首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以日本引进的茄子设施栽培专用耐盐品种‘Torvum Vigor’为砧木,栽培品种‘苏崎茄’为接穗,在营养液栽培条件下,对80 mmol·L-1 NaCl胁迫下茄子嫁接苗和自根苗的光合特性、叶片抗氧化酶活性、活性氧代谢进行了比较.结果表明:NaCl胁迫下,茄子嫁接苗的干质量、叶绿素含量和光合速率分别比苏崎茄自根苗高67。8%、8。8%和31。1%,均有显著差异;抗氧化酶活性均显著高于苏崎茄自根苗,而O2-·生成速率、H2O2和MDA含量则显著低于苏崎茄自根苗.NaCl胁迫明显降低了叶片叶绿素含量和光合速率,显著增加了O2-·生成速率、H2O2和MDA含量,但嫁接苗受NaCl胁迫的影响小于苏崎茄自根苗,嫁接苗较强的耐盐性与NaCl胁迫下较高的抗氧化酶活性和较低的氧化损伤有关.  相似文献   

2.
采用营养液水培,研究了根际低氧胁迫下外源亚精胺对两个抗低氧能力不同的黄瓜(Cucumis sativus)品种(‘中农8号’和‘绿霸春4号’)根系中多胺含量和超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)活性的影响。结果表明,外源亚精胺能显著提高低氧胁迫下黄瓜幼苗根系中亚精胺和精胺含量,降低腐胺含量,同时,根系中SOD、POD、CAT活性也相应提高,使得幼苗鲜重和干重明显增加;单纯低氧处理及外源亚精胺的加入,抗低氧能力较强的品种‘绿霸春4号’较抗低氧能力较弱的品种‘中农8号’根系中抗氧化酶活性高。黄瓜幼苗根系中较高的亚精胺、精胺含量和较低的腐胺含量可能有利于提高抗氧化酶活性,增强幼苗的低氧逆境适应能力。  相似文献   

3.
The effects of brassinolide, uniconazole and methyl jasmonate on several aspects of antioxidant defences, were studied in callus tissues of drought-resistant (PAN 6043) and drought-sensitive (SC 701) cultivars of maize. When regulator-treated calli were subjected to water stress with PEG for 24 h the activities of antioxidant enzymes, such as superoxide dismutase, catalase, ascorbate peroxidase, peroxidase and glutathione reductase, remained higher in callus of the drought-resistant than in callus of the drought-sensitive cultivar. Damage, as indicated by the levels of hydrogen peroxide and malondialdehyde, the reduction of ascorbate and carotenoids, and leakage of electrolytes from cells was apparent in callus of both cultivars as a consequence of the applied water stress. However, the damage was less marked in the drought-resistant cultivar. The regulator-treated callus of this cultivar also had a higher survival percentage than that of the drought-sensitive cultivar.The present results also compare the effects of growth regulators on antioxidant systems in callus tissue of different drought-resistant cultivars when exposed to paraquat and water stress.  相似文献   

4.
Activated oxygen species such as superoxide radicals, singlet oxygen, hydrogen peroxide and hydroxyl radicals can be produced in plants exposed to low, non-freezing, non-injurious temperatures. To prevent or alleviate oxidative injury, plants have evolved several mechanisms which include scavenging by natural antioxidants and enzymatic antioxidant systems such as superoxide dismutases, catalase and peroxidases. Although overproduction of hydrogen peroxide and increased tolerance to oxidative stress can be induced in wheat by low-temperature treatments, data concerning changes in the enzymatic antioxidant systems are almost absent. With the aim to provide this information, antioxidant enzyme (superoxide dismutases, catalase and peroxidases) activities were analysed in leaves and roots of Triticum aestivum cvs Brasilia (frost resistant in field) and Eridano (less frost resistant in field) seedlings grown at day/night temperatures of 24/22°C (control treatment) and 12/5°C (low-temperature treatment). Our data showed that superoxide dismutase activities were unaffected by low-temperature treatment both in leaves and roots. Catalase activity in leaves and roots was decreased in 12/5°C-grown seedlings, but Brasilia maintained higher catalase activity than Eridano. Differences were also observed in guaiacol peroxidase activities between control and acclimated seedlings: Higher guaiacol peroxidase activities were found in the leaves of 12/5°C-grown seedlings while in roots these activities were lower. Moreover, Brasilia guaiacol peroxidase activities were higher than Eridano. Superoxide dismutase and peroxidase zymogram analyses showed that synthesis of new isoforms was not induced by low-temperature treatment. Changes in the activities of antioxidant enzymes induced by cold acclimation support the hypothesis that a frost-resistant wheat cultivar, in comparison with a less frost-resistant one, maintains a better defence against activated oxygen species during low-temperature treatment.  相似文献   

