首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The therapeutic value of doxorubicin as an effective antineoplastic agent is limited by its cardiotoxic side-effects. The administration of doxorubicin (10 mg/kg) to male Wistar rats induced necrosis and apoptosis in heart tissues. It also caused oxidative stress damage as evidenced by the elevation of malondialdehyde and protein carbonyl levels and catalase activity, accompanied by the concurrent depletion of total antioxidant capacity and of superoxide dismutase level in cardiac tissues. The doxorubicin-induced cardiotoxicity and oxidative stress damage were also accompanied by increases of myeloperoxidase activity, total calcium content, and the expression of Bcl-2 protein in heart tissues. Most of these doxorubicin-induced biochemical and histological alterations were effectively attenuated by prior administration of purified standardized extract (1.5% withanolides; manufactured by Idea Sphere Inc., American Fork, UT, USA) of Withania somnifera (300 mg/kg). Thus, Withania may play a role in the protection against cardiotoxicity and thus might be a useful adjuvant therapy where doxorubicin is the cancer-treating drug.  相似文献   

2.
Dichlorodiphenyltrichloroethane (DDT) reportedly causes extensively acute or chronic effects to human health. Exercise can generate positive stress. We evaluated the effect of aerobic exercise on DDT degradation and oxidative stress.Main methods: Male Wistar rats were randomly assigned into control (C), DDT without exercise training (D), and DDT plus exercise training (DE) groups. The rats were treated as follows: DDT exposure to D and DE groups at the first 2 weeks; aerobic exercise treatment only to the DE group from the 1st day until the rats are killed. DDT levels in excrements, muscle, liver, serum, and hearts were analyzed. Superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), and malondialdehyde (MDA) levels were determined. Aerobic exercise accelerated the degradation of DDT primarily to DDE due to better oxygen availability and aerobic condition and promoted the degradation of DDT. Cumulative oxidative damage of DDT and exercise led to significant decrease of SOD level. Exercise resulted in consistent increase in SOD activity. Aerobic exercise enhanced activities of CAT and GSH-Px and promoted MDA scavenging. Results suggested that exercise can accelerate adaptive responses to oxidative stress and activate antioxidant enzymes activities. Exercise can also facilitate the reduction of DDT-induced oxidative damage and promoted DDT degradation. This study strongly implicated the positive effect of exercise training on DDT-induced liver oxidative stress.  相似文献   

3.
4.
Oxidative stress is associated with muscle fatigue and weakness in skeletal muscle of ischemic heart disease patients. Recently, it was found that endurance training elevates protective heat shock proteins (HSPs) and antioxidant enzymes in skeletal muscle in healthy subjects and antioxidant enzymes in heart failure patients. However, it is unknown whether coronary ischemia and mild infarct without heart failure contributes to impairment of stress proteins and whether exercise training reverses those effects. We tested the hypothesis that exercise training would reverse alterations in muscle TNF-alpha, oxidative stress, HSP70, SOD (Mn-SOD, Cu,Zn-SOD), glutathione peroxidase (GPX), and catalase (CAT) due to chronic coronary occlusion of the left circumflex (CCO). Yucatan swine were divided into three groups (n = 6 each): sedentary with CCO (SCO); 12 wk of treadmill exercise training following CCO (ECO); and sham surgery controls (sham). Forelimb muscle mass-to-body mass ratio decreased by 27% with SCO but recovered with ECO. Exercise training reduced muscle TNF-alpha and oxidative stress (4-hydroxynonenal adducts) caused by CCO. HSP70 levels decreased with CCO (-45%), but were higher with exercise training (+348%). Mn-SOD activity, Mn-SOD protein expression, and Cu,Zn-SOD activity levels were higher in ECO than SCO by 72, 82, and 112%, respectively. GPX activity was 177% greater in ECO than in SCO. CAT trended higher (P = 0.059) in ECO compared with SCO. These data indicate that exercise training following onset of coronary artery occlusion results in recovery of critical stress proteins and reduces oxidative stress.  相似文献   

