首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Phytoplankton in the mixed layer is exposed to increasing levels of light when transported to the surface layer of the ocean. The photoprotective response of natural assemblages of phytoplankton can differ among community structures. We investigated photoprotective acclimation and xanthophyll cycle pigments in size-fractionated natural phytoplankton assemblages during the austral summer in the Indian sector of the Southern Ocean. We estimated concentrations of phytoplankton pigments in the micro-size fractions (>20 μm) and nano-size fractions (2–20 μm) by subtracting concentrations in the <20 μm fractions from concentrations in the bulk samples, and by subtracting concentrations in the <2 μm fractions from concentrations in the <20 μm fractions, respectively. Changes in the ratios of the xanthophyll cycle pigments diadinoxanthin (DD) and diatoxanthin (DT) were determined at three optical depths in the mixed layer and during 48 h deck incubations under solar photosynthetically available radiation and ultraviolet radiation. Large variations in (DD + DT)/Chl a in the mixed layer (percent coefficient of variation >67 %) and in deck incubation bottles under variable light conditions (>75 % of the temporal variation) for the micro-size fractions suggest a higher potential for photoprotective acclimation than for the nano-size fractions. Decreases in DT/(DD + DT) with increases in the optical depth of the mixed layer (ζ MLD) suggest that larger variations in light availability in the mixed layer might predict lower values of DT/(DD + DT) at the surface, regardless of cell size.  相似文献   

2.
It is widely believed that inorganic C does not limit the rate of short-term photosynthesis, the net productivity, or the maximum biomass, of marine phytoplankton. This lack of inorganic C restriction is less widely believed to hold for phytoplankton in many low alkalinity freshwaters or for seaweed in nutrient-enriched rock pools. These views are examined in the context of the physical chemistry of the inorganic C system in natural waters and of the ways in which various taxa of phytoplankton deal with inorganic C and discriminate between 12C and 13C. Using this information to interpret data obtained in the ocean or in freshwater suggests that short-term photosynthesis, production rate, and achieved biomass, of phytoplankton are rarely limited by inorganic C supply but, rather, that the widely suggested factors of limited light, nitrogen or phosphorus supply are the resource inputs which restrict productivity. Global change, by increasing atmospheric CO2 partial pressure and global mean temperatures, is likely to increase the mean CO2 concentration in the atmosphere, but the corresponding change in the oceans will be much less. There are, however, genotypic differences in the handling of inorganic C among the diversity of marine phytoplankton, and in impact on use of limiting nutrients, so increases in the mean CO2 and HCO3 - concentrations in surface ocean waters could cause changes in species composition. However, the rarity of inorganic C limitation of marine phytoplankton short-term photosynthesis, net productivity, or the maximum biomass, in today's ocean means that global change is unlikely to increase these three values in the ocean.  相似文献   

3.
Grazing on phytoplankton by the micro- and mesozooplankton communitieswas measured during four cruises in a shallow (1.5 m) productive(up to 6 g C m–2 day–1 estuary in the northern Gulfof Mexico. Grazing-induced mortality on phytoplankton was alwayshigh and >95% of the grazing was by the microzooplanktoncommunity The grazing contribution from the mesozooplanktoncommunity, comprised primarily of Acartia tonsa, is believedto be small because populations were kept low by predation andadvective losses. A simple model is developed to describe phytoplankton-zooplanktoninteractions in this estuary. Attempts to understand the distributionand abundance of phytoplankton in estuaries must include estimatesof grazer-induced mortality on the phytoplankton.  相似文献   