5.
This work aimed to discuss the effects of exogenous abscisic acid (ABA) on the root growth regulation of maize seedlings under chilling stress. The roots of the maize cultivar Zhengdan 958 were irrigated with ABA (10?7, 10?6, 10?5 and 10?4 M) at the third true leaf stage under chilling duration (0, 2, 4, 6, and 8 days). The biomass, the phenylalanine ammonia lyase (PAL), and polyphenol oxidase (PPO) enzyme activities, total phenolic and flavonoid contents, the ferric reducing ability of plasma (FRAP) antioxidant capacity, and 2,2-azinobis (3-ethlbenzothiazo-line-6-sulfonic acid) diammonium salt radical (ABTS·+) scavenging capacity of the roots of maize seedlings were measured after the treatment. The results showed that appropriate concentrations of exogenous ABA effectively enhanced root biomass, increased PAL and PPO enzyme activities, and significantly increased total phenolic contents and flavonoid contents. Moreover, the ABA markedly improved the FRAP antioxidant capacity and ABTS·+ scavenging capacity under low-temperature stress. These results indicate that ABA-treated maize seedlings are resistant to chilling stress and that the optimum concentration of ABA is 10?5 M. Exogenous applications of ABA have a concentration effect in alleviating chilling stress, in which low concentrations have a promoting effect and high concentrations have an inhibiting effect.  相似文献   

6.
采用两种浓度NaCl溶液,对不同抗盐性小麦品种德抗961(抗盐性强)和泰山9818(抗盐性弱)萌发期幼苗进行胁迫处理,观察其幼苗长势和内源激素含量变化.结果表明,盐胁迫抑制小麦幼苗生长,抗盐性弱的泰山9818受抑制较重.苗、根ABA含量随盐胁迫浓度增加而提高,泰山9818的增幅高于德抗961.苗、根IAA含量随盐胁迫浓度增加而降低,但德抗961的IAA含量高于泰山9818,说明盐胁迫下抗盐性强的品种具有较高IAA合成量.2品种GA3含量变化因盐胁迫浓度而异.在低盐胁迫下抗盐性强的品种苗中GA3含量提高以适应盐胁迫利于苗的生长,在高盐胁迫下2品种GA3含量降低.盐胁迫使苗中ZR含量增加,且德抗961的苗中ZR含量高于泰山9818,而根中ZR含量则前者低,说明盐胁迫下抗盐性强的品种可迅速将根部合成的ZR向苗中转移,促进苗的生长.2品种IAA/ABA、GA3/ABA比值随盐胁迫浓度增加和时间延长而下降,德抗961 IAA/ABA比值大于泰山9818.在盐胁迫下,抗盐性强的品种协调自身激素平衡的能力较强可能是其生长受抑制较小的重要原因.  相似文献   

