首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The erythrocyte of the human neonate exhibits clustering and endocytosis of membrane receptors in response to the plant lectin concanavalin A, but erythrocytes from adults do not. Because the phosphorylation of spectrin has been postulated to influence protein mobility in human erythrocyte membranes, the phosphorylation of spectrin was compared in intact neonatal and adult human erythrocytes. No difference in spectrin phosphorylation was seen. The addition of concanavalin A under conditions which produce protein mobility resulted in no change in spectrin phosphorylation.  相似文献   

2.
The fluorescent probe merocyanine 540 does not stain the plasma membrane of normal human or murine erythrocytes, nor of genetically abnormal human spherocytic erythrocytes. It does, however, stain erythrocyte membranes in several systems in which the underlying spectrin network is altered or missing. Because of the greater affinity of merocyanine 540 for fluid—phase lipid bilayers, these results suggest that the external leaflet of erythrocyte membranes becomes more disordered upon alteration or loss of the internal spectrin network. Analysis of the transbilayer arrangement of membrane phospholipids by digestion with phospholipase A2 suggests that lipid compositional asymmetry of the erythrocyte membrane is responsible for a phase-state asymmetry between the two lipid leaflets, and that spectrin is required to maintain this asymmetry and the gel-like state of the external leaflet.  相似文献   

3.
Band 4.2 is a human erythrocyte membrane protein of incompletely characterized structure and function. Erythrocytes deficient in band 4.2 protein were used to examine the functional role of band 4.2 in intact erythrocyte membranes. Both the lateral and the rotational mobilities of band 3 were increased in band 4.2-deficient erythrocytes compared to control cells. In contrast, the lateral mobility of neither glycophorins nor a fluorescent phospholipid analog was altered in band 4.2-deficient cells. Compared to controls, band 4.2-deficient erythrocytes manifested a decreased ratio of band 3 to spectrin, and band 4.2-deficient membrane skeletons had decreased extractability of band 3 under low-salt conditions. Normal band 4.2 was found to bind to spectrin in solution and to promote the binding of spectrin to ankyrin-stripped inside-out vesicles. We conclude that band 4.2 provides low-affinity binding sites for both band 3 oligomers and spectrin dimers on the human erythrocyte membrane. Band 4.2 may serve as an accessory linking protein between the membrane skeleton and the overlying lipid bilayer.  相似文献   

4.
Platelet plasma membrane lectin activity   总被引:5,自引:0,他引:5  
The lectin activity of human platelet and erythrocyte membranes was evaluated using trypsinized, formalinized erythrocytes from eight species. Platelet membranes had the greatest lectin activity against cow erythrocytes, but also had significant activity against human, sheep, electric eel, and rabbit erythrocytes. In contrast, erythrocyte membranes only had low lectin activity against electric eel erythrocytes with no activity against the other types of erythrocytes tested. The platelet membrane lectin activity was found to reside in protein molecules on the external surface of the platelet plasma membrane. The lectin activity of platelet membranes was inhibited by amino sugars and some basic amino acids: N-acetylated amino sugars and other neutral sugars were without effect. These results demonstrate that the external surface of the platelet plasma membrane has a specific lectin activity.  相似文献   

5.
The distributions of ankyrin, spectrin, band 3, and glycophorin A were examined in Plasmodium falciparum-infected erythrocytes by immunoelectron microscopy to determine whether movement of parasite proteins and membrane vesicles between the parasitophorous vacuole membrane and erythrocyte surface membrane involves internalization of host membrane skeleton proteins. Monospecific rabbit antisera to spectrin, band 3 and ankyrin and a mouse monoclonal antibody to glycophorin A reacted with these erythrocyte proteins in infected and uninfected human erythrocytes by immunoblotting. Cross-reacting malarial proteins were not detected. The rabbit sera also failed to immunoprecipitate [3H]isoleucine labeled malarial proteins from Triton X-100 and sodium dodecyl sulfate (SDS) extracts of infected erythrocytes. These three antibodies as well as the monoclonal antibody to glycophorin A bound to the membrane skeleton of infected and uninfected erythrocytes. The parasitophorous vacuole membrane was devoid of bound antibody, a result indicating that this membrane contains little, if any, of these host membrane proteins. With ring-, trophozoite- and schizont-infected erythrocytes, spectrin, band 3 and glycophorin A were absent from intracellular membranes including Maurer's clefts and other vesicles in the erythrocyte cytoplasm. In contrast, Maurer's clefts were specifically labeled by anti-ankyrin antibody. There was a slight, corresponding decrease in labeling of the membrane skeleton of infected erythrocytes. A second, morphologically distinct population of circular, vesicle-like membranes in the erythrocyte cytoplasm was not labeled with anti-ankyrin antibody. We conclude that membrane movement between the host erythrocyte surface membrane and parasitophorous vacuole membrane involves preferential sorting of ankyrin into a subpopulation of cytoplasmic membranes.  相似文献   

