首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The data on the structure and functions of the mitochondrial genomes of protists (Protozoa and unicellular red and green algae) are reviewed. It is emphasized that mitochondrial gene structure and composition, as well as organization of mitochondrial genomes in protists are more diverse than in multicellular eukaryotes. The gene content of mitochondrial genomes of protists are closer to those of plants than animals or fungi. In the protist mitochondrial DNA, both the universal (as in higher plants) and modified (as in animals and fungi) genetic codes are used. In the overwhelming majority of cases, protist mitochondrial genomes code for the major and minor rRNA components, some tRNAs, and about 30 proteins of the respiratory chain and ribosomes. Based on comparison of the mitochondrial genomes of various protists, the origin and evolution of mitochondria are briefly discussed.  相似文献   

2.
Genome structure and gene content in protist mitochondrial DNAs.   总被引:29,自引:3,他引:26       下载免费PDF全文
Although the collection of completely sequenced mitochondrial genomes is expanding rapidly, only recently has a phylogenetically broad representation of mtDNA sequences from protists (mostly unicellular eukaryotes) become available. This review surveys the 23 complete protist mtDNA sequences that have been determined to date, commenting on such aspects as mitochondrial genome structure, gene content, ribosomal RNA, introns, transfer RNAs and the genetic code and phylogenetic implications. We also illustrate the utility of a comparative genomics approach to gene identification by providing evidence that orfB in plant and protist mtDNAs is the homolog of atp8 , the gene in animal and fungal mtDNA that encodes subunit 8 of the F0portion of mitochondrial ATP synthase. Although several protist mtDNAs, like those of animals and most fungi, are seen to be highly derived, others appear to be have retained a number of features of the ancestral, proto-mitochondrial genome. Some of these ancestral features are also shared with plant mtDNA, although the latter have evidently expanded considerably in size, if not in gene content, in the course of evolution. Comparative analysis of protist mtDNAs is providing a new perspective on mtDNA evolution: how the original mitochondrial genome was organized, what genes it contained, and in what ways it must have changed in different eukaryotic phyla.  相似文献   

3.
The jakobids are free-living mitochondriate protists that share ultrastructural features with certain amitochondriate groups and possess the most bacterial-like mitochondrial genomes described thus far. Jakobids belong to a diverse group of mitochondriate and amitochondriate eukaryotes, the excavate taxa. The relationships among the various excavate taxa and their relationships to other putative deep-branching protist groups are largely unknown. With the hope of clarifying these issues, we have isolated the cytosolic chaperonin CCTalpha gene from the jakobid Reclinomonas americana (strains 50394 and 50283), the jakobid-like malawimonad Malawimonas jakobiformis, two heteroloboseans (Acrasis rosea and Naegleria gruberi), a euglenozoan (Trypanosoma brucei), and a parabasalid (Monocercomonas sp.). We also amplified the CCTdelta gene from M. jakobiformis. The Reclinomonas and Malawimonas sequences presented here are among the first nuclear protein-coding genes to be described from these organisms. Unlike other putative early diverging protist lineages, a high density of spliceosomal introns was found in the jakobid and malawimonad CCTs-similar to that observed in vertebrate protein-coding genes. An analysis of intron positions in CCT genes from protists, plants, animals, and fungi suggests that many of the intron-sparse or intron-lacking protist lineages may not be primitively so but have lost spliceosomal introns during their evolutionary history. In phylogenetic trees constructed from CCTalpha protein sequences, R. americana (but not M. jakobiformis) shows a weak but consistent affinity for the Heterolobosea and Euglenozoa.  相似文献   

