首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Physiological parameters, rates of mitochondrial respiration, high energy phosphate levels and creatine phosphokinase (CPK) activity were investigated in the hearts from control and alloxan-induced diabetic rabbits before and after 40-min total ischemia and reperfusion. Diabetic hearts demonstrated significant decreases in the rates of contraction (+dP/dt) and relaxation (-dP/dt), heart rates and cardiac work compared to control hearts. Determination of mitochondrial respiration rates in saponin-skinned fibers showed a low mitochondrial respiratory function in diabetic hearts. It was found that the ATP and ADP levels and the total and mitochondrial isoenzyme activities of CPK in diabetic hearts were lowered in comparison with control. A post-ischemic recovery of cardiac performance for diabetic hearts was better than in controls. After reperfusion diabetic hearts had increased ATP levels. The data obtained demonstrate some abnormalities of both cardiac performance and energy metabolism in the hearts of diabetic animals and a decreased sensitivity of the latter to ischemic injury.  相似文献   

2.
To determine whether the effects of fatty acids on the diabetic heart during ischemia involve altered glycolytic ATP and proton production, we measured energetics and intracellular pH (pH(i)) by using (31)P NMR spectroscopy plus [2-(3)H]glucose uptake in isolated rat hearts. Hearts from 7-wk streptozotocin diabetic and control rats, perfused with buffer containing 11 mM glucose, with or without 1.2 mM palmitate or the ketone bodies, 4 mM beta-hydroxybutyrate plus 1 mM acetoacetate, were subjected to 32 min of low-flow (0.3 ml x g wet wt(-1) x min(-1)) ischemia, followed by 32 min of reperfusion. In control rat hearts, neither palmitate nor ketone bodies altered the recovery of contractile function. Diabetic rat hearts perfused with glucose alone or with ketone bodies, had functional recoveries 50% lower than those of the control hearts, but palmitate restored recovery to control levels. In a parallel group with the functional recoveries, palmitate prevented the 54% faster loss of ATP in the diabetic, glucose-perfused rat hearts during ischemia, but had no effect on the rate of ATP depletion in control hearts. Palmitate decreased total glucose uptake in control rat hearts during low-flow ischemia, from 106 +/- 17 to 52 +/- 12 micromol/g wet wt, but did not alter the total glucose uptake in the diabetic rat hearts, which was 42 +/- 5 micromol/g wet wt. Recovery of contractile function was unrelated to pH(i) during ischemia; the glucose-perfused control and palmitate-perfused diabetic hearts had end-ischemic pH(i) values that were significantly different at 6.36 +/- 0.04 and 6.60 +/- 0.02, respectively, but had similar functional recoveries, whereas the glucose-perfused diabetic hearts had significantly lower functional recoveries, but their pH(i) was 6.49 +/- 0.04. We conclude that fatty acids, but not ketone bodies, protect the diabetic heart by decreasing ATP depletion, with neither having detrimental effects on the normal rat heart during low-flow ischemia.  相似文献   

3.
The kinetic properties of MM-isozyme of creatine phosphokinase (CPK) bound to heart myofibrils have been determined experimentally. It has been shown that CPK isozymes bound to the heart myofibrils and mitochondria are electrophoretically different, but have very similar kinetic properties. For both isozymes the ATP formation reaction is preferable. However, in heart mitochondria the kinetic properties of CPK are compensated for by a tight functional coupling with ATP-ADP translocase. Due to this coupling the ATP formed in the course of oxidative phosphorylation can be used completely for creatine phosphate production in mitochondria. On the other hand, the kinetic properties of myofibrillar CPK isozyme are such that they provide for the effective utilization of creatine phosphate produced in mitochondria for rephosphorylation of AKP formed in the myofibrils during contraction. It is concluded that in the heart cells energy can be transferred from the mitochondria to the myofibrils by creatine phosphate molecules.  相似文献   

4.
Acceptor control index, P/O ratio and inner membrane permeability were examined in isolated mitochondria following periods of renal ischemia for 15, 30, 60, 120, and 240 min. It was noted that the P/O ratio remained unchanged until 1-2 h after the onset of ischemia. A similar change was noted in the contraction rate of isolated ischemic mitochondria after swelling in KCl and addition of ATP+Mg2+. Both changes are probably indications of a basic membrane alteration which correlates with the occurrence of irreversibility of cell injury. In contrast, the swelling rate in KCl and the acceptor control index are altered almost simultaneously with the onset of ischemia. Therefore, acceptor control index and the rate of swelling are affected prior to the point of irreversible cell injury. They are not, therefore, good as indicators of irreversible changes in the inner membrane of mitochondria leading to the "point-of-no-return."  相似文献   

