首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《新西兰生态学杂志》2011,34(2):219-226
Leaf functional traits have been proposed as general indicators of plant palatability to ungulate herbivores, identifying which species are likely to be most at risk from ungulates, and how ungulate grazing may change ecosystem processes. However, few studies have tested whether leaf trait?palatability relationships are consistent across different ungulate species. The palatability of 44 native New?Zealand grass taxa (from the genera Festuca and Chionochloa) to two ungulate herbivores (sheep Ovis aries and red deer Cervus elaphus scoticus) was assessed in cafeteria experiments. There were significant differences between sheep and deer in the selection or avoidance of grass taxa, in part related to differences in response to variation in leaf functional traits. Deer had a greater tendency than sheep to select grasses with a higher specific leaf area (SLA) and to avoid taxa with a low SLA, suggesting that it is not possible to generalise leaf trait?palatability relationships across different ungulate species. Results suggest different ungulate species are likely to have additive effects on the biodiversity and ecosystem functioning of New?Zealand?s native grasslands. These findings indicate that the impacts of ungulate herbivory on ecosystem processes will depend on which grass species are present.  相似文献   

2.
Ungulate abundance has increased dramatically worldwide, having strong impacts on ecosystem functioning. High ungulate densities can reduce the abundance, diversity and/or body condition of small mammals, which has been attributed to reductions in cover shelter and food availability by ungulates. The densities of wild ungulates have increased recently in high-diversity Mediterranean oak ecosystems, where acorn-dispersing small rodents are keystone species. We analysed experimentally ungulate effects on seed-dispersing rodents in two types of oak woodland: a forest with dense shrub layer and in dehesas lacking shrubs. Ungulates had no significant effects on vegetation structure or rodent body mass, but they reduced dramatically rodent abundance in the lacking-shrub dehesas. In the forest, ungulates modified the spatial distribution and space use of rodents, which were more concentrated under shrubs in the presence than in the absence of ungulates. Our results point to the importance of shrubs in mediating ungulate–rodent interactions in Mediterranean areas, suggesting that shrubs serve as shelter for rodents against ungulate physical disturbances such as soil compaction, trampling or rooting. Holm oak seedling density was reduced by ungulates in dehesa plots, but not in forests. Acorn consumption by ungulates may reduce oak recruitment to a great extent. Additionally, we suggest that ungulates may have a negative effect on oak regeneration processes by reducing the abundance of acorn-dispersing rodents. Given that shrubs seem to mediate ungulate effects on acorn dispersers, controlled shrub encroachment could be an effective alternative to ungulate population control or ungulate exclusion for the sustainability of the high-diversity Mediterranean oak ecosystems.  相似文献   

3.
Large wild ungulates are a major biotic factor shaping plant communities. They influence species abundance and occurrence directly by herbivory and plant dispersal, or indirectly by modifying plant‐plant interactions and through soil disturbance. In forest ecosystems, researchers’ attention has been mainly focused on deer overabundance. Far less is known about the effects on understory plant dynamics and diversity of wild ungulates where their abundance is maintained at lower levels to mitigate impacts on tree regeneration. We used vegetation data collected over 10 years on 82 pairs of exclosure (excluding ungulates) and control plots located in a nation‐wide forest monitoring network (Renecofor). We report the effects of ungulate exclusion on (i) plant species richness and ecological characteristics, (ii) and cover percentage of herbaceous and shrub layers. We also analyzed the response of these variables along gradients of ungulate abundance, based on hunting statistics, for wild boar (Sus scrofa), red deer (Cervus elaphus) and roe deer (Capreolus capreolus). Outside the exclosures, forest ungulates maintained higher species richness in the herbaceous layer (+15%), while the shrub layer was 17% less rich, and the plant communities became more light‐demanding. Inside the exclosures, shrub cover increased, often to the benefit of bramble (Rubus fruticosus agg.). Ungulates tend to favour ruderal, hemerobic, epizoochorous and non‐forest species. Among plots, the magnitude of vegetation changes was proportional to deer abundance. We conclude that ungulates, through the control of the shrub layer, indirectly increase herbaceous plant species richness by increasing light reaching the ground. However, this increase is detrimental to the peculiarity of forest plant communities and contributes to a landscape‐level biotic homogenization. Even at population density levels considered to be harmless for overall plant species richness, ungulates remain a conservation issue for plant community composition.  相似文献   