5.
Vascular oxidative stress contributes to endothelial dysfunction. Aerobic exercise training improves vascular function. The purpose of this study was to test the hypothesis that exercise training would improve the balance of antioxidant to prooxidant enzymes and reduce markers of oxidative stress in aortic endothelial cells (AEC). Female Yucatan miniature pigs either remained sedentary (SED) or were exercise trained (EX) for 16-19 wk. EX pigs had increased AEC SOD-1 protein levels and Cu/Zn SOD activity of the whole aorta compared with SED pigs. Protein levels of other antioxidant enzymes (SOD-2, catalase) were not affected by exercise training. Protein levels of p67(phox), a subunit of the prooxidant enzyme NAD(P)H oxidase, were reduced in EX vs. SED AEC. These EX adaptations were associated with lower AEC malondialdehyde levels and decreased phosphorylation of ERK-1/2. Endothelial nitric oxide synthase protein, protein nitrotyrosine content, and heme oxygenase-1 protein were not different in EX vs. SED pigs. We conclude that chronic aerobic exercise training influenced both antioxidant and prooxidant enzymes and decreased indexes of oxidative stress in AEC. These adaptations may contribute to improved endothelial function with exercise training.  相似文献   

6.
The purpose of this study was to compare oxidative modification of blood proteins, lipids, DNA, and glutathione in the 24 hours following aerobic and anaerobic exercise using similar muscle groups. Ten cross-trained men (24.3 +/- 3.8 years, [mean +/- SEM]) performed in random order 30 minutes of continuous cycling at 70% of Vo(2)max and intermittent dumbbell squatting at 70% of 1 repetition maximum (1RM), separated by 1-2 weeks, in a crossover design. Blood samples taken before, and immediately, 1, 6, and 24 hours postexercise were analyzed for plasma protein carbonyls (PC), plasma malondialdehyde (MDA), and whole-blood total (TGSH), oxidized (GSSG), and reduced (GSH) glutathione. Blood samples taken before and 24 hours postexercise were analyzed for serum 8-hydroxy-2'-deoxyguanosine (8-OHdG). PC values were greater at 6 and 24 hours postexercise compared with pre-exercise for squatting, with greater PC values at 24 hours postexercise for squatting compared with cycling (0.634 +/- 0.053 vs. 0.359 +/- 0.018 nM.mg protein(-1)). There was no significant interaction or main effects for MDA or 8-OHdG. GSSG experienced a short-lived increase and GSH a transient decrease immediately following both exercise modes. These data suggest that 30 minutes of aerobic and anaerobic exercise performed by young, cross-trained men (a) can increase certain biomarkers of oxidative stress in blood, (b) differentially affect oxidative stress biomarkers, and (c) result in a different magnitude of oxidation based on the macromolecule studied. Practical applications: While protein and glutathione oxidation was increased following acute exercise as performed in this study, future research may investigate methods of reducing macromolecule oxidation, possibly through the use of antioxidant therapy.  相似文献   

7.
It is well recognized that acute strenuous exercise is accompanied by an increase in free-radical production and subsequent oxidative stress, in addition to changes in blood antioxidant status. Chronic exercise provides protection against exercise-induced oxidative stress by upregulating endogenous antioxidant defense systems. Little is known regarding the protective effect afforded by judo exercise. Therefore, we determined antioxidant and oxidative stress biomarkers at rest and in response to acute exercise in 10 competitive judokas and 10 sedentary subjects after mixed exercise (anaerobic followed by aerobic). The subjects performed a Wingate test, followed by 30 minutes of aerobic exercise performed at 60% of maximal aerobic power. Blood samples were taken, by an intravenous catheter, at rest (R), immediately after the physical exercise (P0), and at 5 (P5), 10 (P10), and 20 (P20) minutes postexercise. The measured parameters included the activity of the antioxidant enzymes superoxide dismutase, glutathione peroxidase, and glutathione reductase, in addition to α-tocopherol, and total antioxidant status. Malondialdehyde was measured as a representation of lipid peroxidation. At rest, the judokas had higher values for all antioxidant and oxidative stress markers as compared to the sedentary subjects (p < 0.05). Plasma concentrations of all parameters except for α-tocopherol increased significantly above resting values for both the judokas and sedentary subjects (p < 0.05) and remained elevated at 20 minutes postexercise. A significant postexercise decrease was observed for α-tocopherol (p < 0.05) at P20 for judokas and at P5 for sedentary subjects. These data indicate that competitive judo athletes have higher endogenous antioxidant protection compared to sedentary subjects. However, both groups of subjects experience an increase in exercise-induced oxidative stress that is not different.  相似文献   