5.
Male albino rats were given subcutaneous injection of isoproterenol (10 mg/100 g body wt) twice at an interval of 24 hr to induce myocardial infarction. The rats showed massive myocardial necrosis and increased activities of creatinine phosphokinase (CPK), glutamate oxaloacetate transaminase (GOT) and glutamate pyruvate transaminase (GPT), in serum, while a decrease in nitric oxide synthase activity and lower levels of palmitate oxidation into CO2 and ATP were observed in the heart. Rats pre-treated with coconut protein or L-arginine showed significantly decreased CPK, GOT and GPT activities in the serum. There was significantly higher nitric oxide synthase activity and higher rate of palmitate oxidation into CO2 and increased levels of ATP in the heart in these groups. These observations indicate the cardioprotective effect of coconut protein, which may be attributed to the high content of L-arginine present in it.  相似文献   

6.
Our purpose in this article is to examine the hypothesis that both myocardial disease and ischemia can alter the electrophysiologic function of the ion channels responsible for the cellular electrical activity of the heart. Changes in the intracellular and extracellular milieus occur during ischemia and can alter the electrophysiology of several species of ionic channels and the cellular electrophysiologic activity of cardiac myocytes. Included are 1) changes in extracellular [K+] and pH and in intracellular [Na+], [Ca2+], and pH; 2) accumulation of noxious metabolic products such as lysophosphatidylcholine; and 3) depletion of intracellular ATP. Finally, ischemia or disease (e.g., hypertrophy) can alter the electrophysiology of at least two types of K+ channels, the A-like channels underlying the transient outward current and the inward rectifier, by mechanisms that apparently do not involve alteration of either the intra- or extracellular milieus. Findings suggest that the expression of cardiac A-like channel function can be altered by hypertrophy and that at least one intrinsic conductance property of the inward rectifier can be altered by ischemia. We speculate that the control of expression, function, and regulation of cardiac ion channels can be affected at the molecular level by heart disease and myocardial ischemia.  相似文献   

7.
Oxidative stress is involved in the pathogenesis of ischemia-reperfusion during myocardial transplantation. Therefore, graft preservation solutions may be improved by supplementation with antioxidants to minimize graft dysfunction caused by cold ischemic injury. Propolis is a polyphenol-rich substance which has an important antioxidant activity. The protective effect of propolis against oxidative stress induced by prolonged cold preservation of heart was investigated. Mice were subjected to a hypothermic model of ischemia in which hearts were preserved for 24 h at 4 °C in Krebs-Hensleit (KH) solution in the absence or presence of propolis concentrations (50, 150 and 250 μg/ml). Levels of released Lactate dehydrogenase (LDH), Creatine phosphokinase (CPK) and Troponine-I (Trop I) were assessed in the preservation solution and histological assessement of heart ischemia injuries was performed. Oxidative stress biomarkers malondialdehyde (MDA) and advanced oxidation protein products (AOPP) and antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT) were assessed in cardiac tissue. Mitochondria were isolated from stored hearts and production of reactive oxygen species (ROS) was tested. Propolis supplementation protected efficiently hearts during preservation by reducing significantly levels of lipids and proteins oxidation and restoring activities of antioxidant enzymes. Also, propolis preserved tissue integrity altered by hypothermic ischemia in a concentration-dependent manner. Propolis reduced significantly the rate of H2O2 produced by mitochondrial respiration, the best antioxidant effect being obtained at the highest propolis concentration (250 μg/ml). Algerian propolis is a non-temperature sensitive scavenger that protects heart from oxidative damage induced by prolonged hypothermic ischemia.  相似文献   