4.
Communities of marine phytoplankton consist of cells of many different sizes. The size-structure of these communities often varies predictably with environmental conditions in aquatic systems. It has been hypothesized that physiological differences in nutrient and light requirements and acquisition efficiencies contribute to commonly observed correlations between phytoplankton community size structure and resource availability. Using physiological models we assess how light and nutrient availability can alter the relative growth rates of phytoplankton species of different cell sizes. Our models predict a change in the size dependence of growth rate depending on the severity of limitation by light and nutrient availability. Under conditions of growth-saturated resource supply, phytoplankton growth rate (mol C ) scales with cell volume with a size-scaling exponent of ; light limitation reduces the size-scaling exponent to approximately , and nutrient limitation decreases the exponent to as a consequence of the size-scaling of resource acquisition. Exponents intermediate between and occur under intermediate availability of light and nutrients and depend on the size-scaling of pigment photoacclimation and the size range examined.  相似文献   

5.
Lake Sempach, located in the central part of Switzerland, has a surface area of 14 km2, a maximum depth of 87 m and a water residence time of 15 years. Restoration measures to correct historic eutrophication, including artificial mixing and oxygenation of the hypolimnion, were implemented in 1984. By means of the combination of external and internal load reductions, total phosphorus concentrations decreased in the period 1984–2000 from 160 to 42 mg P m–3. Starting from 1997, hypolimnion oxygenation with pure oxygen was replaced by aeration with fine air bubbles. The reaction of the plankton has been investigated as part of a long-term monitoring program. Taxa numbers, evenness and biodiversity of phytoplankton increased significantly during the last 15 years, concomitant with a marked decline of phosphorus concentration in the lake. Seasonal development of phytoplankton seems to be strongly influenced by the artificial mixing during winter and spring and by changes of the trophic state. Dominance of nitrogen fixing cyanobacteria (Aphanizomenon sp.), causing a severe fish kill in 1984, has been correlated with lower N/P-ratio in the epilimnion. Buoyant algae such as Planktothrix rubescens (syn. Oscillatoria rubescens) increased in abundance due to enlargement of the trophogenic layer and extended mixing depth during winter. The interactions between zoo- and phytoplankton seemed to be depressed as a result of restoration measures. Zooplankton composition changed to more carnivorous and less herbivorous species. Oxygenation of the hypolimnion induced bioturbation of sediments, mainly by oligochaetae worms, and stimulated germination of spores and cysts and hatching of resting eggs.  相似文献   

6.
7.
Regulation of phosphorus loading is considered to be the primary method of eutrophication control for many lake systems. It is therefore necessary to have accurate estimates of the forms and bioavailability of all phosphorus sources in order to develop the most cost effective load control measures. Research at Clarkson University, aimed at improving the accuracy of estimates of the form and reactivity of phosphorus loadings to Lake Erie, has revealed a significant difference between the algal-availability of allochthonous and autochthonous particulate phosphorus. This paper presents the results of modifying an existing multi-nutrient phytoplankton model by separating allochthonous phosphorus into three forms: soluble reactive phosphorus (SRP) — immediately available for algal uptake; external ultimately-available phosphorus—not immediately available but converted to an available form at a specific rate; an external refractory phosphorus (ERP)—not available while in the water column. Comparisons between the original and modified models showed that the modified phosphorus dynamics proved to be a viable alternative to the concept of invoking an unexplained soluble phosphorus water column loss term, employed in the original model. The work also demonstrates that the distinction is significant for lakes receiving a significant portion of their external phosphorus load in a particulate (not immediately available) form and having a morphometry and hydrology such that this particulate phosphorus remains in the water column for longer than about two weeks.  相似文献   

8.
Ertsen  A. C. D.  Alkemade  J. R. M.  Wassen  M. J. 《Plant Ecology》1998,135(1):113-124
A general calibration of Ellenberg indicator values for moisture, acidity, nutrient availability and salinity was carried out on a large database of relevées and environmental variables from a variety of ecosystems in the Netherlands.Satisfying relationships with Ellenberg indicator values for moisture, acidity and salinity were found for mean groundwater level in spring time, soil pH and chloride concentration in groundwater. For mean groundwater level in spring and chloride concentration in groundwater subdivision of the database led to clearer relationships with indicator values. For the Ellenberg indicator value for nutrient availability satisfying calibration results were only achieved with data on standing crops and N stock in standing crop. The relationship with soil chemical variables was less clear.Although the correlation between indicator and measured values is obvious, the variation around the regression lines is considerable. However, because of the size and composition of the database, it is unlikely that our calibration results can be much improved by adding more (Dutch) data.The calibration results will be applied in the multi-stress model SMART-MOVE, developed to predict changes in species composition due to acidification, eutrophication and the effects of lowering groundwater.  相似文献   

