首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Seven differently linked glycosyl residues have been found to be glycosidically linked to O-4 of the branched 2,4-linked l-rhamnosyl residues contained in the rhamnosyl and galacturonosyl backbone of the cell wall pectic polysaccharide rhamnogalacturonan I. These seven glycosyl residues are, therefore, the first residues of at least seven different side chains attached to the rhamnogalacturonan backbone. These first side chain glycosyl residues are 5-linked l-arabinofuranosyl and terminal 3-, 4-, 6-, 2,6-, and 3,6-linked d-galactopyranosyl residues. The existence of at least seven different side chains in rhamnogalacturonan I indicates that rhamnogalacturonan I is either an exceedingly complex polysaccharide or that rhamnogalacturonan I is a family of polysaccharides with similar or identical rhamnogalacturonan backbones substituted with different side chains.  相似文献   

2.
Cell wall and soluble polysaccharides that reacted with Trichosporon domesticum factor III serum were isolated from the type strain of T. domesticum. The fractions contained O-acetyl groups, which contributed to the serological reactivity. The antigenic structure was characterized by chromatographic and spectroscopic methods. The polysaccharide has an alpha-(1-->3)-D-mannan backbone with hetero-oligosaccharide side chains consisting of a 2-O-substituted beta-D-glucuronic acid residue bound to O-2 of the mannose residue, beta-D-xylopyranosyl residues located in the middle of the side chain, and a nonreducing terminal alpha-L-arabinopyranosyl residue bound to 0-4 of xylose. The mannan backbone is O-acetylated at O-6 of the mannose residues.  相似文献   

3.
《Carbohydrate research》1987,168(2):245-274
Rhamnogalacturonan I is a pectic polysaccharide that is solubilized from the walls of suspension-cultured sycamore cells (Acer pseudoplatanus) by the action of a highly purified endo-1,4-α-polygalacturonanase. Rhamnogalacturonan I has a linear backbone consisting of the diglycosyl repeating unit, →4)-α-d-GalpA-(1→2)-α-l-Rhap-(1→. Approximately half of the α-l-rhamnosyl residues of the backbone are branched at O-4. Selective cleavage at the galactosyluronic acid residues of the backbone by treatment of rhamnogalacturonan I wit lithium in ethylenediamine resulted in the release of the neutral glycosyl-residue sidechains that had been attached to the backbone. Various analytical techniques, including combined liquid chromatography-mass spectrometry, combined gas-liquid chromatography-mass spectrometry, and 1H-nuclear magnetic resonance spectroscopy, were used to determine the structure of the side chains. The majority of the sidechains were isolated as oligoglycosylalditols, with rhamnitol at the “reducing” end. Terminal 2-, 4-, or 6-linked galactosyl residues were found attached to O-4 of the rhamnitol residues The 2-, 4-, and 6-linked galactosyl residues had terminal or 2-linked arabinosyl, or additional galactosyl, residues attached to them. Based on the results of fast-atom-bombardment mass spectrometry, the side chains were found to range in size from one to fourteen glycosyl residues. The side-chain structures suggest that there are four or more distinct families of side chains attached to the backbone of rhamnogalacturonan I.  相似文献   

4.
Cell wall and soluble polysaccharides that reacted with Trichosporon domesticum factor III serum were isolated from the type strain of T. domesticum. The fractions contained O-acetyl groups, which contributed to the serological reactivity. The antigenic structure was characterized by chromatographic and spectroscopic methods. The polysaccharide has an α-(1→3)- -mannan backbone with hetero-oligosaccharide side chains consisting of a 2-O-substituted β- -glucuronic acid residue bound to O-2 of the mannose residue, β- -xylopyranosyl residues located in the middle of the side chain, and a nonreducing terminal α- -arabinopyranosyl residue bound to O-4 of xylose. The mannan backbone is O-acetylated at O-6 of the mannose residues.  相似文献   