8.
L-Propionyl-carnitine is known to improve the recovery of myocardial function and metabolic parameters reduced in the course of ischemia-reperfusion of the heart. The mechanism of this protective effect of L-propionyl-carnitine is not fully understood. The purpose of this study was to elucidate the effects of L-propionyl-carnitine in Langendorff perfused rat hearts subjected to 40 min of ischemia followed by 20 min of reperfusion. We tested the hypothesis that L-propionyl-carnitine suppresses generation of oxygen radicals and subsequent oxidative modification of myocardial proteins during reperfusion. Our data show that the protective effect of L-propionyl-carnitine in the course of ischemia-reperfusion is highly significant in terms both of mechanical properties of the heart (developed pressure) and of high-energy phosphates (ATP, creatine phosphate). Myocardial creatine phosphokinase (CPK) activity decreased in the course of the reperfusion period. The loss of CPK activity was partially prevented by L-propionyl-carnitine. Two other effects were observed when L-propionyl-carnitine was present in the perfusion solution: (i) the reperfusion-induced sharp increase in oxidative protein modification was completely prevented as detected by the formation of protein carbonyls, and (ii) generation of hydroxyl radicals was significantly inhibited as detected by the formation of the adducts with the spin trap 5,5-dimethyl-1-pyrroline-1-oxide. We conclude that the protective effect of L-propionyl-carnitine against ischemia-reperfusion injury of the heart is at least due in part to its ability to suppress the development of oxidative stress and free radical damage.  相似文献   

9.
Many studies suggest myocardial ischemia-reperfusion (I/R) injury results largely from cytosolic proton (H(i))-stimulated increases in cytosolic Na (Na(i)), which cause Na/Ca exchange-mediated increases in cytosolic Ca concentration ([Ca]i). Because cold, crystalloid cardioplegia (CCC) limits [H]i, we tested the hypothesis that in newborn hearts, CCC diminishes H(i), Na(i), and Ca(i) accumulation during I/R to limit injury. NMR measured intracellular pH (pH(i)), Na(i), [Ca]i, and ATP in isolated Langendorff-perfused newborn rabbit hearts. The control ischemia protocol was 30 min for baseline perfusion, 40 min for global ischemia, and 40 min for reperfusion, all at 37 degrees C. CCC protocols were the same, except that ice-cold CCC was infused for 5 min before ischemia and heart temperature was lowered to 12 degrees C during ischemia. Normal potassium CCC solution (NKCCC) was identical to the control perfusate, except for temperature; the high potassium (HKCCC) was identical to NKCCC, except that an additional 11 mmol/l KCl was substituted isosmotically for NaCl. NKCCC and HKCCC were not significantly different for any measurement. The following were different (P < 0.05). End-ischemia pH(i) was higher in the CCC than in the control group. Similarly, CCC limited increases in Na(i) during I/R. End-ischemia Na(i) values (in meq/kg dry wt) were 115 +/- 16 in the control group, 49 +/- 13 in the NKCCC group, and 37 +/- 12 in the HKCCC group. CCC also improved [Ca]i recovery during reperfusion. After 40 min of reperfusion, [Ca](i) values (in nmol/l) were 302 +/- 50 in the control group, 145 +/- 13 in the NKCCC group, and 182 +/- 19 in the HKCCC group. CCC limited ATP depletion during ischemia and improved recovery of ATP and left ventricular developed pressure and decreased creatine kinase release during reperfusion. Surprisingly, CCC did not significantly limit [Ca]i during ischemia. The latter is explained as the result of Ca release from intracellular buffers on cooling.  相似文献   

10.
ATP hydrolysis by ischemic mitochondria   总被引:5,自引:0,他引:5  
Cellular ATP levels are determined by the rates of ATP production and ATP hydrolysis. Both phenomena are affected by ischemia. Mitochondrial enzymes are damaged, inhibiting this organelle's ability to make ATP. Mitochondria are also uncoupled by ischemia and have the ability to hydrolyze ATP. We designed a series of experiments to determine whether decreased production or increased hydrolysis of ATP was the primary effect of mitochondrial damage. Rat hearts were subjected to 45 min of warm ischemia in order to induce irreversible cell damage. ATP or ADP was injected into cuvettes containing mitochondria isolated from normal myocardium or myocardium damaged by ischemia. Luciferin-luciferase, which fluoresces in the presence of ATP, was also added to the tubes as an indicator of ATP levels. Mixtures of uncoupled and coupled mitochondria were made and compared with the mitochondria damaged by ischemia. The results showed that mitochondria damaged by prolonged ischemia hydrolyze ATP more rapidly than normal mitochondria; however, normal mitochondria can easily compensate for increased ATP hydrolysis when in mixture with equal amounts of uncoupled mitochondria. These data suggests that the low cellular levels of ATP following irreversible ischemia are primarily due to decreased ATP synthesis and not to increased hydrolysis.  相似文献   