9.
10.
Surface ocean pH is declining due to anthropogenic atmospheric CO2 uptake with a global decline of ~0.3 possible by 2100. Extracellular pH influences a range of biological processes, including nutrient uptake, calcification and silicification. However, there are poor constraints on how pH levels in the extracellular microenvironment surrounding phytoplankton cells (the phycosphere) differ from bulk seawater. This adds uncertainty to biological impacts of environmental change. Furthermore, previous modelling work suggests that phycosphere pH of small cells is close to bulk seawater, and this has not been experimentally verified. Here we observe under 140 μmol photons·m−2·s−1 the phycosphere pH of Chlamydomonas concordia (5 µm diameter), Emiliania huxleyi (5 µm), Coscinodiscus radiatus (50 µm) and C. wailesii (100 µm) are 0.11 ± 0.07, 0.20 ± 0.09, 0.41 ± 0.04 and 0.15 ± 0.20 (mean ± SD) higher than bulk seawater (pH 8.00), respectively. Thickness of the pH boundary layer of C. wailesii increases from 18 ± 4 to 122 ± 17 µm when bulk seawater pH decreases from 8.00 to 7.78. Phycosphere pH is regulated by photosynthesis and extracellular enzymatic transformation of bicarbonate, as well as being influenced by light intensity and seawater pH and buffering capacity. The pH change alters Fe speciation in the phycosphere, and hence Fe availability to phytoplankton is likely better predicted by the phycosphere, rather than bulk seawater. Overall, the precise quantification of chemical conditions in the phycosphere is crucial for assessing the sensitivity of marine phytoplankton to ongoing ocean acidification and Fe limitation in surface oceans.Subject terms: Water microbiology, Microbial biooceanography, Biogeochemistry  相似文献   

11.
SUMMARY.
  • 1 Recent laboratory studies demonstrate that periphytic algae growing on the sediment surface reduce nutrient availability in the overlying water. Consequently, periphytic algae may competitively reduce growth of phytoplankton.
  • 2 The aim of this study was to quantify the competitive impact of sediment-attached periphytic algae on phytoplankton in the presence of all other factors simultaneously affecting nutrient dynamics in natural systems.
  • 3 In enclosure experiments, performed in three lakes of different productivity, the periphytic algal biomass was manipulated. When compared to enclosures with high biomass of periphytic algae, those with reduced biomass showed an increase in total phosphorus concentration in the water of 32–44%. Extrapolation of the experimental results to whole lakes predicts an increase in original total phosphorus concentration of between 1.5% and 8.0%. According to existing regressions between total phosphorus and phytoplankton chlorophyll, the potential increase in original phytoplankton biomass will be between 2.5% and 12.6%.
  • 4 With respect to the shallow parts of lakes, my results support the conclusions revealed from laboratory studies that periphytic algae have a significant impact on the phosphorus concentration in the overlying water. However, when considering whole-lake dynamics, the competitive impact of periphytic algae on phytoplankton biomass development is probably of minor importance.
  • 5 Rather, the main competitive advantage of growing on the sediment surface, compared to in the water, may be the exclusive access to nutrients in the sediment.
  相似文献   