7.
 以日本引进的设施专用耐盐茄(Solanum melongena)品种‘Torvum Vigor’为砧木, 栽培茄(S. torvum)品种‘苏崎茄’为接穗, 用营养液栽培, 对80 mmol&;#8226;L–1 Ca(NO3)2胁迫下茄子嫁接苗和自根苗叶片抗坏血酸-谷胱甘肽循环系统中抗氧化酶活性和抗氧化物及H2O2含量进行比较。结果表明, Ca(NO3)2胁迫下茄子幼苗叶片H2O2含量有所增加, 但嫁接苗叶片H2O2含量显著低于自根苗。Ca(NO3)2胁迫下嫁接苗叶片抗氧化酶(APX、DHAR和GR)活性、AsA和GSH再生率、氧化还原力(AsA/DHA值和GSH/GSSG值)均显著高于自根苗。综上所述, Ca(NO3)2胁迫下嫁接苗保持良好的AsA-GSH循环效率, 清除H2O2效率较高, 细胞受氧化损伤程度较轻, 表现出较强的耐盐性。  相似文献   

8.
The contents of covalently conjugated polyamines (CC-PAs) and noncovalently conjugated polyamines (NCC-PAs) to deoxyribonucleic acid-protein (DNP) isolated from wheat (Triticum aestivum L.) seedling roots under osmotic stress were detected. Results showed that after osmotic stress treatment for 7 d, the levels in NCC-spermine (NCC-Spm) and NCC-spermidine (NCC-Spd) of drought-tolerant Yumai No. 18 cv. increased more markedly than that of drought-sensitive Yangmai No. 9 cv., while the NCC-putrescine (NCC-Put) could not be statistically detected in two cultivars. Exogenous Spm treatment alleviated osmotic stress injury to Yangmai No. 9 cv. seedlings, coupled with marked increases of NCC-Spm and NCC-Spd levels of this cultivar. Under PEG osmotic stress, the concomitant treatment of drought-tolerant Yumai No. 18 cv.seedlings with methylglyoxyl-bis (guanylhydrazone) (MGBG), an inhibitor of S-adenosylmethionine decarboxylase (SAMDC), aggravated osmotic stress injury to this cultivar, coupled with market decreases of the NCC-Spm and NCC-Spd levels. The levels in CC-Put and CC-Spd of drought-tolerant Yumai No. 18 cv. increased more markedly than that of drought-sensitive Yangmai No. 9 cv. Under osmotic stress. The treatment of drought-tolerant Yumai No. 18 cv. seedlings with phenanthrolin (o-Phen), an inhibitor of transglutaminase (TGase), aggravated osmotic stress injury to this cultivar, coupled with a reduction of sum contents of CC-Put+CC-Spd. These results suggested that NCC-Spm and NCC-Spd, together with CC-Put and CC-Spd, in DNP of roots could enhance tolerance of the wheat seedlings to osmotic stress.  相似文献   

9.
The role of exogenous spermidine (Spd) in alleviating fruit granulation in the grafted seedlings of a Citrus cultivar (Huangguogan) was investigated. Granulation resulted in increased electrical conductivity, cell membrane permeability, and total pectin, soluble pectin, cellulose, and lignin contents. However, it decreased the activities of superoxide dismutase, peroxidase, and catalase, as well as the (Spd + Spm):Put ratio. The application of exogenous Spd onto Huangguogan seedlings significantly increased proline and ascorbate contents, but decreased the H2O2 and O 2 levels, which suggested that exogenous Spd provided some protection from oxidative damage. In addition, exogenous Spd decreased cell membrane permeability and MDA content, and increased the (Spd + Spm):Put ratio. The activities of antioxidant enzymes, such as catalase, peroxidase, and superoxide dismutase, were increased in Spd-treated seedlings affected by fruit granulation, resulting in a decrease in oxidative stress levels. The protective effects of Spd were reflected by a decrease in superoxide levels through osmoregulation, increased proline and ascorbate contents, and increased antioxidant activities. Our observations reveal the importance of exogenous Spd in alleviating citrus fruit granulation.  相似文献   