4.
Sequencing of eukaryotic genomes allows one to address major evolutionary problems, such as the evolution of gene structure. We compared the intron positions in 684 orthologous gene sets from 8 complete genomes of animals, plants, fungi, and protists and constructed parsimonious scenarios of evolution of the exon-intron structure for the respective genes. Approximately one-third of the introns in the malaria parasite Plasmodium falciparum are shared with at least one crown group eukaryote; this number indicates that these introns have been conserved through >1.5 billion years of evolution that separate Plasmodium from the crown group. Paradoxically, humans share many more introns with the plant Arabidopsis thaliana than with the fly or nematode. The inferred evolutionary scenario holds that the common ancestor of Plasmodium and the crown group and, especially, the common ancestor of animals, plants, and fungi had numerous introns. Most of these ancestral introns, which are retained in the genomes of vertebrates and plants, have been lost in fungi, nematodes, arthropods, and probably Plasmodium. In addition, numerous introns have been inserted into vertebrate and plant genes, whereas, in other lineages, intron gain was much less prominent.  相似文献   

5.
Spo11 is a meiotic protein of fundamental importance as it is a conserved meiosis-specific transesterase required for meiotic recombination initiation in fungi, animals, and plants. Spo11 is homologous to the archaebacterial topoisomerase VIA (Top6A) gene, and its homologs are broadly distributed among eukaryotes, with some eukaryotes having more than one homolog. However, the evolutionary relationships among these genes are unclear, with some debate as to whether eukaryotic homologs originated by lateral gene transfer. We have identified and characterized protist Spo11 homologs by degenerate polymerase chain reaction (PCR) and sequencing and by analyses of sequences from public databases. Our phylogenetic analyses show that Spo11 homologs evolved by two ancient eukaryotic gene duplication events prior to the last common ancestor of extant eukaryotes, resulting in three eukaryotic paralogs: Spo11-1, Spo11-2, and Spo11-3. Spo11-1 orthologs encode meiosis-specific proteins and are distributed broadly among eukaryotic lineages, though Spo11-1 is absent from some protists. This absence coincides with the presence of Spo11-2 orthologs, which are meiosis-specific in Arabidopsis and are found in plants, red algae, and some protists but absent in animals and fungi. Spo11-3 encodes a Top6A subunit that interacts with topoisomerase VIB (Top6B) subunits, which together play a role in vegetative growth in Arabidopsis. We identified Spo11-3 (Top6A) and Top6B homologs in plants, red algae, and a few protists, establishing a broader distribution of these genes among eukaryotes, indicating their likely vertical descent followed by lineage-specific loss.  相似文献   

6.
Molecular phylogenies support a common ancestry between animals (Metazoa) and Fungi, but the evolutionary descent of the Metazoa from single-celled eukaryotes (protists) and the nature and taxonomic affiliation of these ancestral protists remain elusive. We addressed this question by sequencing complete mitochondrial genomes from taxonomically diverse protists to generate a large body of molecular data for phylogenetic analyses. Trees inferred from multiple concatenated mitochondrial protein sequences demonstrate that animals are specifically affiliated with two morphologically dissimilar unicellular protist taxa: Monosiga brevicollis (Choanoflagellata), a flagellate, and Amoebidium parasiticum (Ichthyosporea), a fungus-like organism. Statistical evaluation of competing evolutionary hypotheses confirms beyond a doubt that Choanoflagellata and multicellular animals share a close sister group relationship, originally proposed more than a century ago on morphological grounds. For the first time, our trees convincingly resolve the currently controversial phylogenetic position of the Ichthyosporea, which the trees place basal to Choanoflagellata and Metazoa but after the divergence of Fungi. Considering these results, we propose the new taxonomic group Holozoa, comprising Ichthyosporea, Choanoflagellata, and Metazoa. Our findings provide insight into the nature of the animal ancestor and have broad implications for our understanding of the evolutionary transition from unicellular protists to multicellular animals.  相似文献   

