首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Many aphid species have shown remarkable adaptability by invading new habitats and agricultural crops, although they are parthenogenetic and might be expected to show limited genetic variation. To determine if the mode of reproduction limits the level of genetic variation in adaptively important traits, we assess variation in 15 life history traits of the pea aphid, Acyrhosiphon pisum (Harris), for five populations sampled along a north-south transect in central North America, and for three traits for three populations from eastern Australia. The traits are developmental times and rates as affected by temperature, body weights as affected by temperature, fecundity, measures of migratory tendency, and photoperiodic responses. The most southerly population from North America is shown to be obligately parthenogenetic, as are the Australian populations, and the four more northerly North American populations are facultatively parthenogenetic with the number of parthenogenetic generations per year increasing from north to south. The broad-sense heritabilities of life history traits varied from 0.36 to 0.71 for nine quantitive traits based on a comparison of within-and between-lineage variances. Using these traits, 7–13 distinct genotypes (i.e. clones) were identified among each of the 18 lines sampled from the North American populations, but the number did not differ significantly among populations. The level of genetic variation differed from trait to trait. For 4 of 12 quantitative traits, the level of variation in the obligately parthenogenetic population from North America was lowest, but significantly lower than all the sexual populations for only 1 trait. The obligately parthenogenetic population had the highest level of genetic variation for two traits, and had intermediate levels for the others. The most northerly population, which was sexual and had relatively few parthenogenetic generations each year, had the lowest level of variation for 5 of 12 traits and the highest level of variation for 2 traits. There was no decline in variability from north to south correlated with the increase in the annual number of parthenogenetic generations. The Australian populations showed no less variation than the North American populations for two of three traits, although the pea aphid was introduced to Australia only 5 years prior to the study, whereas the aphid has been in North America for at least 100 years. The mode of reproduction has not had a substantial impact on the level of genetic variation in life history traits of the pea aphid, but there are population-specific factors that effect the level of variation in certain traits.  相似文献   

2.
Abstract.  1. Microorganisms that manipulate the reproduction of their hosts through diverse mechanisms including the induction of parthenogenesis are widespread among arthropods.
2. The pea aphid, Acyrthosiphon pisum , shows a variation in its reproductive mode, with lineages reproducing by cyclical parthenogenesis (obligate alternation of parthenogenetic and sexual generations each year) and others by obligate parthenogenesis (continuous asexual reproduction all year round). In addition, the pea aphid harbours, along with Buchnera the primary aphid endosymbiont, several facultative symbionts whose prevalence differs among host populations.
3. The possible influence of a Rickettsia facultative symbiont on the reproductive mode of its host was tested on two pea aphid clones by comparing the response of infected and uninfected individuals with the same genetic background to conditions that typically induce the production of sexual morphs.
4. No significant effect of the Rickettsia infection was found on the type of reproductive morphs produced (sexual vs. asexual) or on their quantities for the two clones.
5. However, the Rickettsia had a detrimental effect on the fitness of its aphid host, in apparent contradiction to the high prevalence of this symbiont in some host populations. It is suggested that this negative impact may disappear under specific environmental conditions, transforming a parasitic association into a mutualistic one.  相似文献   

3.
Inducing the sexual forms and hatching the eggs of pea aphids   总被引:1,自引:0,他引:1  
In temperate climates, pea aphids (Acyrthosiphon pisum) produce a single sexual generation each year in response to declining photoperiod and temperature. Mating occurs in the fall and the eggs have an obligatory winter diapause. Genetic recombination during the sexual phase is thought to be an important source of genetic variability within cyclically parthenogenetic aphid populations. Methods for reliably producing sexual forms and hatching the eggs of aphids are therefore central not only to the study of evolutionary change in aphid populations, but also for a general understanding of the origin of agriculturally important variation in destructiveness within pest species.Here, sexual forms of six pea aphid clones were induced in the laboratory and eggs were successfully hatched by creating conditions that closely mimicked those found in field situations. A declining photoperiod was produced by controlling artificial lighting using a timer with variable cycle length. Using these conditions, sexual forms were successfully produced for all six clones tested, which were then mated in all combinations. Eggs were exposed to a daily cycle of freezing and thawing in an incubator under a short-day photoperiod. Egg hatch averaged 60%, but was as high as 89% for some crosses. These methods will permit testing of evolutionary hypotheses and execution of detailed genetic studies of sources of variability within pea aphid populations. They are thus important tools for both evolutionary and agricultural studies.  相似文献   