6.
Transbilayer phospholipid distribution, membrane skeleton dissociation/association, and spectrin structure have been analysed in human erythrocytes after subjecting them to heating at 50 degrees C for 15 min. The membrane skeleton dissociation/association was determined by measuring the Tris-induced dissociation of Triton-insoluble membrane skeletons (Triton shells), the spectrin-actin extractability under low ionic conditions, and the binding of spectrin-actin with normal erythrocyte membrane inside-out vesicles (IOVs). The spectrin structure was ascertained by measuring the spectrin dimer-to-tetramer ratio as well as the spectrin tryptophan fluorescence. Both the Tris-induced Triton shell dissociation and the spectrin-actin extractability under low ionic conditions were considerably reduced by the heat treatment. Also, the binding of heated erythrocyte spectrin-actin to IOVs was significantly smaller than that observed with the normal cell spectrin-actin. Further, the quantity of spectrin dimers was appreciably increased in heat-treated erythrocytes as compared to the normal cells. This change in the spectrin dimer-to-tetramer ratio was accompanied by marked changes in the spectrin tryptophan fluorescence. In spite of these heat-induced alterations in structure and bilayer interactions of the membrane skeleton, the inside-outside glycerophospholipid distribution remained virtually unaffected in the heat-treated cells, as judged by employing bee venom and pancreatic phospholipase A2, fluorescamine and Merocyanine 540 as the external membrane probes. These results strongly indicate that membrane bilayer-skeleton interaction is not the major factor in determining the transbilayer phospholipid asymmetry in human erythrocyte membrane.  相似文献   

7.
Rhesus monkey erythrocytes were subjected to heating at 50 degrees C for 5-15 min, and the heat-induced effects on the membrane structure were ascertained by analysing the membrane phospholipid organization and membrane skeleton dynamics and interactions in the heated cells. Membrane skeleton dynamics and interactions were determined by measuring the Tris-induced dissociation of the Triton-insoluble membrane skeleton (Triton shells), the spectrin-actin extractability at low ionic strength, spectrin self-association and spectrin binding to normal monkey erythrocyte membrane inside-out vesicles (IOVs). The Tris-induced Triton shell dissociation and spectrin-actin extractability were markedly decreased by the erythrocyte heating. Also, the binding of the heated erythrocyte membrane spectrin-actin with the IOVs was much smaller than that observed with the normal erythrocyte spectrin-actin. Further, the spectrin structure was extensively modified in the heated cells, as compared to the normal erythrocytes. Transbilayer phospholipid organization was ascertained by employing bee venom and pancreatic phospholipases A2, fluorescamine, and Merocyanine 540 as the external membrane probes. The amounts of aminophospholipids hydrolysed by phospholipases A2 or labeled by fluorescamine in intact erythrocytes considerably increased after subjecting them to heating at 50 degrees C for 15 min. Also, the fluorescent dye Merocyanine 540 readily stained the 15-min-heated cells but not the fresh erythrocytes. Unlike these findings, the extent of aminophospholipid hydrolysis in 5-min-heated cells by phospholipases A2 depended on the incubation time. While no change in the membrane phospholipid organization could be detected in 10 min, prolonged incubations led to the increased aminophospholipid hydrolysis. Similarly, fluorescamine failed to detect any change in the transbilayer phospholipid distribution soon after the 5 min heating, but it labeled greater amounts of aminophospholipids in the 5-min-heated cells, as compared to normal cells, after incubating them for 4 h at 37 degrees C. These results have been discussed to analyse the role of membrane skeleton in maintaining the erythrocyte membrane phospholipid asymmetry. It has been concluded that both the ATP-dependent aminophospholipid pump and membrane bilayer-skeleton interactions are required to maintain the transbilayer phospholipid asymmetry in native erythrocyte membrane.  相似文献   