7.
G Burger  D Saint-Louis  M W Gray    B F Lang 《The Plant cell》1999,11(9):1675-1694
The mitochondrial DNA (mtDNA) of Porphyra purpurea, a circular-mapping genome of 36,753 bp, has been completely sequenced. A total of 57 densely packed genes has been identified, including the basic set typically found in animals and fungi, as well as seven genes characteristic of protist and plant mtDNAs and specifying ribosomal proteins and subunits of succinate:ubiquinone oxidoreductase. The mitochondrial large subunit rRNA gene contains two group II introns that are extraordinarily similar to those found in the cyanobacterium Calothrix sp, suggesting a recent lateral intron transfer between a bacterial and a mitochondrial genome. Notable features of P. purpurea mtDNA include the presence of two 291-bp inverted repeats that likely mediate homologous recombination, resulting in genome rearrangement, and of numerous sequence polymorphisms in the coding and intergenic regions. Comparative analysis of red algal mitochondrial genomes from five different, evolutionarily distant orders reveals that rhodophyte mtDNAs are unusually uniform in size and gene order. Finally, phylogenetic analyses provide strong evidence that red algae share a common ancestry with green algae and plants.  相似文献   

8.
Meiosis is a defining feature of eukaryotes but its phylogenetic distribution has not been broadly determined, especially among eukaryotic microorganisms (i.e. protists)-which represent the majority of eukaryotic 'supergroups'. We surveyed genomes of animals, fungi, plants and protists for meiotic genes, focusing on the evolutionarily divergent parasitic protist Trichomonas vaginalis. We identified homologs of 29 components of the meiotic recombination machinery, as well as the synaptonemal and meiotic sister chromatid cohesion complexes. T. vaginalis has orthologs of 27 of 29 meiotic genes, including eight of nine genes that encode meiosis-specific proteins in model organisms. Although meiosis has not been observed in T. vaginalis, our findings suggest it is either currently sexual or a recent asexual, consistent with observed, albeit unusual, sexual cycles in their distant parabasalid relatives, the hypermastigotes. T. vaginalis may use meiotic gene homologs to mediate homologous recombination and genetic exchange. Overall, this expanded inventory of meiotic genes forms a useful "meiosis detection toolkit". Our analyses indicate that these meiotic genes arose, or were already present, early in eukaryotic evolution; thus, the eukaryotic cenancestor contained most or all components of this set and was likely capable of performing meiotic recombination using near-universal meiotic machinery.  相似文献   

9.
We analyzed nuclear-localized plastid-like DNA (nupDNA) fragments in protozoa, metazoa and fungi. Most eukaryotes that do not have plastids contain 40-5000 bp nupDNAs in their nuclear genomes. These nupDNA fragments are mainly derived from repeated regions of plastids and distribute through the whole genomes. A majority of nupDNA fragments is located on coding regions with very important functions. Similar to plastids, these nupDNAs most possibly originate from cyanobacteria. Analysis of them suggests that through millions of years of universal endosymbiosis and gene transfer they may have occurred in ancient protists before divergence of plants and animals/fungi, and some transferred fragments have been reserved till now even in modern mammals.  相似文献   

10.
In fungi and animals the translocase in the outer mitochondrial membrane (TOM complex) consists of multiple components including the receptor subunit Tom70. Genome sequence analyses suggest no Tom70 receptor subunit exists in plants or protozoans, raising questions about its ancestry, function and the importance of its activity. Here we characterise the relationships within the Tom70 family of proteins. We find that in both fungi and animals, a conserved domain structure exists within the Tom70 family, with a transmembrane segment followed by 11 tetratricopeptide repeat motifs organised in three distinct domains. The C-terminal domain of Tom70 is highly conserved, and crucial for the import of hydrophobic substrate proteins, including those with and those without N-terminal presequences. Tom70 likely arose after fungi and animals diverged from other eukaryote lineages including plants, and subsequent gene duplication gave rise to a paralogue specific to the Saccharomyces group of yeasts. In animals and in fungi, Tom70 plays a fundamental role in the import of precursor proteins, by assisting relatively hydrophobic regions of substrate proteins into the translocation channel in the outer mitochondrial membrane. Proteins that function equivalently to Tom70 may have arisen independently in plants and protists.  相似文献   

