首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Photosynthetic Response to Water Stress in Phaseolus vulgaris   总被引:1,自引:0,他引:1  
Water stressed Phaseolus vulgaris L. plants were monitored to detect the relationships between net photosynthesis, transpiration, boundary layer plus stomatal resistance, mesophyll resistance, CO2 compensation point, ribulose, 1,5-diphosphate carboxylase activity and leaf water potential. At full expansion, the first trifoliate leaves of greenhouse grown bean plants were subjected to water stress by withholding irrigation. Gas exchange and enzyme activity of the central trifoliolate leaflets were monitored as leaf water potential decreased. Although increased stomatal resistance appeared to be the primary causal factor of reduced net photosynthesis, increased mesophyll resistance and decreased ribulose 1,5-diphosphate carboxylase activity further documented the role of non-stomatal factors.  相似文献   

2.
The resistance to diffusion of CO2 from the intercellular airspaces within the leaf through the mesophyll to the sites of carboxylation during photosynthesis was measured using three different techniques. The three techniques include a method based on discrimination against the heavy stable isotope of carbon, 13C, and two modeling methods. The methods rely upon different assumptions, but the estimates of mesophyll conductance were similar with all three methods. The mesophyll conductance of leaves from a number of species was about 1.4 times the stomatal conductance for CO2 diffusion determined in unstressed plants at high light. The relatively low CO2 partial pressure inside chloroplasts of plants with a low mesophyll conductance did not lead to enhanced O2 sensitivity of photosynthesis because the low conductance caused a significant drop in the chloroplast CO2 partial pressure upon switching to low O2. We found no correlation between mesophyll conductance and the ratio of internal leaf area to leaf surface area and only a weak correlation between mesophyll conductance and the proportion of leaf volume occupied by air. Mesophyll conductance was independent of CO2 and O2 partial pressure during the measurement, indicating that a true physical parameter, independent of biochemical effects, was being measured. No evidence for CO2-accumulating mechanisms was found. Some plants, notably Citrus aurantium and Simmondsia chinensis, had very low conductances that limit the rate of photosynthesis these plants can attain at atmospheric CO2 level.  相似文献   

3.
Olive (Olea europea L) is one of the most valuable and widespread fruit trees in the Mediterranean area. To breed olive for resistance to salinity, an environmental constraint typical of the Mediterranean, is an important goal. The photosynthetic limitations associated with salt stress caused by irrigation with saline (200 mm ) water were assessed with simultaneous gas‐exchange and fluorescence field measurements in six olive cultivars. Cultivars were found to possess inherently different photosynthesis when non‐stressed. When exposed to salt stress, cultivars with inherently high photosynthesis showed the highest photosynthetic reductions. There was no relationship between salt accumulation and photosynthesis reduction in either young or old leaves. Thus photosynthetic sensitivity to salt did not depend on salt exclusion or compartmentalization in the old leaves of the olive cultivars investigated. Salt reduced the photochemical efficiency, but this reduction was also not associated with photosynthesis reduction. Salt caused a reduction of stomatal and mesophyll conductance, especially in cultivars with inherently high photosynthesis. Mesophyll conductance was generally strongly associated with photosynthesis, but not in salt‐stressed leaves with a mesophyll conductance higher than 50 mmol m?2 s?1. The combined reduction of stomatal and mesophyll conductances in salt‐stressed leaves increased the CO2 draw‐down between ambient air and the chloroplasts. The CO2 draw‐down was strongly associated with photosynthesis reduction of salt‐stressed leaves but also with the variable photosynthesis of controls. The relationship between photosynthesis and CO2 draw‐down remained unchanged in most of the cultivars, suggesting no or small changes in Rubisco activity of salt‐stressed leaves. The present results indicate that the low chloroplast CO2 concentration set by both low stomatal and mesophyll conductances were the main limitations of photosynthesis in salt‐stressed olive as well as in cultivars with inherently low photosynthesis. It is consequently suggested that, independently of the apparent sensitivity of photosynthesis to salt, this effect may be relieved if conductances to CO2 diffusion are restored.  相似文献   

