Ph和Cr在整个研究尺度上具有恒定的变异。Cu、Zn、Ni、Hg、As和Cd的变程差异较大,在2.5—13.7km之间。通过普通kriging法局部插值,Cu、Zn、Ni和As含量由西南部向东北部含量逐步升高,但是Hg却表现出相反的分布趋势。这将为当地正在开展的优势农产品区域布局规划提供理论依据。  相似文献   

16.
为研究交通运输造成的重金属污染特征及潜在生态风险,选取兰州市某交通干道,利用原子吸收分光光度计检测了金属元素的含量,并利用单因子指数法和潜在生态风险指数法评价了土壤污染程度和潜在生态风险,进而分析了土壤重金属污染对绿化植物叶绿素和Ca含量的影响。结果表明: 城市交通导致土壤重金属Cr、Mn、Zn、Cu和Ni的含量均显著增高,且Cr、Pb和Cu达到了中度污染,潜在生态风险排序为Cu>Pb>Cr>Ni>Zn>Mn;槐树、月季、紫叶李和冬青卫矛对交通源重金属Pb、Mn、Zn、Ni等表现出不同程度的积聚作用;落叶植物槐树、月季和紫叶李叶片中叶绿素含量表现为路侧采样点>对照点,而常绿植物冬青卫矛和侧柏的叶绿素含量为对照点>路侧采样点,所有绿化植物叶片中Ca含量表现为路侧采样点>对照点,高的叶绿素和Ca含量可能有利于绿化植物在土壤重金属污染环境中生存。交通运输导致研究区域土壤中重金属Cr、Mn、Zn、Cu和Ni等的积累;槐树、月季、紫叶李和冬青卫矛等对Pb、Mn、Zn和Ni具有不同程度的积聚作用,可推荐为相应重金属污染土壤绿化植物。  相似文献   

17.
Abstract

In this study, the concentrations and health risks of heavy metals (Cu, Pb, Zn, Ni, Co, Cd, and Cr) in indoor dust are investigated in the vicinity of the Xinqiao mining area, Tongling, China. Results indicate that heavy metals except Co were clearly enriched in indoor dust. Especially Cd was extremely enriched, followed by Zn, Cu, and Pb. However, no significant regional differences (p?>?0.05) were found in other elemental contents aside from Cu. Statistical analysis revealed that metal elements except Co were presumed to originate primarily from mining activities. Health risk assessment indicated that the hazard quotients and hazard indices of all studied metal elements were less than 1 and thus posed no potential noncancer health risks to adults and children. Moreover, the cancer risks of Ni, Cr, Cd, and Co were within acceptable ranges, implying no cancer risk to local residents; however, the noncarcinogenic risk of Pb and the carcinogenic risk of Cr and Cd warrant close attention.  相似文献   

18.
德兴铜矿尾矿重金属污染对土壤中微生物多样性的影响   总被引:12,自引:2,他引:10  
【目的】为更好地了解重金属污染与微生物多样性之间的相互作用关系,以江西德兴铜矿4#尾砂库为研究对象,采集野外实地样品共16件进行分析(包括尾砂样品以及周围农田和菜地土壤样品)。【方法】一方面对样品中可培养异养细菌进行平板计数,一方面采用变性梯度凝胶电泳(Denaturing gradient gel electrophoresis,DGGE)对样品中可培养和不可培养微生物分子生态多样性进行研究;同时采用PCA(Principle component analysis)方法分析样品理化性质、重金属及主要元素与可培养细菌数量及微生物多样性之间的相互关系。【结果】元素分析结果表明该尾矿区样品受到不同程度重金属Cu、Cd、Zn、Ni、Pb和Cr的污染;可培养异养细菌在尾砂样品中数量最少,在菜地和农田土壤样品中有明显增加;多样性指数(Shannon-Weaver index H)计算结果发现H最大值出现在距离尾矿中等距离、重金属浓度在中等程度的样品中。PCA分析结果表明可培养异养菌数量与理化性质如有机碳、有机质、含水率等相关性较大,重金属影响不明显;而多样性指数H除与上述理化性质相关性较大外,还受到重金属Ag、Zn、As、Pb、Ni、Cr等的影响,而在样品中含量普遍比较高的重金属如Cu、Cd等并不成为影响微生物多样性的主要因素。【结论】从这些长期受重金属污染的野外实地样品来看,以上结果说明不同重金属浓度对微生物多样性的影响可能并不是实验室研究的简单的线性关系。  相似文献   

19.
迁安市农田重金属含量空间变异性   总被引:13,自引:0,他引:13  
利用地统计学和GIS相结合的方法,对河北省迁安市农田土壤耕层(0~20 cm)8种重金属含量的空间变异性进行了研究.结果表明,农田中8种重金属含量均值未超过土壤环境质量(GB15618-1995)二级标准,属于中等变异.Cu、Zn、Ni、Cr和As含量的变异函数理论模型符合指数模型,空间相关程度强;Hg和Cd含量的变异函数理论模型符合球状模型,空间相关程度中等;Pb含量具有纯块金效应,空间相关程度弱.在整个研究尺度上,Pb含量具有恒定的变异,其余7种重金属含量由空间自相关部分引起的空间变异性起主要作用,空间相关距离为11~20 km.用普通Kriging方法对Cu、Zn、Ni、Cr、Hg、As和Cd含量空间局部插值表明,北部山地重金属含量较高,而中部盆地重金属含量较低.  相似文献   

20.
Xijiang River is the main surface water source in Guangxi province, South China. This study was carried out to investigate the distribution and potential ecological risks of seven heavy metals (Cu, Pb, Zn, As, Cd, Ni, and Cr) in surface sediments in Xijiang River basin. The results illustrated that the average concentrations of Zn, Pb, Cd, Cu, As, Ni, and Cr were 483.9, 207.5, 13.35, 23.50, 312.1, 28.75, and 50.62 mg/kg, respectively. Among them, Zn, Pb, Cd, and As were the major heave metals with concentration exceeding Class 3 threshold value of Chinese national standard. The result also showed samples with high ecological risk were mainly located in the upstream of Xijiang River basin as Diaojiang River, Hongshui River, Jincheng River, and Dahuan River. Based on the pollution risk assessment, the area manifested composite pollution of heavy metals in the sediments, signifying As, Pb, and Cd as the dominant heavy metals, and there were high ecological risk in sediments for these metals. According to correlation matrix and factor analysis (FA), the seven heavy metals were divided into three types/classes, Cd, as and Zn attributed by anthropogenic sources, natural sources corresponds for Ni and Cr while both natural and anthropogenic sources were attributed to Cu.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号