5.
A method was developed to selectively methyl esterify and then cleave GalA residues in pectic polysaccharides. The method was optimized using a rhamnogalacturonan (RG) from Arabidopsis mucilage as a model compound. The carboxyl group of the GalA residues in the RG was selectively methyl esterified using tetrabutylammonium fluoride and iodomethane in Me(2)SO containing 8% water. A 1D HMQC NMR method to determine the degree of methyl esterification was developed using (13)C-iodomethane as the methylating agent. The methyl-esterified pectins were fragmented by beta-elimination in 0.2M sodium borate, pH7.3, at 125 degrees C. The resulting oligoglycosyl fragments, which contain a nonreducing 4-deoxy-beta-l-threo-hex-4-enepyranosyluronic acid residue, were characterized using MALDI-TOF mass spectrometry, monosaccharide composition analysis, and 1D and 2D (1)H and (13)C NMR spectroscopy. Application of this method to branched RG from potato generated low-molecular-weight fragments containing two residues from the RG backbone and a single side chain. In contrast, the fragments obtained when RG is treated with RG lyase contain a minimum of four backbone residues. The chemical method thus facilitates the release and structural characterization of the side-chain structures of RG obtained from various plant sources. The method also provides a convenient method for generating fully or partially methyl-esterified homogalacturonans.  相似文献   

6.
The husk from the seeds of Plantago ovata Forsk yielded two fractions when exposed to mild aikali, namely, the mucilage polysaccharide (85%, apparently a single species) and the non-polysaccharide component (15%). Methylation analysis and partial hydrolysis with acid showed the mucilage polysaccharide to be a highly branched, acidic arabinoxylan, the xylan backbone having both (1→4) and (1→3) linkages. The majority of the residues in the xylan backbone are variously substituted at O-2 and O-3 with arabinose, xylose, and an aldobiouronic acid identified as 2-O-(galactopyranosyluronic acid)-rhamnose. A structure incorporating these features for the husk polysaccharide is proposed.  相似文献   

7.
T Ishii 《Plant physiology》1997,113(4):1265-1272
Acetylated trigalacturonides and rhamnogalacturonan I (RG-I)-derived oligosaccharides were isolated from a Driselase digest of potato tuber cell walls by ion-exchange and size-exclusion chromatography. The oligosaccharides were structurally characterized by fast atom bombardment-mass spectroscopy, nuclear magnetic resonance spectroscopy, and glycosyl-linkage composition analysis. One trigalacturonide contained a single acetyl group at O-3 of the reducing galacturonic acid residue. A second trigalacturonide contained two acetyl substituents, which were located on O-3 or O-4 of the nonreducing galacturonic acid residue and O-3 of the reducing galacturonic acid residue. RG-I backbone-derived oligomers had acetyl groups at O-2 of the galacturonic acid residues. Some of these galacturonic acid residues were O-acetylated at both O-2 and O-3 positions. Rhamnosyl residues of RG-I oligomers were not acetylated.  相似文献   

8.
Intact, finely milled mesophyll, epidermis, and fibre cell-walls prepared from the leaves of perennial and Italian ryegrass have been subjected to methylation analysis. Methylation of the cell-walls led to a consistently higher recovery of glucose residues than that obtained by analysis of monosaccharide residues as their alditol acetates. Values for other sugars were in close agreement. The partially methylated sugars formed were consistent with the presence, in order of decreasing concentration, of cellulose, (glucurono)arabinoxylan, xyloglucan, rhamnogalacturonan, (1→3),(1→4)-linked glucan, (1→4)-linked galactan, and (1→3),(1→6)-linked galactan. The relative proportions of these polysaccharides differed between the various types of cell. Arabinoxylan comprised 21.6%, 26.7%, and 36.5% of the total sugars recovered from mesophyll, epidermis, and fibre cell-walls, respectively. Mixed-linked glucan and rhamnogalacturonan were found in epidermis walls in amounts 2- to 3-fold higher than in other cell-walls. The xylan backbone of arabinoxylan was more heavily substituted in primary than in secondary-thickened (fibre) cell-walls. Arabinose, found largely as terminal residues in the cell-walls, carried various amounts of alkali-labile substituents, particularly at position 5. The extent of 5-substitution reflected the phenolic content and was substantially higher in fibre cell-walls. The methylation data, coupled with the analytical data for uronic acids and non-carbohydrate components, accounted for ~98% of the cell-wall dry matter.  相似文献   