8.
The potential benefits to health of the supply of antioxidants, either through dietary intake or as supplements, is equivocal. There is a need to develop biomarkers that may act as monitors of cellular defense as influenced by antioxidant status. Thirty-two individuals participated in the project and 19 received supplements for 5 weeks in the form of a capsule containing a defined mixture of antioxidants. No change was noted in levels of superoxide dismutase and glutathione peroxidase following antioxidant supplementation. On the other hand, increase in total antioxidant status and decrease in malondialdehyde, protein carbonyl formation, and erythrocyte hemolysis were noted. In lymphocytes isolated from individuals receiving antioxidant supplements and subjected to a heat shock in the presence of the free radical generator 2, 2'-azobis-(2-amidinopropane)-dihydrochloride, enhanced synthesis of heat shock proteins hsp 105, hsp 90, hsp 70, and hsp 40 by contrast with decreased synthesis of heme oxygenase HO-1 (hsp 32) were noted. We conclude that antioxidant status modulates the synthesis of stress proteins.  相似文献   

9.
The responses to oxidative stress induced by chronic exercise (8-wk treadmill running) or acute exercise (treadmill running to exhaustion) were investigated in the brain, liver, heart, kidney, and muscles of rats. Various biomarkers of oxidative stress were measured, namely, lipid peroxidation [malondialdehyde (MDA)], protein oxidation (protein carbonyl levels and glutamine synthetase activity), oxidative DNA damage (8-hydroxy-2'-deoxyguanosine), and endogenous antioxidants (ascorbic acid, alpha-tocopherol, glutathione, ubiquinone, ubiquinol, and cysteine). The predominant changes are in MDA, ascorbic acid, glutathione, cysteine, and cystine. The mitochondrial fraction of brain and liver showed oxidative changes as assayed by MDA similar to those of the tissue homogenate. Our results show that the responses of the brain to oxidative stress by acute or chronic exercise are quite different from those in the liver, heart, fast muscle, and slow muscle; oxidative stress by acute or chronic exercise elicits different responses depending on the organ tissue type and its endogenous antioxidant levels.  相似文献   

10.
The objective of this work was to test the hypothesis that endurance training may be protective against in vivo doxorubicin (DOX)-induced cardiomyopathy through mitochondria-mediated mechanisms. Forty adult (6-8 wk old) male Wistar rats were randomly divided into four groups (n = 10/group): nontrained, nontrained + DOX treatment (20 mg/kg), trained (14 wk of endurance treadmill running, 60-90 min/day), and trained + DOX treatment. Mitochondrial respiration, calcium tolerance, oxidative damage, heat shock proteins (HSPs), antioxidant enzyme activity, and apoptosis markers were evaluated. DOX induces mitochondrial respiratory dysfunction, oxidative damage, and histopathological lesions and triggers apoptosis (P < 0.05, n = 10). However, training limited the decrease in state 3 respiration, respiratory control ratio (RCR), uncoupled respiration, aconitase activity, and protein sulfhydryl content caused by DOX treatment and prevented the increased sensitivity to calcium in nontrained + DOX-treated rats (P < 0.05, n = 10). Moreover, training inhibited the DOX-induced increase in mitochondrial protein carbonyl groups, malondialdehyde, Bax, Bax-to-Bcl-2 ratio, and tissue caspase-3 activity (P < 0.05, n = 10). Training also increased by approximately 2-fold the expression of mitochondrial HSP-60 and tissue HSP-70 (P < 0.05, n = 10) and by approximately 1.5-fold the activity of mitochondrial and cytosolic forms of SOD (P < 0.05, n = 10). We conclude that endurance training protects heart mitochondrial respiratory function from the toxic effects of DOX, probably by improving mitochondrial and cell defense systems and reducing cell oxidative stress. In addition, endurance training limited the DOX-triggered apoptosis.  相似文献   

