首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Acetylation of F-pilin subunits has previously been shown to depend upon expression of the F plasmid transfer operon gene traX. To assess the requirement for pilin acetylation in conjugative transfer of F, we constructed traX::kan insertion mutations and crossed them onto the transmissible F derivative pOX38. Under standard conditions, the function of traX seemed to be dispensable. Although pilin synthesized by mutant plasmids pOX38-traX482 and pOX38-traX483 was not acetylated, F-pilus production and F-pilus-specific phage infection appeared to be normal and transfer occurred at wild-type frequency. Analysis of labeled products showed that TraX+ plasmids expressed two approximately 24- (TraX1) and 22-kDa (TraX2) polypeptides that localized in the cytoplasmic membranes of cells. No product that was similar in size to the product predicted from the traX open reading frame (27.5 kDa) was detected. Therefore, we used site-directed mutagenesis, stop codon linker insertions, and phoA fusion analysis to investigate traX expression. Both TraX1 and TraX2 appeared to be encoded by the traX open reading frame. Insertion of a stop codon linker into the traX C-terminal coding region led to synthesis of two correspondingly truncated products, and fusions to phoA indicated that only the traX reading frame was translated. Expression was also very dependent on the traX M1 start codon; when this was altered, no protein products were observed. However, pilin acetylation activity was still detectable, indicating that some other in-frame start codon(s) can also be used. All sequences that are essential for activity are contained between traX codons 29 and 225. Sequence analysis indicated that traX mRNA is capable of forming a variety of base-paired structures. We suggest that traX expression is translationally controlled and that F-pilin acetylation activity may be regulated by physiological conditions in cells.  相似文献   

2.
Although exopolysaccharides (EPSs) are a large component of bacterial biofilms, their contribution to biofilm structure and function has been examined for only a few organisms. In each of these cases EPS has been shown to be required for cellular attachment to abiotic surfaces. Here, we undertook a genetic approach to examine the potential role of colanic acid, an EPS of Escherichia coli K-12, in biofilm formation. Strains either proficient or deficient in colanic acid production were grown and allowed to adhere to abiotic surfaces and were then examined both macroscopically and microscopically. Surprisingly, we found that colanic acid production is not required for surface attachment. Rather, colanic acid is critical for the formation of the complex three-dimensional structure and depth of E. coli biofilms.  相似文献   

3.
Synthesis of linear plasmid multimers in Escherichia coli K-12.   总被引:22,自引:18,他引:22       下载免费PDF全文
Linear plasmid multimers were identified in extracts of recB21 recC22 strains containing derivatives of the ColE1-type plasmids pACYC184 and pBR322. A mutation in sbcB increases the proportion of plasmid DNA as linear multimers. A model to explain this is based on proposed roles of RecBC enzyme and SbcB enzyme (DNA exonuclease I) in preventing two types of rolling-circle DNA synthesis. Support for this hypothesis was obtained by derepressing synthesis of an inhibitor of RecBC enzyme and observing a difference in control of linear multimer synthesis and monomer circle replication. Reinitiation of rolling-circle DNA synthesis was proposed to occur by recA+-dependent and recA+-independent recombination events involving linear multimers. The presence of linear plasmid multimers in recB and recC mutants sheds new light on plasmid recombination frequencies in various mutant strains.  相似文献   

4.
Escherichia coli genes specifically required for transport of iron by the siderophore enterobactin are designated fep. The studies reported here were initiated to identify and localize the fepB product. The plasmid pCP111, which consisted of an 11-kilobase E. coli DNA fragment containing fepB ligated to pACYC184, was constructed. The fepB gene was subcloned; in the process, complementation tests and Tn5 mutagenesis results provided evidence for the existence of a new fep gene, fepC. The order of the transport genes in the ent gene cluster is as follows: fepA fes entF fepC fepB entE. Minicell, maxicell, and in vitro DNA-directed protein synthesizing systems were used to identify the fepB and fepC products. The fepC polypeptide was 30,500 daltons in standard sodium dodecyl sulfate-polyacrylamide gels. The fepB gene was responsible for the appearance of three or four bands (their apparent molecular weights ranged from 31,500 to 36,500) in sodium dodecyl sulfate-polyacrylamide gels, depending on the gel system employed. The largest of these was tentatively designated proFepB, since it apparently had a leader sequence. Localization experiments showed that FepC was a membrane constituent and that mature FepB was present in the periplasm. An additional polypeptide (X) was also encoded by the bacterial DNA of pCP111, but its relationship to iron transport is unknown. The results indicated that ferrienterobactin uptake is mediated by a periplasmic transport system and that genes coding for outer membrane (fepA), periplasmic (fepB), and cytoplasmic membrane (fepC) components have now been identified.  相似文献   