9.
AXHs (arabinoxylan arabinofuranohydrolases) are alpha-L-arabinofuranosidases that specifically hydrolyse the glycosidic bond between arabinofuranosyl substituents and xylopyranosyl backbone residues of arabinoxylan. Bacillus subtilis was recently shown to produce an AXH that cleaves arabinose units from O-2- or O-3-mono-substituted xylose residues: BsAXH-m2,3 (B. subtilis AXH-m2,3). Crystallographic analysis reveals a two-domain structure for this enzyme: a catalytic domain displaying a five-bladed beta-propeller fold characteristic of GH (glycoside hydrolase) family 43 and a CBM (carbohydrate-binding module) with a beta-sandwich fold belonging to CBM family 6. Binding of substrate to BsAXH-m2,3 is largely based on hydrophobic stacking interactions, which probably allow the positional flexibility needed to hydrolyse both arabinose substituents at the O-2 or O-3 position of the xylose unit. Superposition of the BsAXH-m2,3 structure with known structures of the GH family 43 exo-acting enzymes, beta-xylosidase and alpha-L-arabinanase, each in complex with their substrate, reveals a different orientation of the sugar backbone.  相似文献   

10.
Silenan SV, a pectic polysaccharide, was isolated from the aerial part of Silene vulgaris (Moench) Garke (Oberna behen (L.) Ikonn.), widespread through the European North of Russia. The polysaccharide was found to contain residues of galacturonic acid (63%), arabinose, galactose, and rhamnose as the main constituents. The results of a partial acidic hydrolysis, pectinase digestion, and NMR studies of silenan SV indicated that its molecule contains a linear alpha-1,4-D-galacturonan backbone and ramified regions. The core of the ramified regions is composed of residues of alpha-1,4-D-galacturonic acid along with 2-substituted alpha-rhamnopyranose residues. The NMR data showed that the silenan SV side chains are composed of the blocks built from the terminal alpha-1,5-linked arabinofuranose and beta-1,4-linked galactopyranose residues; these most likely are the side chains of rhamnogalacturonan, characteristic of other pectic polysaccharides. The nonreducing ends of these side chains contain alpha-arabinofuranose residues.  相似文献   

11.
《Carbohydrate polymers》1987,7(2):143-158
A rhamnogalacturonan, extracted with hot water from the aqueous ethanol insoluble residue of flue-cured bright tobacco lamina, was purified by tangential flow ultrafiltration, ion chromatography and gel filtration. It was characterized by chemical and spectroscopic methods. Fractionation revealed that the rhamnogalacturonan consisted of a series of polysaccharides with different amounts of methyl-esterified galactopyranosyluronic acid residues in the backbone and different amounts of neutral sugar residues.The main pectic polysaccharide fraction has a backbone consisting of 4-linked α-d-galactopyranosyluronic acid residues interspersed with 2-linked l-rhamnopyranosyl residues. Approximately 22% of the galactopyranosyluronic acid residues are methylated. The main chain is branched at C-4 of rhamnose with neutral sugar side chains containing terminal and 4-linked β-d-galactopyranosyl and terminal and 5-linked α-l-arabinofuranosyl residues. The average degree of polymerization of this tobacco rahamnogalacturonan was estimated to be 400.  相似文献   

12.
Considerable information has been obtained about the primary structures of suspension-cultured sycamore (Acer pseudoplatanus) cell-wall pectic polysaccharides, i.e. rhamnogalacturonan I, rhamnogalacturonan II, and homogalacturonan. However, these polysaccharides, which are solubilized from the walls by endo-α-1,4-polygalacturonase, account for only about half of the pectic polysaccharides known to be present in sycamore cell walls. We now report that, after exhaustive treatment with endo-α-1,4-polygalacturonase, additional pectic polysaccharides were extracted from sycamore cell walls by treatment with Na2CO3 at 1 and 22°C. These previously uncharacterized polysaccharides accounted for ~4% of the cell wall. Based on the glycosyl and glycosyl-linkage compositions and the nature of the products obtained by treating the quantitatively predominant NaCO3-extracted polysaccharides with lithium metal dissolved in ethylenediamine, the polysaccharides were found to strongly resemble rhamnogalacturonan I. However, unlike rhamnogalacturonan I that characteristically had equal amounts of 2- and 2,4-linked rhamnosyl residues in its backbone, the polysaccharides extracted in Na2CO3 at 1°C had markedly disparate ratios of 2- to 2,4-linked rhamnosyl residues. We concluded that polysaccharides similar to rhamnogalacturonan I but with different degrees of branching are present in the walls of suspension-cultured sycamore cells.  相似文献   

