首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The morphology of lingual papillae of the ten male mature Saanen goats (11 months old, approximately 42 kg in weight and of a known pedigree) was examined by scanning electron microscopy. Tissues were taken from the dorsal and ventral surfaces of the apex, body and root of the tongue, and were prepared accordingly and observed under the scanning electron microscope. On the dorsal and ventro-lateral surfaces of the lingual mucosa, three types of mechanical papillae (filiform, lenticular, and conical) and two types of gustatory papillae (vallate and fungiform) were observed. The structure and density of the filiform papillae differentiated on the anterior, posterior and ventro-lateral aspects of the tongue. Two types of lenticular papillae, both possessing a prominent surrounding papillary groove, were determined. The pyramidal-shaped type I lenticular papilla had a pointed apex while the round-shaped type II lenticular papilla possessed a blunt apex. Certain number of the type I lenticular papillae had double apices. The larger conical papillae were hollow structures, differing structurally from the filiform papillae with their larger size, a tip without projections and lack of the secondary papillae. The vallate papillae were present on both rims of the torus linguae, were encircled by a prominent gustatory furrow which was also surrounded by a thick annular fold. The fungiform papillae were scattered among the filiform papillae in the anterior two-thirds of the dorsal and lateral surfaces, and each of them was highly protected by surrounding filiform papillae, yet encircled by a papillary groove. Our findings indicate that Saanen goat have profuse distribution of papillae on the tongue displaying morphological features characteristic of mechanical function.  相似文献   

4.
5.
The structure of the lingual papillae and the ultrastructure of the surface of the lingual dorsal epithelial cells of squirrel monkeys were observed by scanning electron microscopy. Filiform papillae were distributed over the entire dorsal surface of the tongue, except for the radix zone. Fungiform papillae were scattered among these filiform papillae. In the middle of the posterior end of the lingual body, a single vallate papilla was located. Higher magnification of the lingual dorsal epithelium revealed that prominent microridges and elevated intercellular borders occurred widely in the basofrontal area of the filiform papillae, interpapillar area and lingual radix zone. On the surface of the upper part of the filiform papillae, fine pits and hollows were observed. Indistinct microridges were distributed over the surface of the fungiform papillae.  相似文献   

6.
The mechanical papillae of the horse and cow were studied by scanning electron microscopy in order to determine their morphostructural characteristics and the differences between the two species. The horse has only thin, small and interlaced filiform papillae, while the cow shows robust and more ordered filiform papillae. Furthermore, the cow tongue presents conical and lenticular papillae surrounded by a papillary groove. A characteristic distribution of stratified scales and channeled tracts is observed in conical and lenticular papillae but not in the filiform papillae. The morphostructural features of each papilla are analyzed and compared in each species and their possible significance is discussed.  相似文献   

7.
Development and morphological changes of human gustatory papillaeduring postovulatory weeks 6–15 have been studied usingscanning and transmission electron microscopy. The first papillaof the tongue appears around postovulatory week 6 in its caudalmidline near the foramen caecum. In contrast, the dorsal epitheliumof the anterior part of the tongue shows only small hillock-or papilla-like elevations from week 6 on, which comprise anaggregation of 5–20 epithelial cells. From week 7 on,most prominent fungiform papillae develop near the median sulcusand at the margins of the anterior part of the tongue. At theirtops, the first primitive taste pores are found around week10; these are often covered with processes of adjacent epithelialcells. Most pores, however, develop around weeks 14–15.The maturation of taste buds does not coincide with the appearanceof taste pores, since taste bud cells are not fully differentiatedin the observed period of time. Fungiform papillae are developedbefore filiform papillae, which do not occur within the first15 weeks of gestation. Fungiform papillae tend to grow betweenweeks 8 and 15 of gestation, whereas the size of vallate papillaeseems to be constant during this period. Chem. Senses 22: 601–612,1997.  相似文献   

8.
During development, axons of the chorda tympani nerve navigate to fungiform papillae where they penetrate the lingual epithelium, forming a neural bud. It is not known whether or not all chorda tympani axons initially innervate fungiform papillae correctly or if mistakes are made. Using a novel approach, we quantified the accuracy with which gustatory fibers successfully innervate fungiform papillae. Immediately following initial targeting (E14.5), innervation was found to be incredibly accurate: specifically, 94% of the fungiform papillae on the tongue are innervated. A mean of five papillae per tongue were uninnervated at E14.5, and the lingual tongue surface was innervated in 17 places that lack fungiform papillae. To determine if these initial errors in papillae innervation were later refined, innervation accuracy was quantified at E16.5 and E18.5. By E16.5 only two papillae per tongue remained uninnervated. Innervation to inappropriate regions was also removed, but not until later, between E16.5 and E18.5 of development. Therefore, even though gustatory fibers initially innervate fungiform papillae accurately, some errors in targeting do occur that are then refined during later embryonic periods. It is likely that trophic interactions between gustatory neurons and developing taste epithelium allow appropriate connections to be maintained and inappropriate ones to be eliminated.  相似文献   