8.
Addition of human plasma low-density lipoproteins (LDL) to intact human erythrocytes induces the erythrocytes to undergo morphologic transition from biconcave disks to echinocytes and spherocytes. The transformation is time-dependent. Two hours are required before echinocytes are detected by scanning electron microscopy. After two hours, LDL also decrease the phosphate content of spectrin by 40% relative to the control, suggesting that these lipoproteins modulate cell shape by influencing phosphorylationdephosphorylation of a membrane-associated cytoskeletal protein. LDL do not induce depletion of intracellular adenosine triphosphate (ATP), nor do they inhibit cyclic adenosine monophosphate-independent protein kinases which phosphorylate spectrin. LDL stimulate membrane-bound phosphatases by a factor of two, thereby reducing the amount of phosphate covalently bound to membrane proteins. The observed effects are specific for LDL. High-density lipoproteins (HDL) do not stimulate dephosphorylation of spectrin or alter erythrocyte morphology. However, HDL protect the erythrocytes against LDL-induced alterations. These data suggest that the circulating lipoproteins have a role in maintaining erythrocyte morphology by regulating the extent of phosphorylation of spectrin.  相似文献   

9.
Chicken lens spectrin is composed predominantly of equimolar amounts of two polypeptides with solubility properties similar, but not identical, to erythrocyte spectrin. The larger polypeptide, Mr 240,000 (lens alpha-spectrin), co-migrates with erythrocyte and brain alpha-spectrin on one- and two-dimensional SDS polyacrylamide gels and cross-reacts with antibodies specific for chicken erythrocyte alpha-spectrin; the smaller polypeptide, Mr 235,000 (lens gamma-spectrin), co-migrates with brain gamma-spectrin and does not cross-react with either the alpha-spectrin antibodies specific for chicken erythrocyte beta-spectrin. Minor amounts of polypeptides antigenically related to erythrocyte beta-spectrin with a greater electrophoretic mobility than lens gamma-spectrin are also detected in lens. The equimolar ratio of lens alpha- and gamma-spectrin is invariantly maintained during the extraction of lens plasma membranes under different conditions, or after immunoprecipitation of whole extracts of lens with erythrocyte alpha-spectrin antibodies. Two-dimensional peptide mapping reveals that whereas alpha-spectrins from chicken erythrocytes, brain, and lens are highly homologous, the gamma-spectrins, although related, have some cell-type-specific peptides and are substantially different from erythrocyte beta-spectrin. Thus, the expression of cell-type-specific gamma- and beta-spectrins may be the basis for the assembly of a spectrin-plasma membrane complex whose molecular composition is tailored to the functional requirements of the particular cell-type.  相似文献   

10.
Brown trout serum contains a natural, spontaneous, antibody-independent lytic activity and a haemolysin antibody complement-mediated lytic activity against unsensitized and trout antibody-sensitized sheep erythrocytes, respectively. The use of various activators and inactivators of the mammalian complement system demonstrated that trout serum possesses complement or complement-like components similar in activity to those present in the classical and alternative pathways found in mammals. A single injection of trout with sheep erythrocytes stimulated the production of antibody-secreting cells in lymphoid organs and increased the levels of natural haemolysins. A second injection of sheep erythrocytes further raised the haemolysin values and antibody-secreting cell counts. Serum complement from homologous or closely related fish species was more effective for use in the haemolysin and antibody-secreting cell assays than that from heterologous sources, except guinea pig. Based on physico-chemical properties, gel filtration and immunoelectrophoretic studies, natural and induced anti-sheep erythrocyte haemolysins were found to be similar molecules and are possibly high molecular weight IgM antibodies.  相似文献   

11.
EPR investigations on the vesiculation process of heated human erythrocytes were performed, using different fatty acid spin labels. Spectrin denaturation and vesiculation do not influence the fluidity of the lipid phase of the remaining membrane of human erythrocytes: Vesicles released differ in chemical composition as well as in the lipid fluidity of their membrane from the intact human erythrocyte membrane. A reduced cholesterol-to-phospholipid ratio and a depletion of spectrin was found. By changing the ionic concentration of the suspension medium an effect on membrane spectra and on vesicle release was established. The adamantane derivative amantadine causes fluidization of the human erythrocyte membrane and inhibits vesicle release. Based on these results, a model for the mechanism by which adamantane-like molecules could interact with membranes is proposed.  相似文献   