13.
An acidic polysaccharide, H2, was isolated from the alkali-extract CHC of seeds of Cuscuta chinensis Lam. with the molecular weight more than 1.0×106. Chemical and spectroscopic studies led to the structure determination as follows: the backbone chain consists of 1,6-linked-β- D Galp, 1,4-linked-β- D Galp, 1,4-linked-β- D GalA and 1,2- or 1,4-linked-β- L Rhap having branching points at position O-3 of some 1,6-linked-β- D Galp residues (one among eight) and O-4 or O-2 of 1,2- or 1,4-linked-β- L Rhap residues to terminal β-D-galactopyranose. The side chains composed of terminal Galp, 1,6-linked-β- D Galp, 1,4-linked β- D Galp and 1,3,6-linked-β- D Galp also linked at position O-3 of 1,6-linked-β- D Galp residues in the backbone chain. β- L -arabinofuranosyl and terminal β- L -rhamnopyranosyl residues existed in the periphery of this polysaccharide linked to O-3 of 1,6-linked-β- D Galp residues in the backbone chain and the side chains. The polysaccharide H2 increased significantly the survival rate of PC12 cells indicating that it had protective effects against H2O2 insult.  相似文献   

14.
The gel-forming polysaccharide of psyllium husk (Plantago ovata Forsk)   总被引:1,自引:0,他引:1  
The physiologically active, gel-forming fraction of the alkali-extractable polysaccharides of Plantago ovata Forsk seed husk (psyllium seed) and some derived partial hydrolysis products were studied by compositional and methylation analysis and NMR spectroscopy. Resolving the conflicting claims of previous investigators, the material was found to be a neutral arabinoxylan (arabinose 22.6%, xylose 74.6%, molar basis; only traces of other sugars). With about 35% of nonreducing terminal residues, the polysaccharide is highly branched. The data are compatible with a structure consisting of a densely substituted main chain of beta-(1-->4)-linked D-xylopyranosyl residues, some carrying single xylopyranosyl side chains at position 2, others bearing, at position 3, trisaccharide branches having the sequence L-Araf-alpha-(1-->3)-D-Xylp-beta-(1-->3)-l-Araf. The presence of this sequence is supported by methylation and NMR data, and by the isolation of the disaccharide 3-O-beta-D-xylopyranosyl-L-arabinose as a product of partial acid hydrolysis of the polysaccharide.  相似文献   

15.
Two polysaccharides were isolated from submergedly cultured mycelium of the basidiomycete Ganoderma lucidum by extraction with alkali followed by fractionation with Fehling reagent. The polysaccharides were shown to be a linear (1→3)-α-D-glucan and a highly branched xylomannan containing a backbone built up of (1→3)-linked α-D-mannopyranose residues, the majority of which are substituted at O-4 by single β-D-xylopyranose residues or by disaccharide fragments β-D-Manp-(1→3)-β-D-Xylp-(1→. Polysaccharide structures were elucidated by NMR spectroscopy in combination with methylation analysis and periodate oxidation. An interesting feature of the xylomannan is the simultaneous presence of α-D-mannopyranose and β-D-mannopyranose residues, the first forming the backbone, and the second being the non-reducing terminal units of disaccharide side chains.  相似文献   

16.
The acidic polysaccharide from the seed-coat mucilage of Hyptis suaveolens is a highly branched L-fuco-4-O-methyl-D-glucurono-D-xylan for which a structure is proposed having a 4-linked beta-D-xylan backbone carrying side chains of single 4-O-methyl-alpha-D-glucuronic acid residues at O-2 and 2-O-L-fucopyranosyl-D-xylopyranose units at O-3. The structural analysis involves base-catalyzed beta-elimination of uronic acid residues from the methylated glycan followed by degradation using a modified Svensson oxidation-elimination sequence.  相似文献   

17.
The seed mucilage from Plantago major L. contains acidic heteroxylan polysaccharides. For further structural analysis, oligosaccharides were generated by partial acid hydrolysis and then isolated by high-pH anion-exchange chromatography (HPAEC). Each HPAEC fraction was shown by ESMS to contain one major oligosaccharide and several minor components. Partial structures of the oligosaccharides were determined using GC-MS, ESMS and ES tandem mass spectrometry (ESMS/MS). A (1-->4)-linked xylan trisaccharide and (1-->3)-linked xylan oligosaccharides with DP 6-11 suggested that the backbone of the heteroxylan polysaccharide consisted of blocks of (1-->4)-linked and (1-->3)-linked Xylp residues. A (1-->2)-linked Xylp disaccharide and a branched tetrasaccharide were also found, revealing that single Xylp residues are linked to the O-2 of some of the (1-->4)-linked Xylp residues in the backbone. In addition, our results confirm the presence of side chains consisting of the disaccharide GlcpA-(1-->3)-Araf.  相似文献   