4.
The CO2 and H2O vapour exchange of single attached orange, Citrus sinensis (L.), leaves was measured under laboratory conditions using infrared gas analysis. Gaseous diffusive resistances were derived from measurements at a saturating irradiance and at a leaf temperature optimum for photosynthesis. Variation in leaf resistance (within the range 1.6 to 60 s cm-1) induced by moisture status, or by cyclic oscillations in stomatal aperture, was associated with changes in both photosynthesis and transpiration. At low leaf resistance (ri less than 10 s cm-1) the ratio of transpiration to photosynthesis declined with reduced stomatal aperture, indicating a tighter stomatal control over H2O vapour loss than over CO2 assimilation. At higher leaf resistance (ri greater than 10 s cm-1) changes in transpiration and photosynthesis were linearly related, but leaf resistance and mesophyll resistance were also positively correlated, so that strictly stomatal control of photosynthesis became more apparent than real. This evidence, combined with direct measurements of CO2 diffusive resistances (in a -O2 gas stream) emphasised the presence of a significant mesophyll resistance; i.e., an additional and rate limiting resistance to CO2 assimilation over and above that encountered by H2O vapour escaping from the leaf.  相似文献   

5.
The effects of light, temperature, and salinity on growth, net CO2 exchange and leaf anatomy of Distichlis spicata were investigated in controlled environment chambers. When plants were grown at low light, growth rates were significantly reduced by high substrate salinity or low temperature. However, when plants were grown at high light, growth rates were not significantly affected by temperature or salinity. The capacity for high light to overcome depressed growth at high salinity cannot be explained completely by rates of net photosynthesis, since high salinity caused decreases in net photosynthesis at all environmental conditions. This salinity-induced decrease in net photosynthesis was caused largely by stomatal closure, although plants grown at low temperature and low light showed significant increases in internal leaf resistance to CO2 exchange. Increased salinity resulted in generally thicker leaves with lower stomatal density but no significant differences in the ratio of mesophyll cell surface area to leaf area. Salinity and light during growth did not significantly affect rates of dark respiration. The mechanisms by which Distichlis spicata tolerates salt appear to be closely coulpled to the utilization of light energy. Salt-induced leaf succulence is of questionable importance to gas exchange at high salinity in this C4 species.  相似文献   

6.
Difference between effects of sulfur dioxide (SO2) and ozone (O3) on groundnut plants (Arachis hypogaea L.) was studied by use of an exposure system of enzymatically-isolated mesophyll cells. SO2 inhibited photosynthesis of intact groundnut leaves but induced no visible injury on leaves. SO2 also inhibited photosynthesis of isolated mesophyll cells but did not kill the cells, suggesting that SO2 inhibits photosynthesis by attacking rather specifically the photosynthetic apparatus in chloroplasts. O3 inhibited photosynthesis of intact leaves and at the same time induced visible injury corresponding to the extent of photosynthesis inhibition. O3 also inhibited photosynthesis of isolated mesophyll cells and killed the cells to the extent corresponding to photosynthesis inhibition, suggesting that O3 inhibits photosynthesis not directly by attacking the photosynthetic apparatus but indirectly by killing cells. Since the response of intact leaves to each pollutant resembled that of isolated mesophyll cells, the difference between responses of intact leaves to both pollutants may considerably reflect that of mesophyll cells.  相似文献   

7.

Background  

The stimulatory effect of CO2 on ethylene evolution in plants is known, but the extent to which ethylene controls photosynthesis is not clear. Studies on the effects of ethylene on CO2 metabolism have shown conflicting results. Increase or inhibition of photosynthesis by ethylene has been reported. To understand the physiological processes responsible for ethylene-mediated changes in photosynthesis, stomatal and mesophyll effects on photosynthesis and ethylene biosynthesis in response to ethephon treatment in mustard (Brassica juncea) cultivars differing in photosynthetic capacity were studied.  相似文献   