12.
Resolution of the paradox of red cell shape changes in low and high pH   总被引:4,自引:0,他引:4  
The molecular basis of cell shape regulation in acidic pH was investigated in human erythrocytes. Intact erythrocytes maintain normal shape in the cell pH range 6.3-7.9, but invaginate at lower pH values. However, consistent with predicted pH-dependent changes in the erythrocyte membrane skeleton, isolated erythrocyte membranes evaginate in acidic pH. Moreover, intact cells evaginate at pH greater than 7.9, but isolated membranes invaginate in this condition. Labeling with the hydrophobic, photoactivatable probe 5-[125I]iodonaphthyl-1-azide demonstrated pH-dependent hydrophobic insertion of an amphitropic protein into membranes of intact cells but not into isolated membranes. Based on molecular weight and on reconstitution experiments using stripped inside-out vesicles, the most likely candidate for the variably labeled protein is glyceraldehyde-3-phosphate dehydrogenase. Resealing of isolated membranes reconstituted both the shape changes and the hydrophobic labeling profile seen in intact cells. This observation appears to resolve the paradox of the contradictory pH dependence of shape changes of intact cells and isolated membranes. In intact erythrocytes, the demonstrated protein-membrane interaction would oppose pH-dependent shape effects of the spectrin membrane skeleton, stabilizing cell shape in moderately abnormal pH. Stabilization of erythrocyte shape in moderately acidic pH may prevent inappropriate red cell destruction in the spleen.  相似文献   

13.
《The Journal of cell biology》1984,99(6):1970-1980
I have purified a high molecular weight actin filament gelation protein (GP-260) from Acanthamoeba castellanii, and found by immunological cross-reactivity that it is related to vertebrate spectrins, but not to two other high molecular weight actin-binding proteins, filamin or the microtubule-associated protein, MAP-2. GP-260 was purified by chromatography on DEAE-cellulose, selective precipitation with actin and myosin-II, chromatography on hydroxylapatite in 0.6 M Kl, and selective precipitation at low ionic strength. The yield was 1-2 micrograms/g cells. GP-260 had the same electrophoretic mobility in SDS as the 260,000-mol-wt alpha-chain of spectrin from pig erythrocytes and brain. Electron micrographs of GP-260 shadowed on mica showed slender rod-shaped particles 80-110 nm long. GP-260 raised the low shear apparent viscosity of solutions of Acanthamoeba actin filaments and, at 100 micrograms/ml, formed a gel with a 8 microM actin. Purified antibodies to GP-260 reacted with both 260,000- and 240,000-mol-wt polypeptides in samples of whole ameba proteins separated by gel electrophoresis in SDS, but only the 260,000-mol-wt polypeptide was extracted from the cell with 0.34 M sucrose and purified in this study. These antibodies to GP-260 also reacted with purified spectrin from pig brain and erythrocytes, and antibodies to human erythrocyte spectrin bound to GP-260 and the 240,000-mol-wt polypeptide present in the whole ameba. The antibodies to GP-260 did not bind to chicken gizzard filamin or pig brain MAP-2, but they did react with high molecular weight polypeptides from man, a marsupial, a fish, a clam, a myxomycete, and two other amebas. Fluorescent antibody staining with purified antibodies to GP-260 showed that it is concentrated near the plasma membrane in the ameba.  相似文献   

14.
Sertoli cells prepared from rats ages 15 and 25 days were shown to contain a spectrin-like protein. Indirect immunofluorescence with monospecific antimouse erythrocyte immunoglobulin G (IgG) and with monospecific antimouse brain spectrin IgG revealed specific staining in Sertoli cells. Both antibodies precipitated two spectrin-like peptides of 240,000 and 235,000 daltons from cells solubilized with octyl glucoside. Proteins from Sertoli cell membranes were separated by electrophoresis on polyacrylamide gels containing sodium dodecyl sulfate and electrophoretically transferred to nitrocellulose membrane. Incubation of nitrocellulose membrane with either of the two antibodies, followed by horseradish peroxidase conjugated to second antibody, revealed only the larger, or alpha, spectrin subunit (Western blots). Both antibodies were used to provide immunoautoradiographic identification of the spectrin-like protein. In this procedure, spectrin and Sertoli cell membranes were shown to compete with [125I]-labeled spectrin from mouse erythrocytes for binding to antimouse erythrocyte spectrin IgG. Finally, two-dimensional proteolytic mapping of the 240,000- and 235,000-dalton peptides demonstrated limited spot homology with rat erythrocyte spectrin. However, subcellular fractions from Sertoli cells all contained a spectrin-like protein showing high homology from fraction to fraction. It is concluded that Sertoli cells contain a spectrin-like protein that is seen in cell fractions prepared by centrifugation, i.e., mitochondria, microsomes, nuclei, cytoplasm, and plasma membranes. Although homology with spectrin from erythrocytes or brain is not seen in peptide maps, the alpha subunit shares antigenic determinants with spectrin from erythrocytes. The beta subunit is believed to be precipitated by antispectrin as the result of binding to the alpha subunit, since the beta subunit shows no detectable antigenic homology with that of spectrin.  相似文献   