4.
Plant communities are often dispersal‐limited and zoochory can be an efficient mechanism for plants to colonize new patches of potentially suitable habitat. We predicted that seed dispersal by ungulates acts as an ecological filter – which differentially affects individuals according to their characteristics and shapes species assemblages – and that the filter varies according to the dispersal mechanism (endozoochory, fur‐epizoochory and hoof‐epizoochory). We conducted two‐step individual participant data meta‐analyses of 52 studies on plant dispersal by ungulates in fragmented landscapes, comparing eight plant traits and two habitat indicators between dispersed and non‐dispersed plants. We found that ungulates dispersed at least 44% of the available plant species. Moreover, some plant traits and habitat indicators increased the likelihood for plant of being dispersed. Persistent or nitrophilous plant species from open habitats or bearing dry or elongated diaspores were more likely to be dispersed by ungulates, whatever the dispersal mechanism. In addition, endozoochory was more likely for diaspores bearing elongated appendages whereas epizoochory was more likely for diaspores released relatively high in vegetation. Hoof‐epizoochory was more likely for light diaspores without hooked appendages. Fur‐epizoochory was more likely for diaspores with appendages, particularly elongated or hooked ones. We thus observed a gradient of filtering effect among the three dispersal mechanisms. Endozoochory had an effect of rather weak intensity (impacting six plant characteristics with variations between ungulate‐dispersed and non‐dispersed plant species mostly below 25%), whereas hoof‐epizoochory had a stronger effect (eight characteristics included five ones with above 75% variation), and fur‐epizoochory an even stronger one (nine characteristics included six ones with above 75% variation). Our results demonstrate that seed dispersal by ungulates is an ecological filter whose intensity varies according to the dispersal mechanism considered. Ungulates can thus play a key role in plant community dynamics and have implications for plant spatial distribution patterns at multiple scales. Synthesis Plant communities are often dispersal‐limited and zoochory can be an efficient mechanism for plants to colonize new patches of potentially suitable habitat. Our analysis is the first synthesis of ungulate seed dispersal that compares characteristics from both non‐dispersed and dispersed diaspores, distinguishing the three zoochory mechanisms ungulates are involved in: endozoochory, hoof‐epizoochory and fur‐epizoochory. We confirmed that seed dispersal by ungulates is an ecological filter whose intensity increases from endozoochory, then hoof‐epizoochory to finally fur‐epizoochory. By filtering seed traits through dispersal, ungulates can thus play a key role in plant community dynamics and have implications for plant spatial distribution patterns at multiple scales.  相似文献   

5.
The remote oceanic islands of Hawai‘i exemplify the transformative effects that non-native herbivorous mammals can bring to isolated terrestrial ecosystems. We reviewed published literature containing systematically collected, analyzed, and peer-reviewed original data specifically addressing direct effects of non-native hoofed mammals (ungulates) on terrestrial ecosystems, and indirect effects and interactions on ecosystem processes in Hawai‘i. The effects of ungulates on native vegetation and ecosystems were addressed in 58 original studies and mostly showed strong short-term regeneration of dominant native trees and understory ferns after ungulate removal, but unassisted recovery was dependent on the extent of previous degradation. Ungulates were associated with herbivory, bark-stripping, disturbance by hoof action, soil erosion, enhanced nutrient cycling from the interaction of herbivory and grasses, and increased pyrogenicity and competition between native plants and pasture grasses. No studies demonstrated that ungulates benefitted native ecosystems except in short-term fire-risk reduction. However, non-native plants became problematic and continued to proliferate after release from herbivory, including at least 11 species of non-native pasture grasses that had become established prior to ungulate removal. Competition from non-native grasses inhibited native species regeneration where degradation was extensive. These processes have created novel grazing systems which, in some cases, have irreversibly altered Hawaii’s terrestrial ecology. Non-native plant control and outplanting of rarer native species will be necessary for recovery where degradation has been extensive. Lack of unassisted recovery in some locations should not be construed as a reason to not attempt restoration of other ecosystems.  相似文献   