11.
12.
Young and senescent rats (3 and 28-30 months old) were subjected to complete ischemia at 37 degrees C in order to study function and structure of mitochondria isolated from liver, heart muscle, and brain. The rates of energy-coupled respiration and ATP synthesis were found to decrease progressively in relation to time of ischemia. The respiratory rates in the absence of ADP (state 4 respiration) did not increase after exposure to ischemia, suggesting that ischemia primarily affects electron transport rather than the energy coupling system. Mitochondria of heart muscle were more affected by ischemia than mitochondria of brain and liver. Liver and heart muscle mitochondria obtained from young rats were found to be slightly more sensitive to short periods of ischemia than those isolated from senescent animals.  相似文献   

13.
Induction of endothelial nitric oxide synthase (eNOS) contributes to the mechanism of heart protection against ischemia-reperfusion damage. We analyzed the effects of hypoxia and hyperoxia on eNOS expression in isolated working rat hearts after ischemia-reperfusion damage. Adult male Wistar rats were submitted to chronic hypoxia (2 weeks) and hyperoxia (72 h). The hearts were submitted to 15 min of ischemia and reperfused for 60 min, then we evaluated hemodynamic parameters and creatine phosphokinase (CPK) release. eNOS expression was estimated by RT-PCR; enzyme localization was evaluated by immunohistochemistry and the eNOS protein levels were detected by Western blot. All hemodynamic parameters in hypoxic conditions were better with respect to other groups. The CPK release was lower in hypoxic (P<0.01) than in normoxic and hyperoxic conditions. The eNOS deposition was significantly higher in the hypoxic group versus the normoxic or hyperoxic groups. The eNOS protein and mRNA levels were increased by hypoxia versus both other groups. Chronic hypoxic exposure may decrease injury and increase eNOS protein and mRNA levels in heart subjected to ischemia-reperfusion.  相似文献   

14.
Hearts of chicks fed the creatine analog, 1-carboxymethyl-2-iminoimidazolidine (cyclocreatine), accumulated 15 mumol/g wet wt of the synthetic phosphagen, cyclocreatine-3-P; had total creatine levels reduced from the normal 6 mumol/g to only 1.8 mumol/g; and had their glycogen levels tripled. During total ischemia in vitro these hearts utilized the cyclocreatine-P for synthesis of ATP, had greatly prolonged glycolysis, and exhibited a two- to fivefold delay in depletion of both ATP and the total adenylate pool, relative to controls. Accumulation from the diet of comparable levels of the closely related 1-carboxyethyl-2-imino-3-phosphonoimidazolidine (homocyclocreatine-P) by heart was accompanied by only slight lowering of total creatine to 4.2 mumol/g, and a tripling of glycogen levels. During ischemia these hearts exhibited prolonged glycolysis, but they did not utilize the very stable homocyclocreatine-P (200,000-fold less reactive than creatine-P) and thus formed less Pi; most significantly, there was no delay in depletion of ATP levels relative to controls. Feeding of creatine doubled total creatine levels in heart, but had no marked effect on ATP depletion during ischemia; in all dietary groups creatine-P pools had fallen to less than or equal to 1.2 mumol/g by first tissue sampling. Although adaptive responses were also involved, maximal conservation of ATP and total adenylate pools in heart during ischemia apparently required, in addition to adequate glycogen reserves, substantial levels of a kinetically competent phosphagen that is thermodynamically poised to continue to assist glycolysis in buffering decreases and oscillations in the [ATP]/[free ADP] ratio at the lower phosphorylation potentials and more acid pH characteristic of later stages of ischemia. Decreases and oscillations in the [ATP]/[free ADP] ratio cannot be buffered effectively late in ischemia by the creatine-P system for thermodynamic reasons, or by the homocyclocreatine-P system because of kinetic limitations.  相似文献   