5.
Seven independently isolated glutathione reductase-deficient (gor) Escherichia coli mutants were found to have an in vivo glutathione redox state that did not significantly differ from that of the parental strain, 98 to 99% reduced. Strains containing both a gor mutation and either a trxA mutation (thioredoxin deficient) or a trxB mutation (thioredoxin reductase deficient) were able to maintain a 94 to 96% reduced glutathione pool, suggesting that glutathione can be reduced independently of glutathione reductase and thioredoxin reductase.  相似文献   

6.
Lon- mutants of Escherichia coli K-12 are deficient in the inheritance of F-plasmids by conjugation. This deficiency is distinct from the conjugation deficiency caused by overproduction of capsular polysaccharide which decreases donor-recipient pair formation.  相似文献   

7.
rhs gene family of Escherichia coli K-12.   总被引:11,自引:5,他引:6       下载免费PDF全文
Two additional members of a novel Escherichia coli gene family, the rhs genes, have been cloned and characterized. The structures of these loci, rhsC and rhsD, have been compared with those of rhsA and rhsB. All four loci contain a homologous 3.7-kilobase-pair core. Sequence comparison of the first 300 nucleotides of the cores showed that rhsA, rhsB, and rhsC are closely related, with only 1 to 2% sequence divergence, whereas rhsD is 18% divergent from the others. The beginning of the core coincides with the initiation of an open reading frame that extends beyond the 300 nucleotides compared. Whether a protein product is produced from this open reading frame has not been established. However, nucleotide substitutions which differentiate the cores have highly conservative effects on the predicted protein products; this suggests that products are made from the open reading frame and are under severe selection. The four rhs loci have been placed on both the genetic and restriction maps of E. coli K-12. A fifth rhs locus remains to be characterized. In terms of size, number, and sequence conservation, the rhs genes make up one of the most significant repetitions in E. coli, comparable to the rRNA operons.  相似文献   

8.
Cloning of the Escherichia coli K-12 hemB gene.   总被引:3,自引:11,他引:3       下载免费PDF全文
An Escherichia coli heme-requiring, heme-permeable mutant had no detectable 5-aminolevulinate dehydratase or porphobilinogen deaminase activities. The gene which complemented this mutation was cloned to a high-copy-number plasmid, and porphobilinogen deaminase activity was restored to normal levels, but the synthesis of 5-aminolevulinate dehydratase increased 20- to 30-fold. A maxicell procedure confirmed that the gene cloned was hemB.  相似文献   

9.
It is known that Escherichia coli K-12 is cryptic (Phn-) for utilization of methyl phosphonate (MePn) and that Phn+ variants can be selected for growth on MePn as the sole P source. Variants arise from deletion via a possible slip strand mechanism of one of three direct 8-bp repeat sequences in phnE, which restores function to a component of a putative ABC type transporter. Here we show that Phn+ variants are present at the surprisingly high frequency of >10(-2) in K-12 strains. Amplified-fragment length polymorphism analysis was used to monitor instability in phnE in various strains growing under different conditions. This revealed that, once selection for growth on MePn is removed, Phn+ revertants reappear and accumulate at high levels through reinsertion of the 8-bp repeat element sequence. It appears that, in K-12, phnE contains a high-frequency reversible gene switch, producing phase variation which either allows ("on" form) or blocks ("off" form) MePn utilization. The switch can also block usage of other metabolizable alkyl phosphonates, including the naturally occurring 2-aminoethylphosphonate. All K-12 strains, obtained from collections, appear in the "off" form even when bearing mutations in mutS, mutD, or dnaQ which are known to enhance slip strand events between repetitive sequences. The ability to inactivate the phnE gene appears to be unique to K-12 strains since the B strain is naturally Phn+ and lacks the inactivating 8-bp insertion in phnE, as do important pathogenic strains for which genome sequences are known and also strains isolated recently from environmental sources.  相似文献   