10.
为研究阿月浑子(Pistacia vera)的耐盐性,对新疆两个主栽品种‘长果’和`Kerman'的1年生实生苗进行了控制条件下的NaCl胁迫实验,实验浓度为50、150、250和500 mmol·L-1,NaCl胁迫5、10和20 d后取叶片测定其细胞膜透性、丙二醛(MDA)含量以及超氧化物歧化酶(SOD)、过氧化物酶(POD)和过氧化氢酶(CAT)活性的变化。实验结果显示,在NaCl胁迫下,‘长果’和`Kerman'的膜透性和MDA含量均随NaCl浓度的升高而增加,表明NaCl胁迫致使阿月浑子膜脂过氧化程度加强,细胞膜稳定性受到破坏,其中‘长果’品种的膜透性和MDA含量增加幅度较大,受到的盐害较大。而SOD、CAT和POD活性则随NaCl浓度的升高先增加后下降,抗氧化酶活性(SOD、POD和CAT)之间协调变化有利于清除活性氧,维持活性氧代谢平衡,保护膜结构。实验结果也显示,随着NaCl胁迫时间的延长,两个品种的细胞膜结构和功能受损害程度有所缓解。这些指标中,‘长果’和`Kerman'品种的膜透性和MDA含量与SOD活性呈显著相关,表明植物细胞的质膜透性与脂质过氧化产物(MDA)含量有关,也与组织中自由基含量和保护酶活性密切相关。综合各项生理指标,`Kerman'品种相对‘长果’品种显示了较强的抗氧化能力,具有较强的耐盐能力。  相似文献   

11.
Free radical and freezing injury to cell membranes of winter wheat   总被引:10,自引:0,他引:10  
The symptoms of injury in microsomal membranes isolated from crowns of seedlings of Triticum aestivum , L. cultivar Fredrick after a lethal freeze-thaw stress included an increased lipid phase transition temperature, loss of lipid phosphate (lipid-P), and increased free fatty acid levels. However, minimal changes in fatty acid saturation were observed, suggesting minimal amounts of lipid peroxidation. All of these injury symptoms, including the lack of lipid peroxidation, were simulated in vitro by treatment of isolated membranes with oxygen free radicals, generated from either xanthine oxidase (EC 1.1.3.22) or paraquat (l,r-dimethyl-4,4'-bipyridinium dichloride). Further evidence indicating a relationship between free radicals and freezing injury comes from the observation that both protoplasts and microsomal membranes isolated from wheat seedlings, that had been acclimated to induce freezing tolerance, also had increased tolerance of oxygen free radicals, and contained higher lipid-soluble antioxidant levels, than those from non-acclimated seedlings. Lipid-soluble antioxidants accumulated in the crown tissue of the wheat seedling during the acclimation period. Freezing stress accelerated the formation of oxygen free radicals. Membranes isolated from crowns after a freeze–thaw stress tended to produce higher levels of superoxide as shown by the reduction of Tiron (1,2-dihydroxy-l,3-benzenedisulfonic acid). In protoplasts, increased superoxide production coincided with lethal freezing injury. These results are discussed in terms of the possible involvement of oxygen free radicals in mediating aspects of freezing injury to cell membranes.  相似文献   

12.
13.
Polyamines (PAs) are biologically ubiquitous aliphatic amines that are implicated in many aspects of growth, development, sex differentiation, ripeness and senescence of plants[1―6]. It has been well documented that PAs are closely associated with plant …  相似文献   