8.
Leaves exposed to potassium (K) deficiency usually present decreased mesophyll conductance (gm) and photosynthesis (A). The relative contributions of leaf anatomical traits in determining gm have been quantified; however, anatomical variabilities related to low gm under K starvation remain imperfectly known. A one‐dimensional model was used to quantify anatomical controls of the entire CO2 diffusion pathway resistance within a leaf on two Brassica napus L. cultivars in response to K deficiency. Leaf photosynthesis of both cultivars was significantly decreased under K deficiency in parallel with down‐regulated gm. The mesophyll conductance limitation contributed to more than one‐half of A decline. The decreased internal air space in K‐starved leaves was associated with the increase of gas‐phase resistance. Potassium deficiency reduced liquid‐phase conductance by decreasing the exposed surface area of chloroplasts per unit leaf area (Sc/S), and enlarging the resistance of the cytoplasm that can be interpreted by the increasing distance of chloroplast from cell wall, and between adjacent chloroplasts. Additionally, the discrepancies of A between two cultivars were in part because of gm variations, ascribing to an altered Sc/S. These results emphasize the important role of K on the regulation of gm by enhancing Sc/S and reducing cytoplasm resistance.  相似文献   

9.
Several transpiration suppressants, (phenyl mercuric acetate, Tag 16 (polyethylen emulsion) R14-poly (ethylene adipate) 4–4 Diphenylmethan diisocyanate), which are known to either close stomata or form thin films on leaves, were sprayed on citrus and grapevine seedlings. Water vapor and carbon dioxide exchange of single leaves were measured by means of infra red gas analyzer and L1C1 hygrosensors. The effects of the chemicals were evaluated by analyzing net photosynthesis, transpiration, mesophyll resistance to CO2 compensation concentration and respiration. All the chemicals tested increased either mesophyll resistance or CO2 compensation point to various degrees. It is concluded that none of the chemicals tested acted solely on epidermal resistance. All chemicals reduced photosynthesis, but the ratio of photosynthesis to transpiration increased in most cases in grapevine but not in citrus. Different chemicals acted differently on citrus and grapevine. The method of analysis used enabled us to evaluate separately the relative effect of a chemical on mesophyll resistance and respiration.  相似文献   

10.
Photosynthesis in C3 plants is CO2 limited and therefore any increase in Rubisco carboxylation substrate may increase net CO2 fixation, unless plants experience acclimation or other limitations. These aspects are largely unexplored in grapevine. Photosynthesis analysis was used to assess the stomatal, mesophyll, photochemical and biochemical contributions to the decreasing photosynthesis observed in Tempranillo grapevines (Vitis vinifera) from veraison to ripeness, modulated by CO2, temperature and water availability. Photosynthesis and photosystem II photochemistry decreased from veraison to ripeness. The elevated CO2 and temperature increased photosynthesis, but transiently, in both well irrigated (WI) and water‐stressed plants. Photosynthetic rates were maxima 1 week after the start of elevated CO2 and temperature treatments, but differences with treatments of ambient conditions disappeared with time. There were not marked changes in leaf water status, leaf chlorophyll or leaf protein that could limit photosynthesis at ripeness. Leaf total soluble sugars remained at ripeness as high as 2 weeks after the start of treatments. On the other hand, and as expected, CO2 diffusional limitations impaired photosynthesis in grapevine plants grown under water scarcity, stomatal and mesophyll conductances to CO2 decreased and in turn low chloroplastic CO2 concentrations limited photosynthetic CO2 fixation. In summary, photochemistry and photosynthesis from veraison to ripeness in Tempranillo grapevine were dominated by a developmental‐related decreasing trend that was only transiently influenced by elevated CO2 concentrations.  相似文献   