10.
Recombination and the Escherichia coli K-12 sex factor F.   总被引:1,自引:4,他引:1       下载免费PDF全文
Recombination between two Flac tra minus elements to give Flac tra plus recombinants was measured in Rec plus and Rec minus strains of Escherichia coli K-12. Polar tra mutations were used to increase the proportion of tra plus recombinants among the parental Flac tra minus elements transferred by complementation. The kinetics, measured in a rec plus strain, showed that recombination began about 1 h after the initiation of mating and was completed about 1 h later. Recombination was abolished in a recA minus strain, reduced by two-thirds in a recF minus strain, and unaffected in recB minus and recC minus strains. It is proposed that the part not due to the RecF pathway results from a RecBC- and RecF-independent system for formation of single-stranded joins. One such join could be followed either by transfer and a site-specific recombination event, or by a second single-stranded join and then transfer: in either case replication and inheritance of the recombinant molecule would be dependent upon the F transfer replication system. Chromosome mobilization by an F' element was normal in a recB plus recF minus strain, and was reduced only fourfold in a recB minus recF plus strain: in the latter strain, both the RecF pathway and the system for single-stranded joins may have contributed to mobilization. Measurement of post-conjugational chromosomal recombination in exponential-phase recipient cells carrying surface exclusion-deficient Flac mutants indicated that F does not itself determine a generalized recombination system able to replace the RecA plus product or the RecBC and RecF pathways.  相似文献   

11.
OmpF and OmpC are major outer membrane proteins which form passive diffusion pores in Escherichia coli K-12. The expression of the structural genes for these proteins, ompF and ompC, is influenced by medium osmotic strength and requires the products of two regulatory genes, ompR and envZ. We have constructed a series of ompF-lacZ fusions containing different regions of ompF to determine sites involved with osmoregulation. These fusions were crossed onto a specialized transducing phage and integrated into the bacterial chromosome in unit copy. By measuring the fluctuations of beta-galactosidase activity in lysogens grown in high versus low osmolarity, we have identified three regions which are necessary. Furthermore, we have determined that, although the OmpR activation site is not sufficient, OmpR is probably essential for ompF osmoregulation.  相似文献   

12.
Replicating DNA molecules of the nonconjugative R plasmid RSF1010 (Smr Sur) were cleaved with the EcoRI restriction endonuclease and examined with the electron microscope. Results of this analysis indicated that replication is initiated from an origin located at about 19% of total genome size from one of the EcoRI ends. Replication proceeded either unidirectionally or bidirectionally with equal frequency. Results of the analysis of replicative intermediates of RSF1010 containing the Apr-transposable sequence (Tn) are also presented.  相似文献   

13.
H Masai  K Arai 《Journal of bacteriology》1989,171(6):2975-2980
Plasmid pBR322 was unable to replicate in a temperature-sensitive dnaT1 strain at a nonpermissive temperature, whereas a pBR322-derived plasmid carrying the wild-type dnaT+ gene was able to replicate under the same conditions. In contrast to pBR322, plasmid R1 could replicate in the dnaT1 strain at a nonpermissive temperature. In keeping with this finding, in vitro replication of plasmid R1 did not require DnaT protein.  相似文献   

