首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cisplatin (CP)-induced nephrotoxicity hampers its application in clinic. Green tea, particularly its predominant polyphenolic constituent epigallocatechin-3-gallate (EGCG), possesses anti-inflammatory, antioxidant, and anti-apoptotic properties. The present study was designed to investigate the protective effects of EGCG against CP-induced nephrotoxicity in mice. Male C57/BL6 mice in different groups received single injection of CP (20 mg/kg) and EGCG (100 mg/kg) in various sets and kidney tissues and blood were collected after killing. Then, samples were used for biochemical and immunohistochemical assay. Our results showed EGCG decreased biochemical factors and immunohistochemical damage induced by CP. Besides, expression of phosphorylated-extracellular signal-regulated kinase (p-ERK), glucose-regulated protein 78 (GRP78), caspase-12, and apoptosis of kidney were decreased by EGCG via inhibition of endoplasmic reticulum (ER) stress-induced apoptosis.  相似文献   

2.
《Free radical research》2013,47(10):1187-1198
Abstract

Aims. Endoplasmic reticulum (ER) stress exerts myocardial oxidative stress, apoptosis, and contractile anomalies, although the precise interplay between ER stress and apoptosis remains elusive. This study was designed to examine the impact of the cysteine-rich free radical scavenger metallothionein on ER stress-induced myocardial contractile defect and underlying mechanisms. Methods and results. Wild-type friendly virus B and transgenic mice with cardiac-specific overexpression of metallothionein were challenged with the ER stress inducer tunicamycin (1 mg/kg, intraperitoneal, 48 h) prior to the assessment of myocardial function, oxidative stress, and apoptosis. Our results revealed that tunicamycin promoted cardiac remodeling (enlarged left ventricular end systolic/diastolic diameters with little changes in left ventricular wall thickness), suppressed fractional shortening and cardiomyocyte contractile function, elevated resting Ca2+, decreased stimulated Ca2+ release, prolonged intracellular Ca2+ clearance, and downregulated sarco(endo)plasmic reticulum Ca2+-ATPase levels, the effects of which were negated by metallothionein. Treatment with tunicamycin caused cardiomyocyte mitochondrial injury, as evidenced by decreased mitochondrial membrane potential (??m, assessed by JC-1 staining), the effect of which was negated by the antioxidant. Moreover, tunicamycin challenge dramatically facilitated myocardial apoptosis as manifested by increased Bax, caspase 9, and caspase 12 protein levels, as well as elevated caspase 3 activity. Interestingly, metallothionein transgene significantly alleviated tunicamycin-induced myocardial apoptosis. Conclusion. Taken together, our data favor a beneficial effect of metallothionein against ER stress-induced cardiac dysfunction possibly associated with attenuation of myocardial apoptosis.  相似文献   

3.
LncRNAs and microRNAs play critical roles in osteoblast differentiation and bone formation. However, their exact roles in osteoblasts under fluid shear stress (FSS) and the possible mechanisms remain unclear. The aim of this study was to explore whether and how miR-34a regulates osteoblast proliferation and apoptosis under FSS. In this study, FSS down-regulated miR-34a levels of MC3T3-E1 cells. MiR-34a up-regulation attenuated FSS-induced promotion of proliferation and suppression of apoptosis. Luciferase reporter assay revealed that miR-34a directly targeted FGFR1. Moreover, miR-34a regulated osteoblast proliferation and apoptosis via FGFR1. Further, we validated that lncRNA TUG1 acted as a competing endogenous RNA (ceRNA) to interact with miR-34a and up-regulate FGFR1 protein expression. Furthermore, lncRNA TUG1 could promote proliferation and inhibit apoptosis. Taken together, our study revealed the key role of the lncRNA TUG1/miR-34a/FGFR1 axis in FSS-regulated osteoblast proliferation and apoptosis and may provide potential therapeutic targets for osteoporosis.  相似文献   