12.
13.
The sulfate facilitation hypothesis suggests that changes in ocean sulfate concentration influenced the rise to dominance of phytoplankton species of the red lineage. The mechanistic reasons for this phenomenon are not yet understood. We started to address this question by investigating the differences in S utilization by algae of the green and red lineages and in cyanobacteria cultured in the presence of either 5 mmol · L?1 (approximately equivalent to Paleozoic ocean concentrations) or 30 mmol · L?1 (corresponding to post‐Mesozoic/extant concentrations) sulfate. The activities of the main enzymes involved in SO42? assimilation changed in response to changes in growth sulfate concentration. ATP sulfurylase showed different kinetics in the various taxa, with an especially odd behavior for the dinoflagellate. Sulfate availability had a modest effect on cell organic composition. Species‐specific differences in the use of some elements were instead obvious in algae grown in the presence of different sulfate concentrations, overall confirming that algae of the red lineage do better at high sulfate than algae of the green lineage. The increase in sulfate concentration may thus have had an impact on phytoplankton radiation both through changes in their enzymatic machinery and through indirect repercussion on elemental usage.  相似文献   

14.
Barrier islands shrub thickets, the dominant woody community of many Atlantic coast barrier islands, are very sensitive to changes in the freshwater lens and thus, constitute a strong indicator of summer drought. NDVI was computed from airborne images and multispectral images on Hog Island (VA, USA) to evaluate summer growing season changes in woody communities for better predictions of climate change effects. Patterns of NDVI were compared year to year and monthly relative to precipitation and water table depth at the appropriate temporal scale. The highest absolute values of NDVI as well as the larger surface covered by woody vegetation (NDVI > 0.5) occurred in the wet year (2004) with a bimodal distribution of NDVI values (around 0.65 and 0.9) while both dry years (2007 and 2008) showed similar values in maximum, mean and standard deviation and unimodal distributions (around 0.75) of NDVI values. Positive linear adjustments were obtained between maximum (r2 > 0.9) and mean NDVI (r2 > 0.87) and the accumulated rainfall in the hydrological year and the mean water table depth from the last rainfall event till the date of the image acquisition. The spatial variations revealed that water table depth behaved different in wet and dry years. In dry years there was a remarkable increase in mean and maximum values linearly related to water table depth. The highest slope of the adjustment in 2007 indicated a sharp response of vegetation in the driest year. Monthly series of NDVI showed the major role of lack of precipitation through July and August in 2007 with missing classes of NDVI above 0.8 and unimodal distributions in mid-late summer. Best linear fits (r2 close to 1) were obtained with rainfall at different temporal scales: accumulated rainfall in the hydrological year 2004 and accumulated rainfall in the last month previous to the date of 2007 image. Thus, in dry years productivity is closely related to water available from recent past as opposed to over the year for wet years. Good fits (r2 values higher than 0.88) were obtained between monthly decrease in water table depth and NDVI variables just in the dry year. These results demonstrate the important feedback between woody vegetation response to changes in the freshwater lens using empirical data and could apply to other systems with strong directional gradients in resources.  相似文献   

15.
The influence of copepods (mainly Oithona sim-ilis) and krill (Euphausia superba) grazing on the species composition of plankton communities in ship board con tainers was investigated during the spring and post spring period in the Scotia Weddell Sea in the Antarctic ocean. Numbers of grazers were experimentally manipulated in containers with natural phytoplankton assemblages. With ratural levels of copepods but no krill a high (700–950 g C·l1, ca 30 g chl a·.l1) phytoplankton biomass developed. In these cultures large diatoms, e.g. Corethron criophilum and chains of Thalassiosira sp., made up 80% of total phytoplankton cell carbon at the end of the experiment. In cultures with elevated numbers of copepods (5X or 10X the natural level) phytoplankton biomass was somewhat reduced (ca 23 g chl a · l1) compared to cultures with natural copepod abundance, but still high. Phytoplankton species composition was on the other hand greatly influenced. Instead of large diatoms these cultures were dominated by Phaeocystis pouchetii (70%) together with small Nitszchia sp. and Chaetoceros neogracile (20%). In containers with krill (both juveniles and adults), but without elevated numbers of copepods, phytoplankton biomass rapidly approached zero. With 10X the in situ level of copepods, krill first preyed on these before Corethron criophilum and Thalassiosira sp. were grazed. When krill were removed a plankton community dominated by flagellates (60–90%), e.g. Pyramimonas sp. and a Cryptophycean species, grazed by an unidentified droplet-shaped heterothrophic flagellate, developed. These flagellates were the same as those which dominated the plankton community in the Weddell Sea after the spring bloom. A similar succession was observed in situ when a krill swarm grazed down a phytoplankton bloom in a few hours. Our experiments show that copepods cannot control phytoplankton biomass in shipboard cultures even at artificially elevated numbers. Krill at concentrations similar to those in natural swarms have a great impact on both phytoplankton biomass and species composition in shipboard cultures. Both copepods and krill may have an impact on phytoplankton species composition and biomass in situ since the rates of phytoplankton cell division were probably artificially increased in shipboard cultures compared to natural conditions, where lower growth rates make phytoplankton more vulnerable to grazing. A similarity between phytoplankton successions in containers and in situ, especially with respect to krill grazing, supports the conclusion that grazing may structure phytoplankton communities in the Scotia-Weddell Sea.Data presented here were collected during the European Polarstern Study (EPOS) sponsored by the European Science Foundation  相似文献   