18.
Hua YF  Zhang M  Fu CX  Chen ZH  Chan GY 《Carbohydrate research》2004,339(13):2219-2224
A heteropolysaccharide obtained from an aqueous extract of dried stem of Dendrobium officinale Kimura and Migo by anion-exchange chromatography and gel-permeation chromatography, was investigated by chemical techniques and NMR spectroscopy, and is demonstrated to be a 2-O-acetylglucomannan, composed of mannose, glucose, and arabinose in 40.2:8.4:1 molar ratios. It has a backbone of (1-->4)-linked beta-d-mannopyranosyl residues and beta-d-glucopyranosyl residues, with branches at O-6 consisting of terminal and (1-->3)-linked Manp, (1-->3)-linked Glcp, and a small proportion of arabinofuranosyl residues at the terminal position. The acetyl groups are substituted at O-2 of (1-->4)-linked Manp and Glcp. The main repeating unit of the polysaccharides is reported.  相似文献   

19.
An immunomodulating pectic polymer, GOA1, obtained from the aerial parts of the Malian medicinal plant Glinus oppositifolius (L.) Aug. DC. (Aizoaceae) has previously been reported to consist of arabinogalactans type I and II, probably linked to a rhamnogalacturonan backbone. To further elucidate the structure of the polymer GOA1, enzymatic degradation studies and weak acid hydrolysis were performed. Five different glycosidases were used, endo-alpha-D-(1-->4)-polygalacturonase, exo-alpha-L-arabinofuranosidase, endo-alpha-L-(1-->5)-arabinanase, endo-beta-D-(1-->4)-galactanase and exo-beta-D-galactosidase. It appears that GOA1 may contain a structural moiety consisting of a 1,3-linked galactopyranosyl (Galp) main chain with 1,6-linked Galp side chains attached to position 6 of the main chain. The 1,6-linked Galp side chain may be branched in position 3 with arabinofuranosyl (Araf) side chains. A 1,4-linked Galp backbone which might carry side chains or glycosyl units attached to position 3 is also a structural element in the polymer. We further show that GOA1 induce proliferation of B cells and the secretion of IL-1beta by macrophages, in addition to a marked increase of mRNA for IFN-gamma in NK-cells. To elucidate structure-activity relations the native polymer and the digested fractions were tested for complement fixing activity and intestinal immune stimulating activity. The partial removal of Araf residues after enzymatic degradations did not affect the bioactivities, while the acid hydrolysed fraction showed reduced complement fixing activity. A decrease in Araf units, 1,3,6-linked Galp units and a partial hydrolysed rhamnogalacturonan backbone, in addition to a reduction in molecular weight are factors that might have contributed to reduced bioactivity.  相似文献   

20.
The major water-soluble arabinoxylan fraction from rye grain, containing 4-linked β- -xylopyranosyl residues of which about 43% were substituted solely at O-3 and 7% at both O-2 and O-3 with terminal - -arabinofuranosyl units, was hydrolysed to different extents using semi-purified xylanase from Trichoderma reesei. Products were fractionated on Biogel P-2 and structurally elucidated by sugar, methylation and high-field 1H-NMR analysis. Moderate hydrolysis released arabinose, xylose, xylobiose, xylotriose and xylotetraose together with xylo-oligosaccharides (DP ≥ 4) in which one or more of the residues were substituted at O-3 with a terminal arabinose unit. The xylose residues substituted with arabinose units at both O-2 and O-3 became enriched in the remaining polymeric fraction. Extensive hydrolysis with the enzyme released arabinose, xylose and xylobiose as major products together with small amounts of two oligosaccharides and a polymeric fraction. One of the oligosaccharides was identified as xylotriose in which the non-reducing end was substituted at O-2 and O-3 with terminal arabinose units and the other as xylotetraose in which one of the interjacent residues was substituted with arabinose units in the same way. The polymeric fraction contained a main chain of 4-linked xylose residues in which 60–70% of the residues were substituted at both O-2 and O-3 with arabinose units.

The semi-purified enzyme contained xylanase and arabinosidase activities which rapidly degraded un- and mono-substituted xylose residues while the degradation of double-substituted xylose residues was much slower. The results show that the mono- and double-substituted xylose residues were present in different polymers or different regions of the same polymer.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号