9.
Subepithelial blood vessels of the rat lingual papillae and their spatial relations to the connective tissue papillae and surface structures were demonstrated by light and scanning electron microscopy. In the rat, four types of papillae were distinguished on the dorsal surface of the tongue, i.e. the filiform, fungiform, foliate and circumvallate papillae. Vascular beds of various appearance were found in all four types of lingual papillae: a simple or twisted capillary loop in the filiform papilla; a basket- or petal-like network in the fungiform papilla; a ring-like network in the foliate papilla, and a conglomerated network surrounded by double heart-shaped capillary networks in the circumvallate papilla. These characteristic vascular beds corresponded to the shape of the connective tissue papillae and surface structures. The vascular bed beneath the gustatory epithelium in the fungiform, foliate and circumvallate papilla consisted of fine capillary networks next to the taste buds.  相似文献   

10.
Three-dimensional characteristics of the epithelial cell layer and connective tissue interface of the tongue were studied using scanning electron microscopy. In this study, the fragments of tongue were fixed in modified Karnovsky's fixative solution. Subsequently, the specimens were treated with 10% NaOH solution for 4-7 days at room temperature and postfixed in 1% OsO4 in 0.1 M phosphate buffer (pH 7.4) for 2 hours at 4 degrees C. They were dehydrated through a graded ethanol series, and critical-point dried with CO2. The specimens were coated with gold and observed in a scanning electron microscope, JEOL JSM-6100. The results showed numerous papillae on the dorsal surface of the tongue divided into four groups (filiform, fungiform, foliate and vallate papillae). Filiform papillae are conically shaped; fungiform papillae have an irregular round surface; foliate papillae are oval in shape and have some parallel projections; and vallate papillae are located in the posterior part of the tongue and have a depression around the center. After the treatment with 10% NaOH solution, the original arrangements of connective papillae could be seen. This characteristic three-dimensional distribution of the collagen fiber bundles is typical for each superficial papillae depending on whether it is filiform, fungiform, foliate or vallate.  相似文献   

11.
Comparative features of the dorsal tongue epithelia in musk shrews, mongooses and rats were described. The shapes of the filiform papillae were different in each of the species. The distribution pattern of filiform papillae was similar both in the musk shrews and mongoose, in that the form of filiform papillae changed gradually from the lingual apex to the posterior part of the lingual body. By contrast, the different types of filiform papillae were distributed on definite areas of the dorsal lingual surface in the rat. Microridges on the interpapillar surface in the musk shrew and mongoose presented a clear outline, but those of the rat were not so distinct. In all species, the upper surface of filiform papillae did not show any distinct microridges.  相似文献   

12.
The intensely sweet proteins thaumatin and monellin were covalently attached to affinity column supports. Lingual tissue extracts were incubated with the affinity columns which were then eluted with glycine-HCl pH 3.4, the sweet peptide aspartame, or gymnemic acid, which is a sweet taste modifier. SDS-PAGE analysis of eluates from the columns showed that 156 kDa and 47 kDa proteins were the main components from cow fungiform papillae which were specifically bound to thaumatin and monellin. These proteins could be displaced from the column with 0.5 mM aspartame or 0.5 mg/ml gymnemic acid. With circumvallate papillae small amounts of 47 kDa protein were also found. The 47 kDa protein was also the major component bound to a gymnemic acid affinity column and could be displaced from the column with 0.5 mg/ml gymnemic acid. Control experiments with other lingual tissue components indicated that these proteins are localised in the gustatory papillae. Similar protein patterns were also found in extracts of pig fungiform papillae and rat lingual preparations.  相似文献   

13.
14.
Few sensory modalities appear to engage in cross‐modal interactions within the peripheral nervous system, making the integrated relationship between the peripheral gustatory and trigeminal systems an ideal model for investigating cross‐sensory support. The present study examined taste system anatomy following unilateral transection of the trigeminal lingual nerve (LX) while leaving the gustatory chorda tympani intact. At 10, 25, or 65 days of age, rats underwent LX with outcomes assessed following various survival times. Fungiform papillae were classified by morphological feature using surface analysis. Taste bud volumes were calculated from histological sections of the anterior tongue. Differences in papillae morphology were evident by 2 days post‐transection of P10 rats and by 8 days post in P25 rats. When transected at P65, animals never exhibited statistically significant morphological changes. After LX at P10, fewer taste buds were present on the transected side following 16 and 24 days survival time and remaining taste buds were smaller than on the intact side. In P25 and P65 animals, taste bud volumes were reduced on the denervated side by 8 and 16 days postsurgery, respectively. By 50 days post‐transection, taste buds of P10 animals had not recovered in size; however, all observed changes in papillae morphology and taste buds subsided in P25 and P65 rats. Results indicate that LX impacts taste receptor cells and alters epithelial morphology of fungiform papillae, particularly during early development. These findings highlight dual roles for the lingual nerve in the maintenance of both gustatory and non‐gustatory tissues on the anterior tongue. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 626–641, 2016  相似文献   