11.
Mesophyll protoplasts of pea required only 74.1 μM CO2 for maximal photosynthesis, unlike chloroplasts, which required up to 588 μM CO2. Such a markedly low requirement for CO2 could be because of an internal carbon source and/or a CO2 concentrating mechanism in mesophyll protoplasts. Ethoxyzolamide (EZA), an inhibitor of internal carbonic anhydrase (CA) suppressed photosynthesis by mesophyll protoplasts at low CO2 (7.41 μM) but had no significant effect at high CO2 (741 μM). However, acetazolamide, another inhibitor of CA, did not exert as much dramatic effect as EZA. Three photorespiratory inhibitors, aminoacetonitrile or glycine hydroxamate (GHA) or aminooxyacetate inhibited markedly photosynthesis at low CO2 but not at high CO2. Inhibitors of glycolysis or tricarboxylic acid cycle (NaF, sodium malonate) or phosphoenolpyruvate carboxylase (3,3‐dichloro‐2‐dihydroxy phosphinoyl‐methyl‐2‐propenoate) had no significant effect on photosynthesis. The CO2 requirement of protoplast photosynthesis and the sensitivity of photosynthesis to EZA were much higher at low oxygen (65 nmol ml?1) than that at normal oxygen (212 nmol ml?1). In contrast, the inhibitory effect of photorespiratory inhibitors on protoplast photosynthesis was similar in both normal and low oxygen medium. The marked elevation of glycine/serine ratio at low O2 or in presence of GHA confirmed the suppression of photorespiratory decarboxylation by GHA. While demonstrating interesting difference between the response of protoplasts and chloroplasts to CO2, we suggest that photorespiration could be a significant source of CO2 for photosynthesis in mesophyll protoplasts at limiting CO2 and at atmospheric levels of oxygen. Obviously, carbonic anhydrase is essential to concentrate or retain CO2 in mesophyll cells.  相似文献   

12.
The effects of lateral shade and wind on stem allometry, whole-plant biomass allocation, and mechanical stability were examined for Abutilon theophrasti in a fully factorial glasshouse experiment. Lateral shade from neighboring plants increased stem height by 33% relative to control plants grown individually, despite a decrease in plant dry mass. Intermittent wind decreased stem height by 18% in unshaded plants, but by only 3% in shaded plants. Surprisingly, both lateral shade and wind caused decreases in stem diameter, even with diameter controlled for height, resulting in low diameter?:?height ratios in wind-treated plants relative to untreated plants. Under shade, wind-treated plants had higher root allocation than untreated plants, which allowed wind-treated shade plants to compensate for a low diameter?:?height ratio. This did not occur in the absence of shade, where stem tissue density and root allocation of wind-treated plants did not exceed that of untreated plants. Nevertheless, wind-treated plants experienced low drag relative to untreated plants due to a lower leaf area. Consequently, stem deflections of wind-treated plants did not exceed those of untreated plants at any given windspeed. Our results document a complex interaction between shade and wind on plant morphology and suggest that the nature of this interaction is generally that lateral shade acts to reduce or eliminate thigmomorphogenic responses.  相似文献   

13.
Stomatal movement is an energetic oxygen-requiring process. In the present study, the effect of oxygen concentration on mitochondrial respiratory activity and red-light-dependent photosynthetic oxygen evolution by Vicia faba and Brassica napus guard cell protoplasts was examined. Comparative measurements were made with mesophyll cell protoplasts isolated from the same species. At air saturated levels of dissolved oxygen in the protoplast suspension media, respiration rates by mesophyll protoplasts ranged from 6 to 10μmoles O2 mg?1 chl h?1, while guard cell protoplasts respired at rates of 200–300 μmoles O2 mg chl?1 h?1, depending on the species. Lowering the oxygen concentration below 50–60 mmol m?3 resulted in a decrease in guard cell respiration rates, while rates by mesophyll cell protoplasts were reduced only at much lower concentrations of dissolved oxygen. Rates of photosynthesis in mesophyll cell protoplasts isolated from both species showed only a minor reduction in activity at low oxygen concentrations. In contrast, photosynthesis by guard cell protoplasts isolated from V. faba and B. napus decreased concomitantly with respiration. Oligomycin, an inhibitor of oxidative phos-phorylation, reduced photosynthesis in mesophyll cell protoplasts by 27–46% and in guard cell protoplasts by 51–58%. The reduction in both guard cell photosynthesis and respiration following exposure to low oxygen concentrations suggest close metabolic coupling between the two activities, possibly mediated by the availability of substrate for respiration associated with photosynthetic electron transport activity and subsequent export of redox equivalents.  相似文献   