15.
Male bluegill displays one of two life history tactics. Some males (termed "parentals") delay reproduction until ca. 7 years of age, at which time they build nests and actively courts females. Others mature precociously (sneakers) and obtain fertilizations by cuckolding parental males. In the current study, we studied the relations among sperm motility, ATP levels, and metabolic enzyme activity in parental and sneaker bluegill. In both reproductive tactics, sperm swimming speed and ATP levels declined in parallel over the first 60 s of motility. Although sneaker sperm initially had higher ATP levels than parental sperm, by approximately 30 s postactivation, no differences existed between tactics. No differences were noted between tactics in swimming speed, percent motility, or the activities of key metabolic enzymes, although sperm from parentals had a higher ratio of creatine phosphokinase (CPK) to citrate synthase (CS). In both tactics, with increasing CPK and CS activity, sperm ATP levels increased at 20 s postactivation, suggesting that capacities for phosphocreatine hydrolysis and aerobic metabolism may influence interindividual variation in rates of ATP depletion. Nonetheless, there was no relation between sperm ATP levels and either swimming speed or percent of sperm that were motile. This suggests that interindividual variation in ATP levels may not be the primary determinant of variation in sperm swimming performance in bluegill.  相似文献   

16.
Mitochondria isolated from ischemic cardiac tissue exhibit diminished rates of respiration and ATP synthesis. The present study was undertaken to determine whether cytochrome c release was responsible for ischemia-induced loss in mitochondrial function. Rat hearts were perfused in Langendorff fashion for 60 min (control) or for 30 min followed by 30 min of no flow ischemia. Mitochondria isolated from ischemic hearts in a buffer containing KCl exhibited depressed rates of maximum respiration and a lower cytochrome c content relative to control mitochondria. The addition of cytochrome c restored maximum rates of respiration, indicating that the release of cytochrome c is responsible for observed declines in function. However, mitochondria isolated in a mannitol/sucrose buffer exhibited no ischemia-induced loss in cytochrome c content, indicating that ischemia does not on its own cause the release of cytochrome c. Nevertheless, state 3 respiratory rates remained depressed, and cytochrome c release was enhanced when mitochondria from ischemic relative to perfused tissue were subsequently placed in a high ionic strength buffer, hypotonic solution, or detergent. Thus, events that occur during ischemia favor detachment of cytochrome c from the inner membrane increasing the pool of cytochrome c available for release. These results provide insight into the sequence of events that leads to release of cytochrome c and loss of mitochondrial respiratory activity during cardiac ischemia/reperfusion.  相似文献   

17.
The physiological role of F(1)F(0)-ATPase inhibition in ischemia may be to retard ATP depletion although views of the significance of IF(1) are at variance. We corroborate here a method for measuring the ex vivo activity of F(1)F(0)-ATPase in perfused rat heart and show that observation of ischemic F(1)F(0)-ATPase inhibition in rat heart is critically dependent on the sample preparation and assay conditions, and that the methods can be applied to assay the ischemic and reperfused human heart during coronary by-pass surgery. A 5-min period of ischemia inhibited F(1)F(0)-ATPase by 20% in both rat and human myocardium. After a 15-min reperfusion a subsequent 5-min period of ischemia doubled the inhibition in the rat heart but this potentiation was lost after 120 min of reperfusion. Experiments with isolated rat heart mitochondria showed that ATP hydrolysis is required for effective inhibition by uncoupling. The concentration of oligomycin for 50% inhibition (I(50)) for oxygen consumption was five times higher than its I(50) for F(1)F(0)-ATPase. Because of the different control strengths of F(1)F(0)-ATPase in oxidative phosphorylation and ATP hydrolysis an inhibition of the F(1)F(0)-ATPase activity in ischemia with the resultant ATP-sparing has an advantage even in an ischemia/reperfusion situation.  相似文献   