16.
Photosynthetic acclimation of phytoplankton to lower irradiation can be met by several strategies such as increasing the affinity for light or increasing antenna size and stacking of the thylakoids. The latter is reflected by a higher proportion of polyunsaturated fatty acids (PUFAs). Additionally, photosynthetic capacity (Pmax), respiratory losses, and proton leakage can be reduced under low light. Here we consider the effect of light intensity and phosphorus availability simultaneously on the photosynthetic acclimation and fatty acid composition of four phytoplankters. We studied representatives of the Chlorophyceae, Cryptophyceae and Mediophyceae, all of which are important components of plankton communities in temperate lakes. In our analysis, excluding fatty acid composition, we found different acclimation strategies in the chlorophytes Scenedesmus quadricauda, Chlamydomonas globosa, cryptophyte Cryptomonas ovata and ochrophyte Cyclotella meneghiniana. We observed interactive effects of light and phosphorus conditions on photosynthetic capacity in S. quadricauda and Cry. ovata. Cry. ovata can be characterized as a low light-acclimated species, whereas S. quadricauda and Cyc. meneghiniana can cope best with a combination of high light intensities and low phosphorus supply. Principal component analyses (PCA), including fatty acid composition, showed further species-specific patterns in their regulation of Pmax with PUFAs and light. In S. quadricauda and Cyc. meneghiniana, PUFAs negatively affected the relationship between Pmax and light. In Chl. globosa, lower light coincided with higher PUFAs and lower Pmax, but PCA also indicated that PUFAs had no direct influence on Pmax. PUFAs and Pmax were unaffected by light in Cry. ovata. We did not observe a general trend in the four species tested and concluded that, in particular, the interactive effects highlight the importance of taking into account more than one environmental factor when assessing photosynthetic acclimation to lower irradiation.  相似文献   

17.
SUMMARY. A pigment ratio representing the ratio of carotenoid pigments to chlorophyll- a was calculated by dividing the optical density at 480 nm by that at 664 nm for a 90% acetone extract of phytoplankton. Its seasonal variation in three Norfolk broads was examined and, except for nitrogen-fixing species, it was found to vary independently of the algal species composition.
A good inverse correlation with the particulate nitrogen to carbon ratio was found. The seasonal variation in the pigment ratio was considerably affected by measurable lake concentrations of inorganic nitrogen supplied from ttie catchment. Other sources of nitrogen such as nitrogen fixation and release from the sediment were also indicated by changes in the ratio.
By comparison with the distinctions of extreme, moderate and no nitrogen deficiency drawn by Healey (1975) for the nitrogen/carbon ratio, values for the pigment ratio of < 1.4, 1.4–2.4 and > 2.4 were found to indicate no, moderate and extreme nitrogen deficiency respectively in the phytoplankton. The relation ship is attributed to the measurement of secondary carotenoids in response to nitrogen deficiency.  相似文献   