14.
15.
I A Khmel' 《Genetika》1987,23(9):1705-1707
The presence of the ColIa-CA53 plasmid in umuC and umuD mutant Escherichia coli K-12 cells restores their mutability under UV irradiation to a level that even exceeds that of the isogenic umuC+umuD+ strains, as well as increases their resistance to the lethal effects of UV irradiation. The ColIb-P9 plasmid which suppresses the umuC mutant phenotype, as we have shown earlier, acts in the same manner with respect to the umuD mutant cells. The results of the study demonstrate that both plasmids encode products that are functionally similar to those of the chromosomal genes umuC and umuD. The plasmids ColIa-CA53, ColIb-P9 and pKM101 are shown to have practically the same effect upon the mutagenesis and survival of the umuC, umuD mutant cells.  相似文献   

16.
17.
C Kim  S Song    C Park 《Journal of bacteriology》1997,179(24):7631-7637
Escherichia coli K-12 can utilize D-allose, an all-cis hexose, as a sole carbon source. The operon responsible for D-allose metabolism was localized at 92.8 min of the E. coli linkage map. It consists of six genes, alsRBACEK, which are inducible by D-allose and are under the control of the repressor gene alsR. This operon is also subject to catabolite repression. Three genes, alsB, alsA, and alsC, appear to be necessary for transport of D-allose. D-Allose-binding protein, encoded by alsB, is a periplasmic protein that has an affinity for D-allose, with a Kd of 0.33 microM. As was found for other binding-protein-mediated ABC transporters, the allose transport system includes an ATP-binding component (AlsA) and a transmembrane protein (AlsC). It was found that AlsE (a putative D-allulose-6-phosphate 3-epimerase), but not AlsK (a putative D-allose kinase), is necessary for allose metabolism. During this study, we observed that the D-allose transporter is partially responsible for the low-affinity transport of D-ribose and that strain W3110, an E. coli prototroph, has a defect in the transport of D-allose mediated by the allose permease.  相似文献   

18.
The RhsD-E subfamily of Escherichia coli K-12.   总被引:6,自引:0,他引:6       下载免费PDF全文
The Escherichia coli K-12 chromosome contains a family of five large, unlinked sequences known as the Rhs elements. They share several complex homologies, the most prominent being a 3.7 kb Rhs core. The elements are divided into two subfamilies, RhsA-B-C and RhsD-E, according to the sequence similarities of the cores. The RhsD core is 3747 bp long compared to 3714 bp for RhsA. Despite a 22% sequence divergence, the RhsD core conserves features previously noted for RhsA. Similar to RhsA, the RhsD core maintains a single ORF, the start codon coinciding with the first nucleotide of the homology. The RhsD core-ORF continues 177 codons beyond the homology, resulting in a carboxy terminal extension unrelated to that of RhsA. The RhsD core retains all 28 copies of the repeated motif GxxxRYxYDxxGRL(I/T) seen in RhsA. The other member of the RhsD-E subfamily, RhsE, has been mapped to minute 32 of the E. coli map. It appears defective in that it contains only the last 1550 bp of the 3.7 kb core. Its sequence is more closely related to that of RhsD than RhsA. In addition, RhsE and RhsB share a 1.3 kb homology, known as the H-repeat. The H-repeats from RhsE and RhsB are more closely related than their cores, showing only 1% nucleotide divergence.  相似文献   

19.
The R-factor R1 is present in a low number of copies per genome (near unity, so-called stringent control of replication). The replication of R1 was studied in a density-shift experiment. One generation after the shift about 20% of the R1 copies had not replicated, whereas about 20% had replicated at least twice. The results are in quantitative accordance with a random replication of R1 in which the replicating molecules are taken from a cytoplasmic plasmid pool and transferred back to the pool after replication. This is analogous to the results obtained by Bazaral and Helinski (1970) and Rownd (1969) for plasmids that are present in 10 to 20 copies per genome (so-called relaxed control of replication). Hence, there seem to be no difference between stringent and relaxed plasmids with respect to selection of plasmid molecules for replication. However, we cannot tell whether all R1 copies in a cell replicate during a fraction of or throughout the cell cycle. The random selction of plasmid copies for replication has to be considered when models for control of replication are constructed.  相似文献   

20.
The phoBR operon in Escherichia coli K-12.   总被引:3,自引:13,他引:3       下载免费PDF全文
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号