6.
Habitat destruction is driving biodiversity loss in remaining ecosystems, and ecosystem functioning and services often directly depend on biodiversity. Thus, biodiversity loss is likely creating an ecosystem service debt: a gradual loss of biodiversity‐dependent benefits that people obtain from remaining fragments of natural ecosystems. Here, we develop an approach for quantifying ecosystem service debts, and illustrate its use to estimate how one anthropogenic driver, habitat destruction, could indirectly diminish one ecosystem service, carbon storage, by creating an extinction debt. We estimate that c. 2–21 Pg C could be gradually emitted globally in remaining ecosystem fragments because of plant species loss caused by nearby habitat destruction. The wide range for this estimate reflects substantial uncertainties in how many plant species will be lost, how much species loss will impact ecosystem functioning and whether plant species loss will decrease soil carbon. Our exploratory analysis suggests that biodiversity‐dependent ecosystem service debts can be globally substantial, even when locally small, if they occur diffusely across vast areas of remaining ecosystems. There is substantial value in conserving not only the quantity (area), but also the quality (biodiversity) of natural ecosystems for the sustainable provision of ecosystem services.  相似文献   

7.
Ungulates are leading drivers of plant communities worldwide, with impacts linked to animal density, disturbance and vegetation structure, and site productivity. Many ecosystems have more than one ungulate species; however, few studies have specifically examined the combined effects of two or more species on plant communities. We examined the extent to which two ungulate browsers (moose [Alces americanus]) and white‐tailed deer [Odocoileus virginianus]) have additive (compounding) or compensatory (opposing) effects on herbaceous layer composition and diversity, 5–6 years after timber harvest in Massachusetts, USA. We established three combinations of ungulates using two types of fenced exclosures – none (full exclosure), deer (partial exclosure), and deer + moose (control) in six replicated blocks. Species composition diverged among browser treatments, and changes were generally additive. Plant assemblages characteristic of closed canopy forests were less abundant and assemblages characteristic of open/disturbed habitats were more abundant in deer + moose plots compared with ungulate excluded areas. Browsing by deer + moose resulted in greater herbaceous species richness at the plot scale (169 m2) and greater woody species richness at the subplot scale (1 m2) than ungulate exclusion and deer alone. Browsing by deer + moose resulted in strong changes to the composition, structure, and diversity of forest herbaceous layers, relative to areas free of ungulates and areas browed by white‐tailed deer alone. Our results provide evidence that moderate browsing in forest openings can promote both herbaceous and woody plant diversity. These results are consistent with the classic grazing‐species richness curve, but have rarely been documented in forests.  相似文献   

8.
9.
Large herbivores can change ecosystem functioning by impacting plant diversity. However, although such impacts are expected to be scale-dependent in ecosystems with wide-roaming ungulates, scaling issues rarely enter empirical assessments. We here test the hypothesis that the impact of increased reindeer abundance on plant diversity in alpine tundra is scale-dependent. Based on potentially high productivity of the focal habitat units and hence the possibility of positive grazer impacts on plant diversity we predicted higher α and β diversity at the habitat scale where reindeer densities are high. We also explored whether there were differences in diversity patterns at larger scales, including the scale of reindeer management districts. We estimated grazing disturbance as high versus low reindeer density in selected districts (a total extent of 7421 km2) of Northern Norway where reindeer-induced vegetation shifts are debated. We focus on dominance patterns because they can quantify the vegetation state and thus performed additive partitioning of Simpson diversity on multiple scales assessing also species’ contributions to diversity. Contrary to our predictions, we found only weak scale-dependent effects of reindeer grazing on plant diversity. Under high reindeer densities there was evidence for a landscape-scale homogenization of the vegetation, but the predicted α and β diversity increases at the habitat scale were not found. Consistently through all scales considered, four shrub species contributed the most to plant diversity. These results contradict the idea that reindeer at high stocking densities induce shifts in plant species dominance in productive habitats. We conclude that context-dependencies such as spatial scales of management units and habitat types need to be explicitly considered in evaluations of the impacts of large ungulates on plant diversity.  相似文献   

10.