4.
5.
In this study, we aimed to explore the molecular mechanisms underlying the development of osteoporosis in post-menopausal females. Real-time PCR was conducted to measure the expression of potential lncRNAs involved in the osteoporosis of post-menopausal females. In addition, Western blot and IHC assays were used to study the possible correlation among HOTAIR, miR-138 and TIMP1, while a computational analysis was carried out to predict the ‘seed sequence’ responsible for the binding between miR-138 and HOTAIR/TIMP1. Furthermore, luciferase reporter assays were conducted to validate the negative regulatory relationship between miR-138 and TIMP1/HOTAIR. To evaluate the effect of oestrogen on the function of HOATIR and its downstream effectors, luciferase activity was measured in cells cotransfected with different vectors or treated with different doses of oestrogen. The results of the luciferase assay were further validated by real-time PCR, Western blot, MTT assay and flow cytometry. Among the candidate lncRNAs, HOTAIR was the only lncRNA down-regulated in post-menopausal females. HOTAIR bound to miR-138 and negatively regulated its expression. Meanwhile, miR-138 could also bind to TIMP1 mRNA and reduce its expression. Furthermore, a dose-dependent up-regulation of HOTAIR was observed in cells treated with oestrogen, and the elevated HOTAIR increased the level of TIMP1 by targeting miR-138. In addition, oestrogen promoted cell viability and suppressed cell apoptosis, and effects of oestrogen were blocked by the silencing of HOTAIR. Therefore, it can be concluded that oestrogen deficiency could induce the apoptosis of osteoblasts and lead to osteoporosis in post-menopausal females via modulation of the HOTAIR/miR-138/TIMP1 signalling axis.  相似文献   

6.
Sirt 1 plays a critical role in stress responses. We determined the deregulation of Sirt 1 activity, p53 acetylation, Bcl-2 expression, and mitochondria-dependent apoptosis in mouse osteoblast MC3T3-E1 cells which were exposed to H2O2. And then we investigated the protective role of Sirt 1 activator, Resveratrol (RSV), against the H2O2-induced apoptosis. Results demonstrated that Sirt 1 and Bcl-2 were inhibited, whereas p53 acetylation, Bax, and caspase 9 were promoted by H2O2, as was aggravated by the Sirt 1 inhibitor, EX-527. Instead, RSV inhibited the H2O2-induced both p53 acetylation and the caspase 9 activation, whereas ameliorated the H2O2-induced Bcl-2 inhibition and apoptosis. In conclusion, Sirt 1 was downregulated during the H2O2-induced apoptosis in MC3T3-E1 cells. And the chemical activation of Sirt 1 inhibited the H2O2-induced apoptosis via the downregulation of p53 acetylation. Our results suggest that Sirt 1 upregulation appears to be an important strategy to inhibit the oxidative stress-induced apoptosis.  相似文献   

7.
BNIP1, a member of the BH3-only protein family, was first discovered as one of the proteins that are capable of interacting with the antiapoptotic adenovirus E1B 19-kDa protein. Here we disclose a totally unexpected finding that BNIP1 is a component of the complex comprising syntaxin 18, an endoplasmic reticulum (ER)-located soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein (SNAP) receptor (SNARE). Functional analysis revealed that BNIP1 participates in the formation of the ER network structure, but not in membrane trafficking between the ER and Golgi. Notably, a highly conserved leucine residue in the BH3 domain of BNIP1 plays an important role not only in the induction of apoptosis but also in the binding of alpha-SNAP, an adaptor that serves as a link between the chaperone ATPase NSF and SNAREs. This predicts that alpha-SNAP may suppress apoptosis by competing with antiapoptotic proteins for the BH3 domain of BNIP1. Indeed, overexpression of alpha-SNAP markedly delayed staurosporine-induced apoptosis. Our results shed light on possible crosstalk between apparently independent cellular events, apoptosis and ER membrane fusion.  相似文献   