11.
Protists, the most diverse eukaryotes, are largely considered to be free‐living bacterivores, but vast numbers of taxa are known to parasitize plants or animals. High‐throughput sequencing (HTS) approaches now commonly replace cultivation‐based approaches in studying soil protists, but insights into common biases associated with this method are limited to aquatic taxa and samples. We created a mock community of common free‐living soil protists (amoebae, flagellates, ciliates), extracted DNA and amplified it in the presence of metazoan DNA using 454 HTS. We aimed at evaluating whether HTS quantitatively reveals true relative abundances of soil protists and at investigating whether the expected protist community structure is altered by the co‐amplification of metazoan‐associated protist taxa. Indeed, HTS revealed fundamentally different protist communities from those expected. Ciliate sequences were highly over‐represented, while those of most amoebae and flagellates were under‐represented or totally absent. These results underpin the biases introduced by HTS that prevent reliable quantitative estimations of free‐living protist communities. Furthermore, we detected a wide range of nonadded protist taxa probably introduced along with metazoan DNA, which altered the protist community structure. Among those, 20 taxa most closely resembled parasitic, often pathogenic taxa. Therewith, we provide the first HTS data in support of classical observational studies that showed that potential protist parasites are hosted by soil metazoa. Taken together, profound differences in amplification success between protist taxa and an inevitable co‐extraction of protist taxa parasitizing soil metazoa obscure the true diversity of free‐living soil protist communities.  相似文献   

12.
Polyketide synthase (PKS) enzymes are large multi-domain complexes that structurally and functionally resemble the fatty acid synthases involved in lipid metabolism. Polyketide biosynthesis of secondary metabolites and hence functional PKS genes are widespread among bacteria, fungi and streptophytes, but the Type I was formerly known only from bacteria and fungi. Recently Type I PKS genes were also uncovered in the genomes of some alveolate protists. Here we show that the newly sequenced genomes of representatives of other protist groups, specifically the chlorophytes Ostreococcus tauri, O. lucimarinus, and Chlamydomonas reinhardtii, and the haptophyte Emiliania huxleyi also contain putative modular Type I PKS genes. Based on the patchy phylogenetic distribution of this gene type among eukaryotic microorganisms, the question arises whether they originate from recent lateral gene transfer from bacteria. Our phylogenetic analyses do not indicate such an evolutionary history. Whether Type I PKS genes originated several times independently during eukaryotic evolution or were rather lost in many extant lineages cannot yet be answered. In any case, we show that environmental genome sequencing projects are likely to be a valuable resource when mining for genes resembling protistan PKS I genes.  相似文献   

13.
The Organelle Genome Megasequencing Program (OGMP) investigates mitochondrial genome diversity and evolution by systematically determining the complete mitochondrial DNA (mtDNA) sequences of a phylogenetically broad selection of protists. The mtDNAs of lower fungi and choanoflagellates are being analyzed by the Fungal Mitochondrial Genome Project (FMGP), a sister project to the OGMP. Some of the most interesting protists include the jakobid flagellates Reclinomonas americana, Malawimonas jakobiformis, and Jakoba libera, which share ultrastructural similarities with amitochondriate retortamonads, and harbor mitochondrial genes not seen before in mtDNAs of other organisms. In R. americana and J. libera, gene clusters are found that resemble, to an unprecedented degree, the contiguous ribosomal protein operons str, S10, spc, and alpha of eubacteria. In addition, their mtDNAs code for an RNase P RNA that displays all the elements of a bacterial minimum consensus structure. This structure has been instrumental in detecting the rnpB gene in additional protists. Gene repertoire and gene order comparisons as well as multiple-gene phylogenies support the view of a single endosymbiotic origin of mitochondria, whose closest extant relatives are Rickettsia-type alpha-Proteobacteria.  相似文献   