Watershed degradation due to invasion threatens downstream water flows and associated ecosystem services. While this topic has been studied across landscapes that have undergone invasive-driven state changes (e.g., native forest to invaded grassland), it is less well understood in ecosystems experiencing within-system invasion (e.g. native forest to invaded forest). To address this subject, we conducted an integrated ecological and ecohydrological study in tropical forests impacted by invasive plants and animals. We measured soil infiltration capacity in multiple fenced (i.e., ungulate-free)/unfenced and native/invaded forest site pairs along moisture and substrate age gradients across Hawaii to explore the effects of invasion on hydrological processes within tropical forests. We also characterized forest composition, structure and soil characteristics at these sites to assess the direct and vegetation-mediated impacts of invasive species on infiltration capacity. Our models show that invasive ungulates negatively affect soil infiltration capacity consistently across the wide moisture and substrate age gradients considered. Additionally, several soil characteristics known to be affected by invasive ungulates were associated with local infiltration rates, indicating that the long-term secondary effects of high ungulate densities in tropical forests may be stronger than effects observed in this study. The effect of invasive plants on infiltration was complex and likely to depend on their physiognomy within existing forest community structure. These results provide clear evidence for managers that invasive ungulate control efforts can improve ecohydrological function of mesic and wet forest systems critical to protecting downstream and nearshore resources and maintaining groundwater recharge.

  相似文献   

11.
African savannahs are among the few places on earth where diverse communities of mega- and meso-sized ungulate grazers dominate ecosystem functioning. Less conspicuous, but even more diverse, are the communities of herbivorous insects such as grasshoppers, which share the same food. Various studies investigated the community assembly of these groups separately, but it is poorly known how ungulate communities shape grasshopper communities. Here, we investigated how ungulate species of different body size alter grasshopper communities in a South African savannah. White rhino is the most abundant vertebrate herbivore in our study site. Other common mesoherbivores include buffalo, zebra and impala. We hypothesized that white rhinos would have greater impact than mesoherbivores on grasshopper communities. Using 10-year-old exclosures, at eight sites we compared the effects of ungulates on grasshopper communities in three nested treatments: (i) unfenced plots (‘control plots’) with all vertebrate herbivores present, (ii) plots with a low cable fence, excluding white rhino (‘megaherbivore exclosures’), and (iii) plots with tall fences, excluding all herbivores larger than rodents (‘complete ungulate exclosures’). In each plot, we collected data of vegetation structure, grass and grasshopper community composition. Complete ungulate exclosures contained 30 % taller vegetation than megaherbivore exclosures and they were dominated by different grass and grasshopper species. Grasshoppers in complete ungulate exclosures were on average 3.5 mm longer than grasshoppers in megaherbivore exclosures, possibly due to changes in plant communities or vegetation structure. We conclude that surprisingly, in this megaherbivore hotspot, mesoherbivores, instead of megaherbivores, most strongly affect grasshopper communities.  相似文献   

12.
Understanding herbivore selection and utilization of vegetation types is fundamental to conservation of multispecies communities. We tested three hypotheses for how ungulate species select their habitats and how this changes with season: first, resources are distributed as a mosaic of patches so that ungulates are also distributed patchily; this distribution reflects habitat selection, which changes with season, the different ungulates behaving differently. Second, resources become scarcer in the dry season relative to those in the wet season. If interspecific competition prevails, then all species should show a contraction of habitats chosen. Third, if predation is limiting, competition will be minimal, and hence, habitat selection by herbivores will not differ between seasons. We used frequencies of occurrence in four common vegetation types in western Serengeti National Park to determine selection coefficients and utilization patterns and Chi‐square analysis to test the hypotheses. The results showed that selection changes differently in each species, agreeing with the first hypothesis. Herbivores did not all become more selective, as predicted by the competition hypothesis, nor did selection remain the same across seasons, as predicted by the predation hypothesis. These results can be useful in constructing habitat suitability maps for ungulate species with special conservation needs.  相似文献   