4.
Bird migration is one of the most spectacular and best-studied phenomena in behavioural biology. Yet, while the patterns of variation in migratory behaviour and its ecological causes have been intensively studied, its genetic, physiological and neurological control remains poorly understood. The lack of knowledge of the molecular basis of migration is currently not only limiting our insight into the proximate control of migration, but also into its evolution. We investigated polymorphisms in the exons of six candidate genes for key behavioural traits potentially linked to migration, which had previously been identified in several bird species, and eight control loci in 14 populations of blackcaps (Sylvia atricapilla), representing the whole range of geographical variation in migration patterns found in this species, with the aim of identifying genes controlling variation in migration. We found a consistent association between a microsatellite polymorphism and migratory behaviour only at one candidate locus: the ADCYAP1 gene. This polymorphism explained about 2.6 per cent of the variation in migratory tendency among populations, and 2.7-3.5% of variation in migratory restlessness among individuals within two independent populations. In all tests, longer alleles were associated with higher migratory activity. The consistency of results among different populations and levels of analysis suggests that ADCYAP1 is one of the genes controlling the expression of migratory behaviour. Moreover, the multiple described functions of the gene product indicate that this gene might act at multiple levels modifying the shift between migratory and non-migratory states.  相似文献   

5.
Abstract.
  • 1 Temporal changes in host adaptation were followed in a local population of the pea aphid, Acyrthosiphon pisum. Aphid clones were collected in one alfalfa and one clover field at three different times. In the spring, first-generation females were collected. Later, in the autumn, females belonging to the last parthenogenetic generation were collected. Lastly, sexual females were collected after mating in autumn and allowed to produce eggs which were hatched. The performance was evaluated on alfalfa and clover. The spring-collected individuals were also assessed on peas.
  • 2 On the overwintering hosts clover and alfalfa, the clones performed best on the plant of origin, i.e. negative correlations in performance. Correlations between performance on the temporary summer host, pea, and that on clover/alfalfa were weak or nonsignificant.
  • 3 Significant variation in host performance was found within both host fields at spring, which is a prerequisite for changes in clone composition due to selection/migration.
  • 4 The clones from alfalfa showed an increase in mean performance on alfalfa between spring and autumn, whereas no changes among the clones from the clover field were observed. This difference in seasonal response between the two fields could have been the result of larger variation in performance among the alfalfa clones and/or a differential tendency to migrate among clones in both fields.
  • 5 After sexual recombination in the autumn, mean performance in the alfalfa field returned to the spring level, probably as a result of emergence of new genetic combinations. In the clover field, mean performance did not change significantly over time.
  相似文献   

6.
Most parthenogenetic animal taxa which have been investigatedelectrophoretically, cytologically, or with tissue graftingtechniques are clonally diverse. I have examined data on multiclonalparthenogenetic populations using ecological diversity measuresto elucidate patterns of clonal coexistence. Analysis of a discretepopulation cage experiment on clones of Drosophila mercatorumrevealed monotonic decay of clonal diversity and evenness; however,in a continuous generation cage, clonal diversity appeared tostabilize. Clonal diversity and evenness fluctuated widely overtime in several multiclonal populations of Daphnia magna althoughno clonal extinction was observed. There were few spatial trendsin clonal diversity and evenness within parthenogenetic taxa.It is suggested that the degree of clonal differentiation, determinedby the mode of clonal origin, is important in determining whetheror not selection occurs among sympatric clones  相似文献   

7.
The suitability of five grain legume species (narrow-leafed lupin, chickpea, faba bean, field pea, lentil) as hosts for three aphid species (green peach aphid, cowpea aphid, bluegreen aphid) was evaluated by measuring the mean relative growth rate (MRGR) and survivorship of nymphs over a 5 day period. For each aphid species, intraspecific (interclonal) variation was also determined by independently measuring the performance of 30 clones collected from a variety of hosts and from different parts of the Western Australia (WA) wheatbelt. The suitability of the grain legumes varied among aphid species. Chickpea was not a suitable host for any of the aphids tested. Averaged over all clones, lentil and faba bean were the most suitable hosts for cowpea aphid, and narrow-leafed lupin was the most suitable host for green peach aphid. Field pea was a suitable host for all three species, but only at a suboptimal level. Cowpea aphid showed the greatest amount of intraspecific variation, with significant variation in MRGR among clones on all hosts except chickpea and significant variation in survivorship on chickpea and lupin. For green peach aphid, there was significant variation in MRGR among clones on field pea and lupin, but in survivorship on lupin only. Bluegreen aphid clones showed significant variation only for MRGR on faba bean and lupin. There were positive correlations in performance of green peach aphid clones on faba bean and lentil, and of cowpea aphid clones on faba bean and lentil. Bluegreen aphid clones showed a negative correlation in performance on field pea and faba bean. These results show the importance of screening cultivars against a wide variety of aphid clones when assessing aphid susceptibility in breeding programmes. The implications of these results on the adaptability of parthenogenetic aphids are discussed.  相似文献   