15.
Incubation of erythrocytes with liposomes results in the release of shed vesicles rich in glycosyl-phosphatidylinositol (GPI)-anchored proteins but poor in transmembranous proteins. We investigated the mechanisms of membrane protein polarization by examining the effect of the interaction between spectrin and membrane proteins on the release of a transmembranous protein, band 3, and a GPI-anchored protein, acetylcholinesterase (AChE), from erythrocyte ghosts. Polymerization of spectrin resulted in a 30-fold decrease in the released amount of band 3 per constant amount of shed vesicles but did not affect the amount of released AChE per constant amount of shed vesicles. On the other hand, the amount of released band 3 per constant amount of shed vesicles increased by cleaving the cytoplasmic part of band 3. Our results first demonstrated that the diffusibility of membrane proteins determined by steric hindrance between membrane proteins and protein mesh primarily determines the ease of localization of membrane proteins into shed vesicles. Taken together with the recent biophysical studies, we built a "fence selection model" that retrograding spectrin mesh sweeps diffusing band 3 molecules from the tip of the membrane crenated area toward the entry of the crenated area, but not AChE molecules. Our study describes a novel method for isolation of a large number of vesicles containing special and intact membrane proteins from cells not by using detergents or organic solvents, but by utilizing the fence effect between the cytoskeleton and membrane proteins.  相似文献   

16.
Brain spectrin reassociates in in vitro binding assays with protein(s) in highly extracted brain membranes quantitatively depleted of ankyrin and spectrin. These newly described membrane sites for spectrin are biologically significant and involve a protein since (a) binding occurs optimally at physiological pH (6.7-6.9) and salt concentrations (50 mM), (b) binding is abolished by digestion of membranes with alpha-chymotrypsin, (c) Scatchard analysis is consistent with a binding capacity of at least 50 pmol/mg total membrane protein, and highest affinity of 3 nM. The major ankyrin-independent binding activity of brain spectrin is localized to the beta subunit of spectrin. Brain membranes also contain high affinity binding sites for erythrocyte spectrin, but a 3-4 fold lower capacity than for brain spectrin. Some spectrin-binding sites associate preferentially with brain spectrin, some with erythrocyte spectrin, and some associate with both types of spectrin. Erythrocyte spectrin contains distinct binding domains for ankyrin and brain membrane protein sites, since the Mr = 72,000 spectrin-binding fragment of ankyrin does not compete for binding of spectrin to brain membranes. Spectrin binds to a small number of ankyrin-independent sites in erythrocyte membranes present in about 10,000-15,000 copies/cell or 10% of the number of sites for ankyrin. Brain spectrin binds to these sites better than erythrocyte spectrin suggesting that erythrocytes have residual binding sites for nonerythroid spectrin. Ankyrin-independent-binding proteins that selectively bind to certain isoforms of spectrin provide a potentially important flexibility in cellular localization and time of synthesis of proteins involved in spectrin-membrane interactions. This flexibility has implications for assembly of the membrane skeleton and targeting of spectrin isoforms to specialized regions of cells.  相似文献   

17.
Intracellular Ca2+ levels in human erythrocytes were increased by incubating them with variable concentrations of Ca2+ in the presence of ionophore A23187. Experiments were done to confirm that the Ca2+ loading did induce changes in the cell shape and membrane protein composition. The effect of the increased cytoplasmic Ca2+ levels on the membrane phospholipid organization was analysed using bee venom and pancreatic phospholipases A2, Merocyanine 540 and fluorescamine as the external membrane probes. About 20% phosphatidylethanolamine (PE) and 0% phosphatidylserine (PS) were hydrolysed by the phospholipases in intact control cells, whereas in identical conditions these enzymes readily degraded, 20-30% PE and 7-30% PS, in Ca2+-loaded erythrocytes, depending on the cytoplasmic Ca2+ concentration. Also, Merocyanine 540 failed to stain the fresh or control erythrocytes, but it labeled the cells loaded with Ca2+. Furthermore, fluorescamine labeled approx. 20% PE in fresh or control erythrocytes while in identical conditions, significantly higher amounts of PE were modified in intact Ca2+-loaded cells. These results demonstrate that Ca2+ loading in human erythrocytes leads to loss of the transbilayer phospholipid asymmetry, and suggest that, together with spectrin, polypeptides 2.1 and 4.1 may also play an important role in maintaining the asymmetric distribution of various phospholipids across the erythrocyte membrane bilayer.  相似文献   