8.
Recent studies have suggested that neuronal death in Alzheimer's disease or ischemia could arise from dysfunction of the endoplasmic reticulum (ER). Although caspase-12 has been implicated in ER stress-induced apoptosis and amyloid-beta (Abeta)-induced apoptosis in rodents, it is controversial whether similar mechanisms operate in humans. We found that human caspase-4, a member of caspase-1 subfamily that includes caspase-12, is localized to the ER membrane, and is cleaved when cells are treated with ER stress-inducing reagents, but not with other apoptotic reagents. Cleavage of caspase-4 is not affected by overexpression of Bcl-2, which prevents signal transduction on the mitochondria, suggesting that caspase-4 is primarily activated in ER stress-induced apoptosis. Furthermore, a reduction of caspase-4 expression by small interfering RNA decreases ER stress-induced apoptosis in some cell lines, but not other ER stress-independent apoptosis. Caspase-4 is also cleaved by administration of Abeta, and Abeta-induced apoptosis is reduced by small interfering RNAs to caspase-4. Thus, caspase-4 can function as an ER stress-specific caspase in humans, and may be involved in pathogenesis of Alzheimer's disease.  相似文献   

9.
The microRNA miR-138 is dysregulated in several human cancers, but the underlying mechanism remains largely unknown. Here, we report that miR-138 is commonly underexpressed in nasopharyngeal carcinoma (NPC) specimens and NPC cell lines. The ectopic expression of miR-138 dramatically suppressed cell proliferation and colony formation in vitro and inhibited tumorigenesis in vivo. Moreover, we identified the cyclin D1 (CCND1) gene as a novel direct target of miR-138. In consistent with the knocked-down expression of CCND1, overexpression of miR-138 inhibited cell growth and cell cycle progression in NPC cells. Furthermore, CCND1 was widely upregulated in NPC tumors, and its mRNA levels were inversely correlated with miR-138 expression. Taken together, our findings suggest that miR-138 might be a tumor suppressor in NPC, which is exerted partially by inhibiting CCND1 expression. The identification of functional miR-138 in NPC and its direct link to CCND1 might provide good candidates for developing diagnostic markers and therapeutic applications for NPC.  相似文献   

10.
目的:探讨内质网应激介导的凋亡在低氧性肺动脉高压大鼠肺组织中的变化及意义.方法:清洁级雄性SD大鼠22只随机被均分成对照组和低氧组(n=11).采用常压低氧法复制慢性低氧高二氧化碳性肺动脉高压模型,4周后,测定肺动脉平均压(mPAP)、右心室游离壁(RV)和左心室加室间隔(LV+S)重量比、肺细小动脉管壁面积/管总面积...  相似文献   

11.
Mechanisms controlling human bone formation remain to be fully elucidated. We have used differential display-polymerase chain reaction analysis to characterize osteogenic pathways in conditionally immortalized human osteoblasts (HOBs) representing distinct stages of differentiation. We identified 82 differentially expressed messages and found that the Wnt antagonist secreted frizzled-related protein (sFRP)-1 was the most highly regulated of these. Transient transfection of HOBs with sFRP-1 suppressed canonical Wnt signaling by 70% confirming its antagonistic function in these cells. Basal sFRP-1 mRNA levels increased 24-fold during HOB differentiation from pre-osteoblasts to pre-osteocytes, and then declined in mature osteocytes. This expression pattern correlated with levels of cellular viability such that the pre-osteocytes, which had the highest levels of sFRP-1 mRNA, also had the highest rate of cell death. Basal sFRP-1 mRNA levels also increased 29-fold when primary human mesenchymal stem cells were differentiated to osteoblasts supporting the developmental regulation of the gene. Expression of sFRP-1 mRNA was induced 38-fold following prostaglandin E2 (PGE2) treatment of pre-osteoblasts and mature osteoblasts that had low basal message levels. In contrast, sFRP-1 expression was down-regulated by as much as 80% following transforming growth factor (TGF)-beta1 treatment of pre-osteocytes that had high basal mRNA levels. Consistent with this, treatment of pre-osteoblasts and mature osteoblasts with PGE(2) increased apoptosis threefold, while treatment of pre-osteocytes with TGF-beta1 decreased cell death by 50%. Likewise, over-expression of sFRP-1 in HOBs accelerated the rate of cell death threefold. These results establish sFRP-1 as an important negative regulator of human osteoblast and osteocyte survival.  相似文献   