14.
Although 5S rRNA is a highly conserved and universal component of eubacterial, archaeal, chloroplast, and eukaryotic cytoplasmic ribosomes, a mitochondrial DNA-encoded 5S rRNA has so far been identified only in land plants and certain protists. This raises the question of whether 5S rRNA is actually required for and used in mitochondrial translation. In the protist Acanthamoeba castellanii, BLAST searches fail to reveal a 5S rRNA gene in the complete mitochondrial genome sequence, nor is a 5S-sized RNA species detectable in ethidium bromide-stained gels of highly purified mitochondrial RNA preparations. Here we show that an alternative visualization technique, UV shadowing, readily detects a novel, mitochondrion-specific small RNA in A. castellanii mitochondrial RNA preparations, and that this RNA species is, in fact, a 5S rRNA encoded by the A. castellanii mitochondrial genome. These results emphasize the need for caution when interpreting negative results that suggest the absence of 5S rRNA and/or a mitochondrial DNA-encoded 5S rRNA sequence in other (particularly protist) mitochondrial systems.  相似文献   

15.
Kiefel BR  Gilson PR  Beech PL 《Protist》2004,155(1):105-115
Mitochondrial fission requires the division of both the inner and outer mitochondrial membranes. Dynamin-related proteins operate in division of the outer membrane of probably all mitochondria, and also that of chloroplasts--organelles that have a bacterial origin like mitochondria. How the inner mitochondrial membrane divides is less well established. Homologues of the major bacterial division protein, FtsZ, are known to reside inside mitochondria of the chromophyte alga Mallomonas, a red alga, and the slime mould Dictyostelium discoideum, where these proteins are likely to act in division of the organelle. Mitochondrial FtsZ is, however, absent from the genomes of higher eukaryotes (animals, fungi, and plants), even though FtsZs are known to be essential for the division of probably all chloroplasts. To begin to understand why higher eukaryotes have lost mitochondrial FtsZ, we have sampled various diverse protists to determine which groups have retained the gene. Database searches and degenerate PCR uncovered genes for likely mitochondrial FtsZs from the glaucocystophyte Cyanophora paradoxa, the oomycete Phytophthora infestans, two haptophyte algae, and two diatoms--one being Thalassiosira pseudonana, the draft genome of which is now available. From Thalassiosira we also identified two chloroplast FtsZs, one of which appears to be undergoing a C-terminal shortening that may be common to many organellar FtsZs. Our data indicate that many protists still employ the FtsZ-based ancestral mitochondrial division mechanism, and that mitochondrial FtsZ has been lost numerous times in the evolution of eukaryotes.  相似文献   

16.
Jakobids are free-living, heterotrophic flagellates that might represent early-diverging mitochondrial protists. They share ultrastructural similarities with eukaryotes that occupy basal positions in molecular phylogenies, and their mitochondrial genome architecture is eubacterial-like, suggesting a close affinity with the ancestral alpha-proteobacterial symbiont that gave rise to mitochondria and hydrogenosomes. To elucidate relationships among jakobids and other early-diverging eukaryotic lineages, we characterized alpha- and beta-tubulin genes from four jakobids: Jakoba libera, Jakoba incarcerata, Reclinomonas americana (the "core jakobids"), and Malawimonas jakobiformis. These are the first reports of nuclear genes from these organisms. Phylogenies based on alpha-, beta-, and combined alpha- plus beta-tubulin protein data sets do not support the monophyly of the jakobids. While beta-tubulin and combined alpha- plus beta-tubulin phylogenies showed a sister group relationship between J. libera and R. americana, the two other jakobids, M. jakobiformis and J. incarcerata, had unclear affinities. In all three analyses, J. libera, R. americana, and M. jakobiformis emerged from within a well-supported large "plant-protist" clade that included plants, green algae, cryptophytes, stramenopiles, alveolates, Euglenozoa, Heterolobosea, and several other protist groups, but not animals, fungi, microsporidia, parabasalids, or diplomonads. A preferred branching order within the plant-protist clade was not identified, but there was a tendency for the J. libera-R. americana lineage to group with a clade made up of the heteroloboseid amoeboflagellates and euglenozoan protists. Jakoba incarcerata branched within the plant-protist clade in the beta- and the combined alpha- plus beta-tubulin phylogenies. In alpha- tubulin trees, J. incarcerata occupied an unresolved position, weakly grouping with the animal/fungal/microsporidian group or with amitochondriate parabasalid and diplomonad lineages, depending on the phylogenetic method employed. Tubulin gene phylogenies were in general agreement with mitochondrial gene phylogenies and ultrastructural data in indicating that the "jakobids" may be polyphyletic. Relationships with the putatively deep-branching amitochondriate diplomonads remain uncertain.  相似文献   