13.
The abandonment of traditional livestock farming systems in Mediterranean countries is triggering a large-scale habitat transformation, which, in general, consists of the replacement of open grazing areas by woodlands through non-managed regeneration. As a consequence, wild ungulates are occupying rapidly the empty niche left by domestic ungulates. Both types of ungulates represent the main trophic resource for large vertebrate scavengers. However, a comparison of how vertebrate scavengers consume ungulate carcasses in different habitats with different ungulate species composition is lacking. This knowledge is essential to forecast the possible consequences of the current farmland abandonment on scavenger species. Here, we compared the scavenging patterns of 24 wild and 24 domestic ungulate carcasses in a mountainous region of southern Spain monitored through camera trapping. Our results show that carcasses of domestic ungulates, which concentrate in large numbers in open pasturelands, were detected and consumed earlier than those of wild ungulate carcasses, which frequently occur in much lower densities at more heterogenous habitats such as shrublands and forest. Richness and abundance of scavengers were also higher at domestic ungulate carcasses in open habitats. Vultures, mainly griffons (Gyps fulvus), consumed most of the carcasses, although mammalian facultative scavengers, mainly wild boar (Sus scrofa) and red fox (Vulpes vulpes), also contributed importantly to the consumption of wild ungulate carcasses in areas with higher vegetation cover. Our findings evidence that the abandonment of traditional grazing may entail consequences for the scavenger community, which should be considered by ecologists and wildlife managers.  相似文献   

14.
15.
With their striking predilection for perching on African ungulates and eating their ticks, yellow-billed (Buphagus africanus) and red-billed oxpeckers (B. erythrorhynchus) represent one of the few potentially mutualistic relationships among vertebrates. The nature of the oxpecker-ungulate relationship remains uncertain, however, because oxpeckers are known to consume ungulate tissues, suggesting that the relationship between oxpeckers and ungulates may also be parasitic. To examine this issue further, we obtained data on oxpecker preferences for different ungulate species, the abundance of ticks on these ungulates, and ungulate hide thickness. In support of the mutualism hypothesis, we found that both species of oxpeckers prefer ungulate hosts that harbor a higher abundance of ticks. We found no evidence that hide thickness-a measure of the potential for parasitism by oxpeckers-predicts oxpecker preferences for different ungulate species. Oxpeckers also prefer larger-bodied ungulates, possibly because larger animals have more ticks, provide a more stable platform upon which to forage, or support more oxpeckers feeding simultaneously. However, the preference for ungulates with greater tick abundance was independent of host body mass. These results support the hypothesis that the relationship between oxpeckers and ungulates is primarily mutualistic.  相似文献   

16.
Ungulates impact woody species’ growth and abundance but little is understood about the comparative impacts of different ungulate species on forest expansion in savanna environments. Replacement of native herbivore guilds with livestock [i.e., beef cattle (Bos taurus)] has been hypothesized as a factor facilitating trembling aspen (Populus tremuloides Michx.) encroachment into grasslands of the Northern Great Plains. We used a controlled herbivory study in the Parklands of western Canada to compare the impact of native ungulates and cattle on aspen saplings. Native ungulate treatments included a mixed species guild and sequences of herbivory by different ungulates [bison (Bison bison subsp. bison), elk (Cervus elaphus) then deer (Odocoileus hemionus); or deer, elk, then bison]. Herbivory treatments were replicated in three pastures, within which sets of 40 marked aspen saplings (<1.8 m) were tracked along permanent transects at 2-week intervals, and compared to a non-grazed aspen stand. Stems were assessed for mortality and incremental damage (herbivory, leader breakage, stem abrasion and trampling). Final mortality was greater with exposure to any type of herbivore, but remained similar between ungulate treatments. However, among all treatments, the growth of aspen was highest with exposure only to cattle. Herbivory of aspen was attributed primarily to elk within the native ungulate treatments, with other forms of physical damage, and ultimately sapling mortality, associated with exposure to bison. Overall, these results indicate that native ungulates, specifically elk and bison, have more negative impacts on aspen saplings and provide evidence that native and domestic ungulates can have different functional effects on woody plant dynamics in savanna ecosystems.  相似文献   