12.
p33ING1参与了多种生物学过程,包括细胞生长抑制、凋亡、DNA损伤修复、染色质重塑等.近来研究显示,p33在细胞衰老过程中表达降低,这可能与衰老细胞的抗凋亡有关.但p33在衰老细胞中表达下调的分子机理仍不清楚.我们发现,在衰老细胞中miR-138表达升高与p33基因的表达降低密切相关.以下实验结果支持如此结论:(1)与年轻细胞相比,带p33ING1 3′UTR 报告载体荧光素酶活性在衰老细胞中降低;突变3′UTR上的miR-138结合位点可升高报告载体荧光素酶在衰老细胞中的活性;(2)在衰老细胞中miR-138的表达升高;(3)在年轻细胞中,过表达miR-138不仅可抑制带p33ING1 3′UTR 报告载体荧光素酶活性,而且下调细胞内p33ING1基因mRNA和蛋白水平.与此相反,抑制miR-138活性可升高带p33ING1 3′UTR 报告载体荧光素酶活性,并且上调细胞内p33ING1基因mRNA和蛋白水平.这些结果表明,p33ING1基因是miR-138的靶基因;在衰老过程中,miR-138表达升高, 由此导致该基因的表达降低.  相似文献   

13.
The participation of the mitochondrial pathway in paclitaxel-induced apoptosis has been well documented. After addition of paclitaxel to U937 cells, however, we observed an early expression of five endoplasmic reticulum (ER) stress response genes that preceded the release of cytochrome c from the mitochondria and the cleavage of the caspases. Involvement of the ER was supported by the following evidence. Paclitaxel treatment not only activated calpain and caspase-4, but also induced a gradual increase in the cytosolic Ca(2+) concentration at 3-6 h. Paclitaxel-induced apoptosis can be inhibited by the calpain inhibitor calpeptin and IP(3) receptor inhibitors. Either buffering of the cytosolic Ca(2+) or inhibition of mitochondrial calcium uptake reduced BiP expression. These inhibitors also reduced mitochondrial apoptotic signals, such as mitochondrion membrane potential disruption, cytochrome c release and eventually reduced the death of U937 cells. Paclitaxel-induced Bax/Bak translocation to the ER and Bax dimerization on the ER membrane occurred within 3 h, which led to a Ca(2+) efflux into cytosol. Moreover, we found that cytochrome c translocated to the ER after releasing from mitochondria and then interacted with the IP(3) receptor at 12-15 h. This phenomenon has been known to amplify apoptotic signaling. Taken together, ER would seem to contribute to paclitaxel-induced apoptosis via both the early release of Ca(2+) and the late amplification of mitochondria-mediated apoptotic signals.  相似文献   

14.
Steroid-induced osteoblast apoptosis is a crucial pathological process in steroid-induced osteonecrosis of the femoral head (SONFH). Autophagy can resist apoptosis and AMPK plays an important role in autophagy regulation. Aucubin from the small tree Eucommia ulmoides Oliv., which has a long history of use in orthopaedics and traumatology in Asian medicine, can promote bone formation, but whether it can slow or prevent steroid-osteoblast apoptosis is unclear. Therefore, we investigated the pathogenesis of SONFH and how the osteoblast responds to aucubin under the dexamethasone stimulation. In human femoral head osteonecrosis specimens, we found that the autophage and apoptosis level were increased, and the AMPK signalling was crucial to autophagy. We observed that aucubin could prevent dexamethasone-induced apoptosis in osteoblasts by enhancing the level of autophagy. Further, we confirmed that the regulatory effect of aucubin on autophagy and apoptosis was achieved by activating AMPK signalling. We have demonstrated a mechanism of disease progression and shown that aucubin could enhance autophagy through AMPK signalling to prevent osteoblast apoptosis. These findings provide a basis for the further investigation of the potential therapeutic role of aucubin in the SONFH.  相似文献   