14.
风对黄花蒿水力学性状和生长的影响   总被引:1,自引:0,他引:1  
王林  代永欣  樊兴路  张芸香  黄平  万贤崇 《生态学报》2015,35(13):4454-4461
吹风会影响到植物的水力学结构、光合作用、生物量分配以及植物的力学性状,研究风对植物的综合影响有助于深入了解植物应对风胁迫的响应机制。以黄花蒿为研究对象,每天吹风4h,风速为5m/s,吹风处理60d,测定了风吹条件下黄花蒿的水力学特征、光合作用、生物量分配和茎干力学特性。结果表明:在风吹条件下,黄花蒿正午水势显著低于对照,茎干导水损失率(PLC)增加了16%,最大光合速率仅为对照的62%,气孔导度为对照的55%。在试验结束时风吹植株株高仅为对照的68%,但基茎显著高于对照,同时风吹显著降低了黄花蒿的总生物量,但根冠比显著高于对照,风吹显著减小了茎导管直径和导管密度,风吹植物导管直径和导管密度分别为对照的77%和55%,同时,风吹植物茎干导水率显著低于对照,但茎干的抗弯刚度显著高于对照。以上结果表明风吹抑制了植物的水分输导能力,导致叶片水分匮缺,限制了植物的光合作用。风吹增加了茎干的力学稳定性,但同时降低了茎干的水分输导能力,这是植物茎在力学性状和水分输导之间的权衡。这种改变有利于在有风条件下维持植物的力学稳定性,但同时降低了水分输导能力。  相似文献   

15.
The aim of this study was to investigate whether the root system of Mesembryanthemum crystallinum (L.) plays a role in triggering the induction of crassulacean acid metabolism (CAM) during water stress. Depriving well-irrigated plants of water, by allowing the soil surrounding the roots to dry, caused increased daily losses in leaf relative water content (RVVC) and mesophyll cell turgor pressure. The RWC of the roots also declined. Subsequently plants exhibited physiological characteristics of CAM photosynthesis (i.e. diurnal fluctuations in leaf titratable acidity and nocturnal net CO2 fixation). When the root system of plants was divided equally between two soil compartments and one half deprived of water, plants exhibited physiological characteristics of CAM without prior changes in leaf RWC content or mesophyll cell turgor pressure. Only the RWC of the water-stressed portion of the roots was reduced. These data suggest that in water-stressed plants daily changes in leaf water relations greater than those observed in well-irrigated plants, are not essential to trigger CAM expression. It is probable that a reduction in soil water availability can be perceived by the roots of M. crystallinum and that this information is conveyed to the leaves triggering the transition from C3 to CAM photosynthesis.  相似文献   

16.
Salinity significantly limits leaf photosynthesis but the factors causing the limitation in salt‐stressed leaves remain unclear. In the present work, photosynthetic and biochemical traits were investigated in four rice genotypes under two NaCl concentration (0 and 150 mM) to assess the stomatal, mesophyll and biochemical contributions to reduced photosynthetic rate (A) in salt‐stressed leaves. Our results indicated that salinity led to a decrease in A, leaf osmotic potential, electron transport rate and CO2 concentrations in the chloroplasts (Cc) of rice leaves. Decreased A in salt‐stressed leaves was mainly attributable to low Cc, which was determined by stomatal and mesophyll conductance. The increased stomatal limitation was mainly related to the low leaf osmotic potential caused by soil salinity. However, the increased mesophyll limitation in salt‐stressed leaves was related to both osmotic stress and ion stress. These findings highlight the importance of considering mesophyll conductance when developing salinity‐tolerant rice cultivars.  相似文献   

17.
Images of chlorophyll fluorescence were used to demonstrate patchy stomatal closure at low humidities in leaves of well-watered Xanthium strumarium plants. The pattern and extent of patchy stomatal closure were shown to be different for the two surfaces of amphistomatous leaves by taking images of leaves with CO2 available to only one leaf was exposed to low humidity, patchiness was more extensive on that surface. Gas-exchange experiments were also conducted to determine the apparent photosynthetic capacity of the mesophyll (photosynthesis rate at constant ci when it was supplied with CO2 through both surfaces or through each surface alone. These experiments showed declines in the apparent photosynthetic capacity of the mesophyll at low humidities that were consistent with patchy stomatal closure on one or both surfaces. The results suggest that patchy stomatal closure can be a factor in the steady-state reponses of stomata to humidity. In amphistomatous leaves this is further complicated by the fact that patches on one epidermis may not coincide with those of the other surface.  相似文献   