18.
The role of light and nutrient availability in controlling theabundance and structure of phytoplankton populations was studiedin Lake Okeechobee, a large eutrophic lake in south florida,USA. Measurement of selected environmental parameters at samplingsites within four ecologically distinct regions of the lakewere combined with direct experimental determinations of limitinglevels of light and nutrients for phytoplankton growth to determinespatial and temporal variations in the relative roles of theselimiting factors. Estimated mean light availability in the mixedlayer, Im, was significantly lower in the turbid central regionof the lake than in other regions. Correlations between Im andphytoplankton standing crops led to the conclusion that lowlight availability in the central region of the lake, and toa lesser extent in other areas, restricts phytoplankton standingcrops to levels below the potential provided by the nutrientsavailable. The results of the irradiance-growth experimentsconfirmed the conclusions of the correlation analyses that phytoplanktongrowth is restricted by the levels of light availability experiencedduring the winter and spring in the central region of the lake.Bioassays indicated that nitrogen was the most frequently limitingnutrient for phytoplankton growth. High rates of nitrogen fixationwere frequently observed in the lake, along with correspondinglyhigh abundances of nitrogen-fixing cyanobacteria and nitrogenfixation activity. Elevated concentrations of soluble inorganicnitrogen appeared to suppress both nitrogen fixation and therelative abundance of nitrogen-fixing cyanobacteria.  相似文献   

19.
The vitamin E (VE) content of tissues from the Antarctic notothenioid fish, Chaenocephalus aceratus, Champsocephalus gunnari and Gobionotothen gibberifrons, and extracts of Antarctic krill Euphausia superba and phytoplankton collected from the Antarctic Peninsula was examined. Included in the VE composition was a newly described 'marine-derived' tocopherol (MDT), an unsaturated-isoprenoid derivative of alpha-tocopherol, that is attributed to enhancing antioxidant protection of cellular lipids at low temperature. MDT was found to co-exist with alpha-tocopherol in all Antarctic samples, ranging from 2.8 to 22.3% of the total VE composition. The highest level of VE was found in the liver of G. gibberifrons (VE=416.7 pmol/mg wet tissue) although this tissue had a low MDT composition (7.7%), whereas the greatest MDT composition was measured in the liver of C. gunnari (MDT=22.3%). In notothenioids, the pectoral adductor muscle, which has a high density of mitochondria, contained higher levels of VE than white myotomal muscle, but differences in MDT composition were small. Phytoplankton and krill also contained MDT, which supports the contention that MDT is obtained directly from the primary food chain. Our finding of MDT in Antarctic organisms is consistent with its putatively adaptive function to enhance antioxidant protection in coldwater metabolism.  相似文献   

20.
The fish community in the Loosdrecht lakes is dominated by bream, pikeperch and smelt and is characteristic of shallow eutrophic lakes in The Netherlands. The biomasses of the respective fish species amount to ca. 250, 25 and 10 kg ha–1 and correspond to those in Tjeukemeer, another lake in The Netherlands. The average size of bream, however, is much smaller in the Loosdrecht lakes as a consequence of poorer feeding conditions. The zooplankton community in the Loosdrecht lakes is predominantly composed of relatively small species such as Daphnia cucullata, Bosmina coregoni and cyclopoid copepods, whereas in Tjeukemeer, Daphnia hyalina is permanently present in relatively high densities and the other species show a larger mean length. In the Loosdrecht lakes, the absence of D. hyalina and the smaller sizes of the other zooplankton species could be the consequence of a higher predation pressure, in combination with unfavourable feeding conditions for the zooplankton including the low density of green algae and the high density of filamentous cyanobacteria. A biomanipulation experiment in Lake Breukeleveen, one of the Loosdrecht lakes, indicated that feeding conditions were too unfavourable for large zooplankton to develop in spring, when the reduced fish biomass was not yet supplemented by natural recruitment and immigration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号