15.
Oxidative stress (OS)-induced mitochondrial damage and the subsequent osteoblast dysfunction contributes to the initiation and progression of osteoporosis. Notoginsenoside R1 (NGR1), isolated from Panax notoginseng, has potent antioxidant effects and has been widely used in traditional Chinese medicine. This study aimed to investigate the protective property and mechanism of NGR1 on oxidative-damaged osteoblast. Osteoblastic MC3T3-E1 cells were pretreated with NGR1 24 h before hydrogen peroxide administration simulating OS attack. Cell viability, apoptosis rate, osteogenic activity and markers of mitochondrial function were examined. The role of C-Jun N-terminal kinase (JNK) signalling pathway on oxidative injured osteoblast and mitochondrial function was also detected. Our data indicate that NGR1 (25 μM) could reduce apoptosis as well as restore osteoblast viability and osteogenic differentiation. NGR1 also reduced OS-induced mitochondrial ROS and restored mitochondrial membrane potential, adenosine triphosphate production and mitochondrial DNA copy number. NGR1 could block JNK pathway and antagonize the destructive effects of OS. JNK inhibitor (SP600125) mimicked the protective effects of NGR1while JNK agonist (Anisomycin) abolished it. These data indicated that NGR1 could significantly attenuate OS-induced mitochondrial damage and restore osteogenic differentiation of osteoblast via suppressing JNK signalling pathway activation, thus becoming a promising agent in treating osteoporosis.  相似文献   

16.
Resistance to apoptosis is a prominent feature of malignant melanoma. Hyperthermic therapy can be an effective adjuvant treatment for some tumors including melanoma. We developed a fusion protein based on the tissue inhibitor of matrix metalloproteinase-1 linked to a glycosylphosphatidylinositol anchor (TIMP-1-GPI). The TIMP-1-GPI-fusion protein shows unique properties. Exogenous administration of TIMP-1-GPI can result in transient morphological changes to treated cells including modulation of proliferation and decreased resistance to apoptosis. The effect of TIMP-1-GPI on the biology of melanoma in the context of a defined hyperthermic dose was evaluated in vitro. Clonogenic assays were used to measure cell survival. Gelatinase zymography determined secretion of MMP-2 and MMP-9. Monoclonal antibody against FAS/CD95 was applied to induce apoptosis. The expression of pro- and anti-apoptotic proteins and the secretion of immunoregulatory cytokines were then evaluated using Western blot and ELISA. TIMP-1-GPI combined with a sub-lethal hyperthermic treatment (41.8°C for 2 h) suppressed tumor cell growth capacity as measured by clonogenic assay. The co-treatment also significantly suppressed tumor cell proliferation, enhanced FAS receptor surface expression increased tumor cell susceptibility to FAS-mediated killing. The increased sensitivity to FAS-induced apoptosis was linked to alterations in the apoptotic mediators Bcl-2, Bax, Bcl-XL and Apaf-1. The agent works in concert with sub-lethal hyperthermic treatment to render melanoma cells sensitive to FAS killing. The targeted delivery of TIMP-1-GPI to tumor environments in the context of regional hyperthermic therapy could be optimized through the use of thermosensitive liposomes. Elfriede Noessner, Peter J. Nelson are equal contributors.  相似文献   