18.
Stem and leaf photosynthetic responses to environmental parameters were studied in Spartium junceum L., a legume with chlorophyllous stems. Stem net photosynthesis (Pn) was consistently lower than leaf Pn. The low stem Pn was due to lower quantum yield, lower mesophyll conductance and lower CO2-saturated Pn than that of leaf Pn. Stomatal limitations to leaf and stem Pn were similar (25%). Water stress caused a greater reduction in leaf Pn than that of stems. Leaf Pn was also reduced in water-stressed plants following rehydration. The reduced leaf Pn was associated with a reduced photon saturated Pn rate and a reduced CO2 saturated Pn rate. Apparent quantum yield, mesophyll conductance and stomatal limitation of leaves were unaffected by water-stress. Stem Pn following rehydration was not influenced by the water-stress treatment. In general, leaf Pn was more responsive to environmental parameters and more sensitive to water stress than stem Pn. These data support the hypothesis that stem Pn has greater tolerance of water stress, but is limited to low Pn by biochemical means compared to leaves.  相似文献   

19.
Summary Salicornia fruticosa was collected from a salt marsh on the Mediterranean sea coast in Libya. Growth and gas exchange of this C3 species were monitered in plants pretreated at various NaCl concentrations (0, 171, 342, 513 and 855 mM). Maximum growth was at 171 mM NaCl under cool growth conditions (20/10° C) and at 342 mM NaCl under warm growth conditions (30/15° C) with minimum growth at 0 mM NaCl (control). Net photosynthesis (Pn) was greatest in plants grown in 171 mM NaCl with plants grown at 513 and 855 mM having lowest rates. Maximum Pn was at 20–25° C shoot temperatures with statistically significant reductions at 30° C in control plants while salt treated plants showed such reductions at 35° C. Salt treatments increased dark respiration over the control at 171 and 342 mM but reduced it at higher concentrations. Photorespiration was reduced by salt treatment and increased by increasing shoot temperature. Greatest transpiration was in 171 mM NaCl treated plants and increasing shoot temperature increased transpiration in all treatments. Stomatal resistance to CO2 influx was influenced only moderately by temperature while increasing salinity resulted in increased stomatal resistance. In general both temperature and salinity increased the mesophyll resistance to CO2 influx. The species seems adapted to the warm saline habitat along the Mediterranean sea coast, at least partially, by its ability to maintain relatively high Pn at moderate NaCl concentrations over a broad range of shoot temperatures.  相似文献   

20.
Plants of Solidago virgaurea L. from exposed and shaded habitats differ with respect to the response of the photosynthetic apparatus to the level of irradiance during growth. An analysis was carried out on leaf characteristies which might be responsible for the differences established in the rates of Hght-saturated CO2 uptake. The clones were grown in controlled environment chambers at high and low levels of irradiance. Light-saturated rates of photosynthesis and transpiration were measured at natural and lower ambient CO2 concentrations. A low temperature dependence of light-saturated CO2 uptake at natural CO2 concentrations, and a strong response to changes in stomatal width, suggested that the rate of CO2 transfer from ambient air towards reaetion sites in chloroplasts was mainly limiting the pholosynthetic rate. Resistances to transfer of CO2 for different parts of the pathway were calculated. There was a weak but significant correlation between stomatal conductance and the product stomatal frequency ± pore length. Mesopbyll conductance and dry weight per unit area were highly correlated in leaves not damaged by high irradiance. This suggests that mesophyll conductance increases with increasing cross sectional area (per unit leaf area) of the pathways of CO2 transfer in the mesophyll from cell surfaces to reaction sites. The higher light-saturated photosynthesis in clones from exposed habitats when grown at high irradiance than when grown at low irradiance was attributable mainly to a lower mesophyll resistance. In shade clones the effect upon CO2 uptake of the increase in leaf thickness when grown at high irradiance was counteracted by the associated inactivation of the photosynthetic apparatus. The difference in CO2 uptake present between clones from exposed and shaded habitats when preconditioned to high irradiance resulted from differences in both mesophyll and stomatal resistances. A few hybrid clones of an F1-population from a cross between a clone from an exposed habitat and a clone from a shaded habitat reacted, on the whole, in the same way as the exposed habitat parent. When grown at high irradiance, the hybrid clones showed higher photosynthetic rates than either parent; this was largely attributable to the unusually low stomatal resistance of the hybrid leaves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号