18.
ABSTRACT. In Plasmodium falciparum. the rhoptries involved in the invasion process are a pair of flask-shaped organelles located at the apical tip of invading stages. They, along with the more numerous micronemes and dense granules, constitute the apical complex in Plasmodium and other members of the phylum Apicomplexa. Several proteins of varying molecular weight have been identified in P. falciparum rhoptries. These include the 225-, 140/130/110-, 80/60/40-, RAP-1 80-, AMA-1 80-, QF3 80-, and 55-kDa proteins. Some of these proteins are lost during schizont rupture and release of merozoites. Others such as the 140/130/110-kDa complex are transferred to the erythrocyte membrane during invasion. The ring-infected surface antigen (RESA). a 155-kDa polypeptide located in dense granules also associates with the erythrocyte membrane during invasion. Erythrocyte-binding studies have demonstrated that both the 140/130/110-kDa rhoptry complex and RESA bind to inside-out-vesicles (IOVs) prepared from human erythrocytes. The 140/130/110-kDa complex also binds to erythrocyte membranes prepared by hypotonic lysis. These proteins, however, do not bind to intact human erythrocytes. In a heterologous erythrocyte model, both the 140/130/110-kDa complex and RESA are shown to bind directly to mouse erythrocytes. Other studies have shown that RESA associates with spectrin in the erythrocyte cytoskeleton. We have recently developed a liposome-binding assay to demonstrate the lipophilic binding properties of the P. falciparum rhoptry complex of 140/130/110 kDa. The rhoptry complex binds to liposomes containing neutrally, positively, and negatively charged phospholipids. However, liposomes containing phosphatidylethanolamine compete effectively for rhoptry protein binding to mouse erythrocytes. The rhoptry complex also binds to membrane and inside-out-vesicles prepared from human erythrocytes and erythrocytes from other species. The rhoptry complex associated with the erythrocyte membrane in ring-infected erythrocytes is accessible to cleavage by phospholipase A. Studies are in progress to identify the molecular epitopes on the individual proteins within the complex responsible for lipid interaction in the erythrocyte bilayer and to determine the specificity of the phospholipid interaction using erythrocyte phospholipids.  相似文献   

19.
The spectrins isolated from chicken erythrocytes and chicken intestinal brush border, TW260/240, share a common alpha subunit and a tissue-specific beta subunit. The ability of these related proteins to bind human erythrocyte inside out vesicles (IOVs) and human erythrocyte ankyrin in vitro have been quantitatively compared with human erythrocyte spectrin. Chicken erythrocyte spectrin binds human IOVs and human ankyrin with affinities nearly identical to that for human erythrocyte spectrin. TW260/240 does not significantly bind to either IOVs or ankyrin. These results demonstrate a remarkable tissue preservation of ankyrin-binding capacity, even between diverse species, and confirm the role of the avian beta-spectrins in modulating this functionality. Avian brush border spectrin may represent a unique spectrin which serves primarily as a filament cross-linker and which does not interact strongly with membrane-associated proteins.  相似文献   

20.
When incubated with intact erythrocytes, low density lipoproteins (LDL) decrease the phosphate content of erythrocyte spectrin allowing the cells to undergo morphological transformation. The phosphate content of spectrin depends on the balance between the activity of membrane-associated cyclic AMP-independent protein kinases and phosphoprotein phosphates. LDL do not influence the activity of membrane-associated cyclic AMP-independent protein kinases; these lipoproteins activate by 2-fold and greater membrane-associated phosphatases as determined by hydrolysis of p-nitrophenyl phosphate and by phosphate hydrolysis of phosphorylated erythrocyte membrane proteins. We conclude that LDL interact at the exterior surface of the erythrocyte to stimulate dephosphorylation of spectrin. The significance of this conclusion is augmented by the fact that spectrin, the target for LDL-induced dephosphorylation, specifies cell morphology and modulates the distribution of cell-surface receptors. LDL also render erythrocyte acetylcholinesterase less susceptible to inhition by F-. Lipoproteins in the high density class (HDL) do not stimulate dephosphorylation of spectrin, and they are consequently unable to alter erythrocyte morphology. HDL do prevent the LDL-induced activation of membrane phosphatase. The inhibitory capacity of HDL is observed over the range of LDL:HDL (w/w) which exists in the plasma of normolipemic humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号