17.
Abstract Dryland salinity presents an overwhelming threat to terrestrial and aquatic habitats in Australia, and yet there remains very little empirical evidence of the impacts of secondary salinization on the biodiversity of riparian communities. Here we describe the response of a riparian plant community to stream and soil salinization, 25 years after the experimental clearing of a catchment in south‐western Australia. Riparian plant species diversity was inversely related to soil salinity, and plant species composition was significantly altered by increased soil salinity. Despite the evidence for an impact of salinization on the taxonomic diversity and composition of the riparian plant community, there was little evidence for any effect of salinization on functional group diversity, or on ecological functioning, as measured by the percentage of above‐ground plant cover.  相似文献   

18.
Soil respiration is responsible for recycling considerable quantities of carbon from terrestrial ecosystems to the atmosphere. There is a growing body of evidence that suggests that the richness of plants in a community can have significant impacts on ecosystem functioning, but the specific influences of plant species richness (SR), plant functional-type richness and plant community composition on soil respiration rates are unknown. Here we use 10-year-old model plant communities, comprising mature plants transplanted into natural non-sterile soil, to determine how the diversity and composition of plant communities influence soil respiration rates. Our analysis revealed that soil respiration was driven by plant community composition and that there was no significant effect of biodiversity at the three levels tested (SR, functional group and species per functional group). Above-ground plant biomass and root density were included in the analysis as covariates and found to have no effect on soil respiration. This finding is important, because it suggests that loss of particular species will have the greatest impact on soil respiration, rather than changes in biodiversity per se.  相似文献   

19.
Herbivores are major drivers of ecosystem structure, diversity, and function. Resilient ecosystems therefore require viable herbivore populations in a sustainable balance with environmental resource availability. This balance is becoming harder to achieve, with increasingly threatened species reliant on small protected areas in increasingly harsh and unpredictable environments. Arid environments in North Africa exemplify this situation, featuring a biologically distinct species assemblage exposed to extreme and volatile conditions, including habitat loss and climate change‐associated threats. Here, we implement an integrated likelihood approach to relate scimitar‐horned oryx (Oryx dammah) and dorcas gazelle (Gazella dorcas) density, via dung distance sampling, to habitat, predator, and geographic correlates in Dghoumes National Park, Tunisia. We show how two threatened sympatric ungulates partition resources on the habitat axis, exhibiting nonuniform responses to the same vegetation gradient. Scimitar‐horned oryx were positively associated with plant species richness, selecting for vegetated ephemeral watercourses (wadis) dominated by herbaceous cover. Conversely, dorcas gazelle were negatively associated with vegetation density (herbaceous height, litter cover, and herbaceous cover), selecting instead for rocky plains with sparse vegetation. We suggest that adequate plant species richness should be a prerequisite for areas proposed for future ungulate reintroductions in arid and semi‐arid environments. This evidence will inform adaptive management of reintroduced ungulates in protected environments, helping managers and planners design sustainable ecosystems and effective conservation programs.  相似文献   

20.
Global biodiversity loss has prompted research on the relationship between species diversity and ecosystem functioning. Few studies have examined how plant diversity impacts belowground processes; even fewer have examined how varying resource levels can influence the effect of plant diversity on microbial activity. In a field experiment in a restored wetland, we examined the role of plant trait diversity (or functional diversity, (FD)) and its interactions with natural levels of variability of soil properties, on a microbial process, denitrification potential (DNP). We demonstrated that FD significantly affected microbial DNP through its interactions with soil conditions; increasing FD led to increased DNP but mainly at higher levels of soil resources. Our results suggest that the effect of species diversity on ecosystem functioning may depend on environmental factors such as resource availability. Future biodiversity experiments should examine how natural levels of environmental variability impact the importance of biodiversity to ecosystem functioning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号