14.
Water deficit for rice is a worldwide concern, and to produce drought-tolerant varieties, it is essential to elucidate molecular mechanisms associated with water deficit tolerance. In the present study, we investigated the differential responses of nonenzymatic antioxidants ascorbate (AsA), glutathione (GSH), and their redox pool as well as activity levels of enzymes of ascorbate–glutathione cycle in seedlings of drought-sensitive rice (Oryza sativa L.) cv. Malviya-36 and drought-tolerant cv. Brown Gora subjected to water deficit treatment of ?1.0 and ?2.1 MPa for 24–72 h using PEG-6000 in sand cultures. Water deficit caused increased production of reactive oxygen species such as O2??, H2O2, and HO? in the tissues, and the level of production was higher in the sensitive than the tolerant cultivar. Water deficit caused reduction in AsA and GSH and decline in their redox ratios (AsA/DHA and GSH/GSSG) with lesser decline in tolerant than the sensitive seedlings. With progressive level of water deficit, the activities of monodehydroascorbate reductase, dehydroascorbate reductase, ascorbate peroxidase (APX), and glutathione transferase increased in the seedlings of both rice cultivars, but the increased activity levels were higher in the seedlings of drought-tolerant cv. Brown Gora compared to the sensitive cv. Malviya-36. Greater accumulation of proline was observed in stressed seedlings of tolerant than the sensitive cultivar. In-gel activity staining of APX revealed varying numbers of their isoforms and their differential expression in sensitive and tolerant seedlings under water deficit. Results suggest that an enhanced oxidative stress tolerance by a well-coordinated cellular redox state of ascorbate and glutathione in reduced forms and induction of antioxidant defense system by elevated activity levels of enzymes of ascorbate–glutathione cycle is associated with water deficit tolerance in rice.  相似文献   

15.
以抗热性较弱的黄瓜品种‘新泰密刺'为试材,在人工气候箱内采用营养液栽培法,研究了外源脯氨酸(Pro)预处理对高温胁迫下黄瓜幼苗叶片抗坏血酸-谷胱甘肽循环和光合荧光特性的影响.结果显示:(1)与清水处理相比,高温胁迫4 h和8 h时,Pro预处理黄瓜幼苗叶片单脱氢抗坏血酸还原酶(MDAR)活性、GSH(还原型谷胱甘肽)/GSSG(氧化型谷胱甘肽)比值及GSH含量显著升高;(2)在高温胁迫8 h时,Pro预处理幼苗的净光合速率(P_n)、气孔导度(G_s)及PSⅡ的最大光化学效率(F_v/F_m)、光化学淬灭系数(q_P)均显著升高,而蒸腾速率(T_r)和非光化学淬灭系数(NPQ)降低.研究表明,外源Pro预处理可显著提高高温胁迫下黄瓜幼苗叶片抗坏血酸-谷胱甘肽循环清除H_2O_2能力和叶片光合能力,有效缓解高温胁迫对黄瓜叶片抗氧化系统和光合系统的伤害,从而增强植株的耐热性.  相似文献   

16.
This study was carried out to better understand the role of salicylic acid (SA) applied before cold stress in the cold tolerance mechanism. Two barley (Hordeum vulgare) cultivars, cold-sensitive (Akhisar) and cold-tolerant (Tokak), were used and 0.1 mM SA was applied to 7-d-old barley seedlings growing under control conditions (20/18 °C). The seedlings were transferred to cold chamber (7/5 °C) at the age 14, 21, and 28 d. After three days, the leaves were harvested to determine the activities of apoplastic antioxidant enzymes, such as superoxide dismutase (SOD), catalase (CAT), and peroxidase (POX) and ice nucleation activity and electrophoretic patterns of apoplastic proteins. Cold treatment decreased the activities of all enzymes in cold-sensitive cultivar, however, it increased CAT and POX activities in cold-tolerant cultivar. Exogenous SA increased enzyme activities in both cultivars. Ice nucleation activity increased by cold treatment, especially in 17-d-old seedlings in both cultivars. In addition, SA treatment increased ice nucleation activity in all examined samplings in both cultivars. SA treatment caused accumulation or de novo synthesis of some apoplastic proteins. The results of the present study show that exogenous SA can improve cold tolerance by regulating the activities of apoplastic antioxidative enzymes, ice nucleation activity, and the patterns of apoplastic proteins.  相似文献   