15.
Summary The regeneration of the vallate papilla in the rat was studied by both light and electron microscopy. The papillae were excised and regeneration was studied at time intervals of 3 to 45 days. It was found that the vallate papilla is capable of regeneration after both partial and total papillectomies. The regenerated papillae were asymmetrical in shape. Several invaginations, independent of one another, were the equivalent of the original sulcus. Regeneration of the gustatory system occurred at circumscribed portions of the associated Von Ebner glands.The amounts of newly formed taste buds were proportional to the amount of nerve fibers in the subepithelial plexus. The regenerated taste buds showed normal histochemical and fine-structural characteristics. The results support the contention of some degree of specificity concerning the epithelium where taste bud regeneration occurs.Supported by CAICT Grant no 1776  相似文献   

16.
17.
We characterized the gustatory phenotypes of neonatal mice having null mutations for epidermal growth factor receptor (egfr(-/-)), brain-derived neurotrophic factor (bdnf(-/-)), or both. We counted the number and diameter of fungiform taste buds, the prevalence of poorly differentiated or missing taste cells, and the incidence of ectopic filiform-like spines, each as a function of postnatal age and anterior/posterior location. Egfr(-/-) mice and bdnf(-/-) mice had similar reductions in the total number of taste buds on the anterior portions of the tongue and palate. Nonetheless, there were significant differences in their gustatory phenotypes. EGFR deficiency selectively impaired the development of anterior gustatory epithelia in the mouth. Only bdnf(-/-) mice had numerous taste buds missing from the foliate, vallate, and posterior fungiform papillae. Only egfr(-/-) fungiform taste papillae had robust gustatory innervation, markedly reduced cytokeratin 8 expression in taste cells, and a high incidence of a filiform-like spine. Egfr/bdnf double-null mutant mice had a higher frequency of failed fungiform taste bud differentiation. In bdnf(-/-) mice taste cell development failed because of sparse gustatory innervation. In contrast, in young egfr(-/-) mice the abundance of axons innervating fungiform papillae and the normal numbers of geniculate ganglion neurons implicate gustatory epithelial defects rather than neural defects.  相似文献   

18.
F Ferrell  T Tsuetaki 《Acta anatomica》1983,117(3):261-265
We examined the number and distribution of ganglion cells within a vallate papilla from a healthy human adult. The vast majority of cell bodies were located near the base of the papilla, clustered in the central portion of its core immediately above underlying muscles and von Ebner's glands. Neurons appeared to be of one morphological type with ovoid cell bodies and spherical nuclei. The possible functional significance of their presence in invaginated or trench-containing gustatory papillae is discussed.  相似文献   

19.
Brain-derived neurotrophic factor (BDNF) and Neurotrophin 3 (NT-3) are members of the neurotrophin family and are expressed in the developing and adult tongue papillae. BDNF null-mutated mice exhibit specific impairments related to innervation and development of the gustatory system while NT-3 null mice have deficits in their lingual somatosensory innervation. To further evaluate the functional specificity of these neurotrophins in the peripheral gustatory system, we generated double BDNF/NT-3 knockout mice and compared the phenotype to BDNF?/? and wild-type mice. Taste papillae morphology was severely distorted in BDNF?/?xNT-3?/? mice compared to single BDNF?/? and wild-type mice. The deficits were found throughout the tongue and all gustatory papillae. There was a significant loss of fungiform papillae and the papillae were smaller in size compared to BDNF?/? and wild-type mice. Circumvallate papillae in the double knockouts were smaller and did not contain any intraepithelial nerve fibers. BDNF?/?xNT-3?/? mice exhibited additive losses in both somatosensory and gustatory innervation indicating that BDNF and NT-3 exert specific roles in the innervation of the tongue. However, the additional loss of fungiform papillae and taste buds in BDNF?/?xNT-3?/? mice compared to single BDNF knockout mice indicate a synergistic functional role for both BDNF-dependent gustatory and NT-3-dependent somatosensory innervations in taste bud and taste papillae innervation and development.  相似文献   

20.
Wahlberg’s epauletted fruit bat (Epomophorus wahlbergi) feed on fleshy fruit and nectar of flowers and have an important role in pollination and seed dispersal. It was expected that their buccal morphological structures are adapted to this type of feeding. Consequently, buccal cavity and lingual structures of E. wahlbergi were examined by extended focus light microscopy (LM) and scanning electron microscopy (SEM). Morphology of the tongue of E. wahlbergi was similar to that of other fruit- and nectar-feeding bats. The elongated tongue of these bats possessed filiform and conical papillae as mechanical papillae and fungiform and circumvallate papillae as gustatory papillae that varied in distribution. Epomophorus wahlbergi had five palatal ridges and one post-dental palatal ridge, and relatively wide, flattened molar teeth. A hard, papillae structure at the posterior end of the upper palate of the upper plate, which has not been previously described, was observed. It appears that this structure works together with the palatal ridges and teeth, so that the bats crush fleshy fruits during feeding and extract the juices before discarding the pulp. Consequently, lingual and particularly palatal structures of E. wahlbergi show morphological adaptations for efficiently feeding on fleshy fruit and nectar.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号