17.
Nanoplastics (NPs) pollution poses a huge threat to the ecosystem and has become one of the environmental pollutants that have attracted much attention. There is increasing evidence that both oxidative stress and endoplasmic reticulum stress (ERS) are associated with polystyrene nanoplastics (PS-NPs) exposure. Lipopolysaccharide (LPS) has been shown to induce apoptotic damage in various tissues, but whether PS-NPs can aggravate LPS-induced apoptosis in mouse kidneys through oxidative stress-regulated inositol-requiring enzyme 1 (IRE1)/X-box binding protein 1 (XBP1) ERS pathway remains unclear. In this study, based on the establishment of in vitro and in vivo PS-NPs and LPS exposure models alone and in combination in mice and HEK293 cells, the effects and mechanisms of PS-NPs on LPS-induced renal cell apoptosis were investigated. The results showed that PS-NPs could aggravate LPS-induced apoptosis. PS-NPs/LPS can induce ERS through oxidative stress, activate the IRE1/XBP1 pathway, and promote the expression of apoptosis markers (Caspase-3 and Caspase-12). Kidney oxidative stress, ERS, and apoptosis in PS-NPs + LPS combined exposure group were more severe than those in the single exposure group. Interestingly, 4-phenylbutyric acid-treated HEK293 cells inhibited the expression of the IRE1/XBP1 ERS pathway and apoptotic factors in the PS-NPs + LPS combined exposure group. N-acetyl-L-cysteine effectively blocked the activation of the IRE1/XBP1 ERS pathway, suggesting that PS-NPs-induced oxidative stress is an early event that triggers ERS. Collectively, these results confirmed that PS-NPs aggravated LPS-induced apoptosis through the oxidative stress-induced IRE1/XBP1 ERS pathway. Our study provides new insights into the health threats of PS-NPs exposed to mammals and humans.  相似文献   

18.
In the previous reports, we showed that the familial Alzheimer's disease (AD)-linked presenilin-1 (PS1) mutation induced the fragility to the endoplasmic reticulum (ER) stress and that caspase-4 mediates ER stress-induced- and beta-amyloid induced-apoptotic signaling in human cells. These results suggest the involvement of ER stress and caspase-4 in the cell death observed in AD. In this report, we studied the activation of caspase-4 in the familial AD-linked PS1 mutation (DeltaE9). Cleavage of caspase-4 under ER stress was enhanced by the overexpression of the familial AD-linked mutation (DeltaE9), showing that caspase-4 is a key caspase involved in the apoptotic signaling of AD. We also showed that the overexpression of caspase-4 induced cleavage of caspase-9 and caspase-3 without releasing cytochrome-c from the mitochondria. Thus, caspase-4 activates downstream caspases independently of mitochondrial apoptotic signaling and this might contribute to the pathogenesis of AD. To sum up our data, the familial AD-linked PS1 mutation accelerates the cleavage of caspase-4 under the ER stress and results in the activation of caspase-9 and caspase-3, apoptosis signal, without releasing cytochrome-c.  相似文献   

19.
Senile osteoporosis is one of the major health problems in an aging society. Decreased bone formation due to osteoblast dysfunction may be one of the causes of aging-related bone loss. With increasing evidence suggesting that multiple microRNAs (miRNAs) play important roles in osteoblast function, the relationship between miRNAs and senile osteoporosis has become a popular research topic. Previously, we confirmed that mechanoresponsive miR-138-5p negatively regulated bone anabolic action. In this study, the miR-138-5p level was found to be negatively correlated with BMD and osteogenic markers in bone specimens of senile osteoporotic patients by bioinformatic analysis and experimental verification. Furthermore, high miR-138-5p levels aggravated the decrease of aged osteoblast differentiation in vitro and led to worse bone loss in aged osteoblastic miR-138-5p transgenic mice in vivo. We also previously identified that the target of miR-138-5p, microtubule actin cross-linking factor 1 (MACF1), could attenuate senile osteoporosis. Here, miR-138-5p was demonstrated to regulate aged osteoblast differentiation by targeting MACF1. Finally, the therapeutic inhibition of miR-138-5p counteracted the decrease in bone formation and aging-related bone loss in aged mice. Overall, our results highlight the crucial roles and the molecular mechanism of miR-138-5p in aging-related bone loss and may provide a powerful therapeutic target for ameliorating senile osteoporosis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号