11.
This study was designed to investigate the effect of pterostilbene (PTS) on cardiac oxidative stress in vitro, as this is a simple and promising methodology to study cardiac disease. Cardiac myoblasts (H9c2 cells) and homogenised cardiac tissue were incubated with the PTS and cyclodextrin (PTS?+?HPβCD) complex for 1 and 24 h, respectively, at concentrations of 50 μM for the cells and 25 and 50 μM for cardiac tissue. The PTS?+?HPβCD complex was used to increase the solubility of PTS in water. After the pretreatment period, cardiomyoblasts were challenged with hydrogen peroxide (6.67 μM) for 10?min, while cardiac tissue was submitted to a hydroxyl radical generator system (30?min). Cellular viability, oxidative stress biomarkers (e.g. total reactive oxygen species (ROS), carbonyl assay and lipoperoxidation) and the antioxidant response (e.g. sulfhydryl and the antioxidant enzyme activities of superoxide dismutase, catalase and glutathione peroxidase) were evaluated. In cardiomyoblasts, the PTS?+?HPβCD complex (50 μM) increased cellular viability. Moreover, the PTS?+?HPβCD complex also significantly increased sulfhydryl levels in the cells submitted to an oxidative challenge. In cardiac tissue, lipid peroxidation, carbonyls and ROS levels were significantly increased in the groups submitted to oxidative damage, while the PTS?+?HPβCD complex significantly reduced ROS levels in these groups. In addition, the PTS?+?HPβCD complex also provoked increased catalase activity in both experimental protocols. These data suggest that the PTS?+?HPβCD complex may play a cardioprotective role through a reduction of ROS levels associated with an improved antioxidant response.  相似文献   

12.
Given the potential of reactive oxygen species to damage intracellular proteins during subsequent bouts of muscle contractions, it was suggested that, when this production exceeds the antioxidant capacity, the preexisting antioxidant pathways may be complemented by the synthesis of the defense mechanism represented by heat shock proteins (HSPs), stress proteins with the function of repair and maintaining protein folding. To test this hypothesis, we analyzed reactive carbonyl derivatives in plasma and the expression of HSP72 and activities of enzymes from the oxidative and antioxidant defense systems in the soleus muscle of sedentary rats and rats trained by two protocols: continuous and intermittent. We analyzed all three groups at rest and 2 h after acute exercise. After 8 wk of training, the animals from both groups clearly demonstrated higher resistance to exercise. Both trained groups showed significantly higher citrate synthase, catalase, and glutathione reductase activities than the control group (P < 0.01). After acute exercise, catalase and glutathione reductase activities significantly decreased (P < 0.01) and plasma reactive carbonyl derivatives significantly increased (P < 0.05) in the sedentary group, suggesting an oxidative-stress condition as responsible for exhaustion in this group. Finally, after acute exercise, the induction of HSP72 expression occurred only in the sedentary group, suggesting that HSP72 acts as a complementary protective mechanism in exercise-induced oxidative stress.  相似文献   

13.
The aim of this study was to analyze the effects of exercise training on oxidative stress in sickle cell trait carriers. Plasma levels of oxidative stress [advanced oxidation protein products (AOPP), protein carbonyl, malondialdehyde (MDA), and nitrotyrosine], antioxidant markers [catalase, glutathione peroxidase (GPX), and superoxide dismutase (SOD)], and nitrite and nitrate (NOx) were assessed at baseline, immediately following a maximal exercise test (T(ex)), and during recovery (T(1h), T(2h), T(24h)) in trained (T: 8 h/wk minimum) and untrained (U: no regular physical activity) sickle cell trait (SCT) carriers or control (CON) subjects (T-SCT, n = 10; U-SCT, n = 8; T-CON, n = 11; and U-CON, n = 11; age: 23.5 ± 2.2 yr). The trained subjects had higher SOD activities (7.6 ± 5.4 vs. 5.2 ± 2.1 U/ml, P = 0.016) and lower levels of AOPP (142 ± 102 vs. 177 ± 102 μM, P = 0.028) and protein carbonyl (82.1 ± 26.0 vs. 107.3 ± 30.6 nm/ml, P = 0.010) than the untrained subjects in response to exercise. In response to exercise, U-SCT had a higher level of AOPP (224 ± 130 vs. 174 ± 121 μM, P = 0.012), nitrotyrosine (127 ± 29.1 vs.70.6 ± 46.6 nM, P = 0.003), and protein carbonyl (114 ± 34.0 vs. 86.9 ± 26.8 nm/ml, P = 0.006) compared with T-SCT. T-SCT had a higher SOD activity (8.50 ± 7.2 vs. 4.30 ± 2.5 U/ml, P = 0.002) and NOx (28.8 ± 11.4 vs. 14.6 ± 7.0 μmol·l(-1)·min(-1), P = 0.003) in response to exercise than U-SCT. Our data indicate that the overall oxidative stress and nitric oxide response is improved in exercise-trained SCT carriers compared with their untrained counterparts. These results suggest that physical activity could be a viable method of controlling the oxidative stress. This could have a beneficial impact because of its involvement in endothelial dysfunction and subsequent vascular impairment in hemoglobin S carriers.  相似文献   