17.
18.
Mitochondrial genomes of plants are much larger than those of mammals and often contain conserved open reading frames (ORFs) of unknown function. Here, we show that one of these conserved ORFs is actually the gene for ribosomal protein L10 (rpl10) in plant. No rpl10 gene has heretofore been reported in any mitochondrial genome other than the exceptionally gene-rich genome of the protist Reclinomonas americana. Conserved ORFs corresponding to rpl10 are present in a wide diversity of land plant and green algal mitochondrial genomes. The mitochondrial rpl10 genes are transcribed in all nine land plants examined, with five seed plant genes subject to RNA editing. In addition, mitochondrial-rpl10-like cDNAs were identified in EST libraries from numerous land plants. In three lineages of angiosperms, rpl10 is either lost from the mitochondrial genome or a pseudogene. In two of them (Brassicaceae and monocots), no nuclear copy of mitochondrial rpl10 is identifiably present, and instead a second copy of nuclear-encoded chloroplast rpl10 is present. Transient assays using green fluorescent protein indicate that this duplicate gene is dual targeted to mitochondria and chloroplasts. We infer that mitochondrial rpl10 has been functionally replaced by duplicated chloroplast counterparts in Brassicaceae and monocots.  相似文献   

19.
ymf39 is a conserved hypothetical protein-coding gene found in mitochondrial genomes of land plants and certain protists. We speculated earlier, based on a weak sequence similarity between Ymf39 from a green alga and the atpF gene product from Bradyrhizobium, that ymf39 might code for subunit b of mitochondrial F0F1-ATP synthase. To test this hypothesis, we have sequenced ymf39 from five protists with minimally derived mitochondrial genomes, the jakobids. In addition, we isolated the mitochondrial ATP synthase complex of the jakobid Seculamonas ecuadoriensis and determined the partial protein sequence of the 19-kDa subunit, the size expected for Ymf39. The obtained peptide sequence matches perfectly with a 3′-proximal region of the ymf39 gene of this organism, confirming that Ymf39 is indeed an ATP synthase subunit. Finally, we employed statistical tests to assess the significance of sequence similarity of Ymf39 proteins with each other, their nucleus-encoded functional counterparts, ATP4/ATP5F, from fungi and animals and α-proteobacterial ATP synthase b-subunits. This analysis provides clear evidence that ymf39 is an atpF homolog, while ATP4/ATP5F appears to be a highly diverged form of ymf39 that has migrated to the nucleus. We propose to designate ymf39 from now on atp4.  相似文献   

20.
Protists are abundant and play key trophic functions in soil. Documenting how their trophic contributions vary across large environmental gradients is essential to understand and predict how biogeochemical cycles will be impacted by global changes. Here, using amplicon sequencing of environmental DNA in open habitat soil from 161 locations spanning 2600 m of elevation in the Swiss Alps (from 400 to 3000 m), we found that, over the whole study area, soils are dominated by consumers, followed by parasites and phototrophs. In contrast, the proportion of these groups in local communities shows large variations in relation to elevation. While there is, on average, three times more consumers than parasites at low elevation (400–1000 m), this ratio increases to 12 at high elevation (2000–3000 m). This suggests that the decrease in protist host biomass and diversity toward mountains tops impact protist functional composition. Furthermore, the taxonomic composition of protists that infect animals was related to elevation while that of protists that infect plants or of protist consumers was related to soil pH. This study provides a first step to document and understand how soil protist functions vary along the elevational gradient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号