18.
Physiological control of the plasma membrane sodium pump, (Na+,K+)-ATPase, is essential for proper function of eukaryotic cells. In the electric organ of the elasmobranch Narcine brasiliensis, the normal demands placed upon the pump during the process of generation of electrical currents call for large and rapid changes in activity of this enzyme, making this a good model for the study of its cellular regulation. 31P NMR spectroscopic techniques were used to study metabolic regulation of membrane pump function in resting and stimulated electric organ and in skeletal muscle of the live, intact N. brasiliensis. Because the ATP synthetic abilities of the electric organ by glycolysis or oxidative phosphorylation are extremely limited, depletion of phosphocreatinine (PCr) could be used to determine the activity of the (Na+,K+)-ATPase after the electric organ was stimulated to discharge, and to measure the net flux from PCr to ATP through the creatine phosphokinase (CPK) reaction in the electric organ. Saturation transfer, an NMR technique which measures exchange rates, was applied to determine the unidirectional flux in the forward direction through the same reaction in the electric organ and in skeletal muscle as a control. The pseudo first-order rate constant kf for the CPK reaction at 24 degrees C in resting electric organ was 0.000 +/- 0.002 s-1 (n = 10) and in skeletal muscle was 0.08 +/- 0.03 s-1 (n = 3). The results demonstrate that in resting electric organ, which is well supplied with CPK, there was no measurable flux through this reaction, although CPK when extracted is highly active. Measured and calculated levels of all substrates for the creatine kinase reaction in the electric organ are similar to those in unstimulated skeletal muscle, where the creatine phosphokinase reaction rates are high in vivo. In contrast to the resting electric organ, during stimulation of the electric organ the measured net rate constant was greater than 0.08 s-1. In addition, as shown by lack of PCr depletion, there was virtually no net turnover of ATP in the resting organ compared to the stimulated organ. The marked difference in the (Na+,K+)-ATPase activity in the resting and activated electric organ confirmed earlier results (Blum, H., Nioka, S., and Johnson, R. G., Jr. (1990) Proc. Natl. Acad. Sci. U. S. A. 87, 1247-1251). Together, these results suggest that there is a novel method of coordinate regulation of cellular enzymes of great sensitivity and rapidity.  相似文献   

19.
The effects of ischemia on mitochondrial function and the unidirectional rate of ATP synthesis (Pi----ATP rate) were studied using a Langendorff-perfused heart preparation and 31P NMR spectroscopy. There was significant postischemic depression of mechanical function assessed as the heart rate pressure product, and the myocardial oxygen consumption rate at a given rate pressure product was elevated. Experiments performed on glucose- and pyruvate-perfused hearts demonstrated the presence of a large contribution to the unidirectional Pi----ATP rate catalyzed by glyceraldehyde-3-phosphate dehydrogenase and phosphoglycerate kinase. This rate was much greater than the maximal glucose utilization rate in the myocardium, demonstrating that the glyceraldehyde-3-phosphate dehydrogenase/phosphoglycerate kinase reactions are near equilibrium both before and after ischemia. In the pyruvate-perfused postischemic hearts, the glycolytic contribution was eliminated and the net rate of ATP synthesis by oxidative phosphorylation was measurable. Despite the reduced mechanical function and increased myocardial oxygen consumption rate, the ratio of the net rate of ATP synthesis by oxidative phosphorylation to oxygen consumption rate (the P:O ratio) was not altered subsequent to ischemia (2.34 +/- 0.12 and 2.36 +/- 0.09 in normal and postischemic hearts, respectively). Therefore, mitochondrial uncoupling cannot be the cause of postischemic depression in mechanical function; instead, the data suggest the existence of ischemia-induced inefficiency in ATP utilization.  相似文献   

20.
The current study examined whether opening of the ATP-sensitive K(+) (K(ATP)) channel can induce hydroxyl free radical (OH) generation, as detected by increases in nonenzymatic formation of 2,3-dihydroxybenzoic acid (DHBA) levels in the rat myocardium. When KCl (4-140mM) was administered to rat myocardium through microdialysis probe, the level of 2,3-DHBA increased gradually in a potassium ion concentration ([K(+)](o))-dependent manner. The [K(+)](o) for half-maximal effect of the level of 2,3-DHBA production (ED(50)) was 67.9microM. The maximum attainable concentration of the level of 2,3-DHBA (E(max)) was 0.171microM. Induction of glibenclamide (10microM) decreased OH formation. The half-maximal inhibitory effect (IC(50)) for glibenclamide against the [K(+)](o) (70mM)-evoked increase in 2,3-DHBA was 9.2microM. 5-Hydroxydecanoate (5-HD, 100microM), another K(ATP) channel antagonist, also decreased [K(+)](o)-induced OH formation. The IC(50) for 5-HD against the [K(+)](o) (70mM)-evoked increase in 2,3-DHBA was 107.2microM. The heart was subjected to myocardial ischemia for 15min by occlusion of left anterior descending coronary artery (LAD). When the heart was reperfused, the normal elevation of 2,3-DHBA in the heart dialysate was not observed in animals pretreated with glibenclamide (10microM) or 5-HD (100microM). These results suggest that opening of cardiac K(ATP) channels by depolarization evokes OH generation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号