14.
This study evaluated whether acute ethanol pretreatment potentiates Fas-mediated liver injury and if oxidative stress and CYP2E1 play a role in any enhanced hepatotoxicity. There were 3-fold increases of transaminases and more extensive apoptotic necrosis of hepatocytes and focal hemorrhages of the hepatic lobule in mice treated with Jo2 Fas agonistic antibody plus ethanol compared to saline control or to mice treated with Jo2 or ethanol alone. CYP2E1 catalytic activity and protein were increased 2-fold by the acute ethanol pretreatment. There were 2- and 2.5-fold increases of caspase-8 and caspase-3 activity and 1.6-fold increases of apoptotic-positive cells in the Jo2 plus acute ethanol group compared to the Jo2 alone group. Levels of TNF-alpha, malondialdehyde, 4-hydroxynonenal, protein carbonyl formation, 3-nitrotyrosine protein adducts, and inducible nitric oxide synthase were increased in the Jo2 plus ethanol group. The enhanced hepatotoxicity of Jo2 plus ethanol and the elevated oxidative stress and TNF levels were lower in CYP2E1 knockout mice compared to wild-type mice expressing CYP2E1 but higher than saline controls. Toxicity also declined in mice treated with gadolinium chloride, an inhibitor of the inducible nitric oxide synthase or the antioxidant, N-acetyl-L-cysteine. These data indicate that acute ethanol pretreatment is capable of elevating hepatic apoptosis and liver injury induced by Jo2 Fas agonistic antibody. The enhanced hepatotoxicity involves increased oxidative and nitrosative stress, and appears to be mediated by CYP2E1-dependent and also CYP2E1-independent mechanisms.  相似文献   

15.
16.
Doxorubicin continues to be one of the most widely used anticancer agents in the clinic despite its dose-limiting side-effects. Many of doxorubicin's dose-limiting toxicities occur due to its generation of toxic oxygen species, resulting in oxidative stress. Some clinical observations have suggested that doxorubicin may have greater toxicity in older patients. The studies presented here compare basal and doxorubicin-induced antioxidant enzyme activities in brain, heart, kidney and liver tissues of Fisher 344 rats of different ages to determine whether differences in these enzymes can account for the age-dependent differences observed in doxorubicin-induced toxicity. Three groups of animals were tested, young animals (2-months-old), adult animals (10-months-old) and old animals (18-months-old). The results of these studies show that in general young and adult animals have similar levels of antioxidant enzyme activity while the older animals have less. Only in the young animals is antioxidant enzyme activity significantly increased following doxorubicin treatment suggesting that enzyme induction occurs only in the young group of animals. Lipid peroxidation is shown to have the greatest increase in the old animals following doxorubicin treatment while the young animals have the smallest increase. The results from these studies suggest that there is an increase in doxorubicin-induced oxidative damage with age and that these differences may be due to basal and drug-induced differences in tissue antioxidant enzyme activities.  相似文献   

17.
Heat shock protein 70 (HSP70) is a chaperone that maintains protein conformation during heat stress. It has recently been observed that HSP70 may be released from cells in response to increased energy demand (e.g., exercise) and/or oxidative stress. Since HSP70 levels should change in response to athletic training, we have investigated whether blood HSP70 levels in young women handball players change over a complete training season. Thirty women handball players (12-24 years old) were divided into low (≥30 pg mL(-1)) (LE) and normal (30-330 pg mL(-1)) (NE) estradiol groups. HSP70 levels in lymphocytes and plasma and blood redox parameters were evaluated over 1 year (2009), with sampling at the beginning, middle, and end of the season. We observed no changes in superoxide dismutase activity or protein carbonyl or extracellular HSP70 levels, while catalase activity increased at the middle of the season in the NE group, and the thiobarbituric acid species levels in both groups were higher at the beginning of the season than at the middle or end. The lymphocyte HSP70 content was higher at the middle and end than at the beginning of the season in the NE group and also higher in the LE group than in the NE group at the beginning of the season. These results suggest that plasma estradiol levels may play an important role in exercise training and that the intracellular HSP70 content, a biomarker for inflammation, is affected by both estradiol levels and exercise-induced oxidative stress.  相似文献   