17.
18.
Ozone is one of the major gaseous pollutants detrimental to crop growthand metabolism. The objective of this research was to study how ABA amelioratesthe effects of ozone on rice seedlings. Seedlings of two rice cultivars withdifferent sensitivities to ozone (Tainung 67, tolerant; and Taichung Native 1,sensitive) were treated with 400 ppb of ozone or ABA and 400ppb of ozone to determine their effect on growth, stomatalmovement, chlorophyll characteristics, and the activity of antioxidant enzymes.Activities of the enzymes SOD, APOD, GR and POD were significantly higher inthesensitive cultivar, TN 1, than in the tolerant cultivar, TNG 67. Seedlings ofthe sensitive cultivar pretreated with ABA (10 M) weresignificantly more tolerant of ozone than control seedlings. Pretreatment withABA effectively reduced stomatal conductance and the degree of injury. Abscisicacid also increased ascorbate peroxidase and glutathione reductase activity.Ozone increased peroxidase activity in sensitive seedlings, but ABA decreasedperoxidase activity. The sensitive cultivar had a higher density of stomata onits leaves than the tolerant cultivar. The results suggest that ABA inducedtolerance to ozone may be more associated with its effects on stomatal movementthan on the modulation of antioxidant enzyme activity.  相似文献   

19.
在含有儿茶素的培养液中棉枯萎病菌(Fusarium oxysporum f. sp. vasinfectum)的多聚半乳糖醛酸酶(PG)和果胶裂解酶(PL)活性明显降低。儿茶素可明显抑制初步纯化的PG和PL活性以及它们对棉苗组织的浸软作用。对棉苗组织中儿茶素含量的测定结果表明:抗病品种棉苗组织中儿茶素含量较高;氟乐灵处理可诱发棉苗产生对枯萎病的诱导抗性,同时也提高棉苗组织中的儿茶素的含量;枯萎病菌侵染后棉苗组织中儿茶素含量明显升高,以抗病品种棉苗和氟乐灵诱发处理棉苗组织中儿茶素含量的增加更为明显。棉苗组织提取液中的酚类物质可抑制PG和PL的活性,且证明这种抑制作用主要是由儿茶素引起。提取液对PG和PL活性的抑制作用与棉苗组织中儿茶素的含量呈直接的正相关关系。因此,作者认为棉苗组织中的儿茶素可能通过对病菌PG和PL等胞壁降解酶的抑制而与棉花对枯萎病的抗病性及氟乐灵诱发的诱导抗性有关。  相似文献   

20.
Hydrogen sulfide (H2S) is a signal molecule that is involved in plant growth, development and the acquisition of stress tolerance including heat tolerance, but the mechanism of H2S-induced heat tolerance is not completely clear. In present study, the effect of sodium hydrosulfide (NaHS), a H2S donor, treatment on heat tolerance of maize seedlings in relation to antioxidant system was investigated. The results showed that NaHS treatment improved survival percentage of maize seedlings under heat stress in a concentration-dependent manner, indicating that H2S treatment could improve heat tolerance of maize seedlings. To further study mechanism of NaHS-induced heat tolerance, catalase (CAT), guaiacol peroxidase (GPX), superoxide dismutase (SOD), glutathione reductase (GR) and ascorbate peroxidase (APX) activities, and glutathione (GSH) and ascorbic acid (AsA) contents in maize seedlings were determined. The results showed that NaHS treatment increased the activities of CAT, GPX, SOD and GR, and GSH and AsA contents as well as the ratio of reduced antioxidants to total antioxidants [AsA/(AsA+DHA) and GSH/(GSH +GSSG)] in maize seedlings under normal culture conditions compared with the control. Under heat stress, antioxidant enzymes activities, antioxidants contents and the ratio of the reduced antioxidants to total antioxidants in control and treated seedlings all decreased, but NaHS-treated seedlings maintained higher antioxidant enzymes activities and antioxidants levels as well as the ratio of reduced antioxidants to total antioxidants. All of above-mentioned results suggested that NaHS treatment could improve heat tolerance of maize seedlings, and the acquisition of this heat tolerance may be relation to enhanced antioxidant system activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号