18.
Reactive species have great importance in sports performance, once they can directly regulate energy production, muscular contraction, inflammation, and fatigue. Therefore, the redox control is essential for athletes’ performance. Studies demonstrated that l-arginine has an important role in the synthesis of urea, cell growth and production of nitric oxide, moreover, there are indications that it is also able to induce benefits to muscle antioxidant system through the upregulation of some antioxidant enzymes, and by inhibiting some pathways of reactive species production. Therefore, the aim of this study was to evaluate the effects of l-arginine supplementation on performance and oxidative stress of male rats (trained or not), submitted to a single session of high intensity exercise. Forty male Wistar rats were divided into four groups, control (C), control+l-arginine (C?+?A), trained (T), and trained+l-arginine (T?+?A). The aerobic training was conducted for 8 weeks. Data of maximum speed and time from tests were used as indicators of performance. Variables related to oxidative stress and antioxidant system were also evaluated. Aerobic training was capable to induce enhancements on animals’ exercise performance and on their redox state. Additionally, supplementation improved rats’ physical performance on both groups, control and trained. Different improvements between groups on the antioxidant capacity were observed. Nevertheless, considering the ergogenic effect of l-arginine and the lack of all positive adaptations promoted by the exercise training, untrained animals may be more exposed to oxidative damages after the practice of intense exercises.  相似文献   

19.
Cyclophosphamide (CP) is an antineoplastic agent that is used for the treatment of many neoplastic diseases. Hemorrhagic cystitis (HC) is a major dose limiting side effect of CP. Recent studies show that aminogaunidine, an inhibitor of inducible nitric oxide synthase is a potent antioxidant and prevents changes caused by oxidative stress such as depletion of antioxidant activity and tissue injury. The purpose of the study is to investigate the effect of aminoguanidine on parameters of oxidative stress, antioxidant enzymes and bladder injury caused by CP. Adult male rats were randomly divided into four groups. Control rats were administered saline; the AG control group received 200 mg/kg body wt of aminoguanidine; The CP group received a single injection of CP at the dose of 150 mg/kg body wt intraperitoneally. The CP + AG group received aminoguanidine (200 mg/kg body wt) intraperitoneally 1 h before the administration of CP. The rats were sacrificed 16 h after CP/saline administration. The bladder was used for light microscopic studies and biochemical studies. The markers of oxidative damage including protein carbonyl content, protein thiol, malondialdehyde and conjugated dienes were assayed in the homogenates along with the activities of the antioxidant enzymes, superoxide dismutase, glutathione peroxidase, catalase, and glutathione reductase and glutathione S transferase. In the bladders of CP treated rats edema of lamina propria with epithelial and sub‐epithelial hemorrhage was seen. All the parameters of oxidative stress that were studied were significantly elevated in the bladders of CP treated rats. The activities of the antioxidant enzymes were significantly lowered in the bladders of CP treated rats. Aminoguanidine pretreatment prevented CP‐induced oxidative stress, decrease in the activities of anti‐oxidant enzymes and reduced bladder damage. The results of the present study suggest the antioxidant role for aminoguanidine in CP‐induced bladder damage. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
It has been reported that exercise induces oxidative stress and causes adaptations in antioxidant defences. The aim of this study was to determine the adaptations of lymphocytes to the oxidative stress induced by an exhaustive exercise. Nine voluntary male subjects participated in the study. The exercise was a cycling mountain stage (171.8 km), and the cyclists took a mean of 283 min to complete it. Blood samples were taken the morning of the cycling stage day, after overnight fasting, and 3 h after finishing the stage. We determined the blood glutathione redox status (GSSG/GSH), lymphocyte antioxidant enzyme activities and superoxide dismutase (SOD) levels; the plasma and lymphocyte vitamin E levels; the serum lactate dehydrogenase (LDH) and creatine kinase (CK) activities and urate levels; the plasma carotene and malonaldehyde (MDA) levels; and the lymphocyte carbonyl index. The cycling stage induced significant increases in blood-oxidized (glutathione/GSSG), plasma MDA and serum urate levels. The exercise also produced increases in CK and LDH serum activities. The mountain cycling stage induced significant increases in lymphocyte vitamin E levels, glutathione peroxidase and glutathione reductase activities as well as increased SOD activity and protein levels. The protein carbonyl levels increased significantly in lymphocytes after the stage. In conclusion, in spite of increasing antioxidant defences in response to the oxidative stress induced by the exhaustive exercise, lymphocyte oxidative damage was produced after the stage as demonstrated by the increased carbonyl index even in very well trained athletes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号