8.
Migratory divides are thought to facilitate behavioral, ecological, and genetic divergence among populations with different migratory routes. However, it is currently contentious how much genetic divergence is needed to maintain distinct migratory behavior across migratory divides. Here we investigate patterns of neutral genetic differentiation among Blackcap (Sylvia atricapilla) populations with different migratory strategies across Europe. We compare the level of genetic divergence of populations migrating to southwestern (SW) or southeastern (SE) wintering areas with birds wintering in the British Isles following a recently established northwesterly (NW) migration route. The migratory divide between SW and SE wintering areas can be interpreted as a result of a re-colonization process after the last glaciation. Thus we predicted greater levels of genetic differentiation among the SW/SE populations. However, a lack of genetic differentiation was found between SW and SE populations, suggesting that interbreeding likely occurs among Blackcaps with different migratory orientations across a large area; therefore the SW/SE migratory divide can be seen as diffuse, broad band and is, at best, a weak isolating barrier. Conversely, weak, albeit significant genetic differentiation was evident between NW and SW migrants breeding sympatrically in southern Germany, suggesting a stronger isolating mechanism may be acting in this population. Populations located within/near the SW/SE contact zone were the least genetically divergent from NW migrants, confirming NW migrants likely originated from within the contact zone. Significant isolation-by-distance was found among eastern Blackcap populations (i.e. SE migrants), but not among western populations (i.e. NW and SW migrants), revealing different patterns of genetic divergence among Blackcap populations in Europe. We discuss possible explanations for the genetic structure of European Blackcaps and how gene flow influences the persistence of divergent migratory behaviors.  相似文献   

9.
Ecology of bdelloids: how to be successful   总被引:7,自引:4,他引:3  
Bdelloids inhabit many different environments. The entire taxon is an order belonging to the phylum Rotifera. In spite of its wide distribution, it has a very uniform morphology, suggesting that natural selection has had almost no effect on its morphological characteristics.This paper reviews the geographical and ecological distributions of bdelloids and their ability to tolerate different conditions is discussed. Two characteristics account for the wide distribution of bdelloids, parthenogenetic reproduction and their ability to withstand unfavorable conditions through anhydrobiosis. The former is an apomictic thelytoky which may ensure genetic homogeneity within clones. However, evidence which suggests variability among and within parthenogenetic clones is discussed. Some recent experimental evidence indicates that anhydrobiosis does not affect the life history of the surviving individuals. The effects of anhydrobiosis on bdelloid populations are considered.  相似文献   

10.
A study of the clonal structure of parthenogenetic populations of Heterocypris incongruens from rice-fields in Northern Italy carried out over two-year period is summarized. Significantly different levels of genetic polymorphism were found among populations. The coexistence of different electrophoretic clones and similar patterns of clonal seasonal succession have been observed in at least two different rice fields. The clone or group of clones present in fall, winter and early spring is substituted by other multilocus genotypes in late spring and summer. Different egg diapause induction mechanisms drive the clonal substitution in different clones. Here we report a new laboratory experiment designed to test the effect of temperature and photoperiod found in winter (12 °C 8:16 L:D), spring (24°C 12:12 L:D) and summer (28°C 16:8 L:D) conditions on the deposition and hatching of diapausal eggs in different multilocus genotypes. Clones respond in a way compatible with their sustained presence in the field in different seasons.  相似文献   

11.
The evolution of associations between herbivorous insects and their parasitoids is likely to be influenced by the relationship between the herbivore and its host plants. If populations of specialized herbivorous insects are structured by their host plants such that populations on different hosts are genetically differentiated, then the traits affecting insect-parasitoid interactions may exhibit an associated structure. The pea aphid (Acyrthosiphon pisum) is a herbivorous insect species comprised of genetically distinct groups that are specialized on different host plants (Via 1991a, 1994). Here, we examine how the genetic differentiation of pea aphid populations on different host plants affects their interaction with a parasitoid wasp, Aphidius ervi. We performed four experiments. (1) By exposing pea aphids from both alfalfa and clover to parasitoids from both crops, we demonstrate that pea aphid populations that are specialized on alfalfa are successfully parasitized less often than are populations specialized on clover. This difference in parasitism rate does not depend upon whether the wasps were collected from alfalfa or clover fields. (2) When we controlled for potential differences in aphid and parasitoid behavior between the two host plants and ensured that aphids were attacked, we found that pea aphids from alfalfa were still parasitized less often than pea aphids from clover. Thus, the difference in parasitism rates is not due to behavior of either aphids or wasps, but appears to be a physiologically based difference in resistance to parasitism. (3) Replicates of pea aphid clones reared on their own host plant and on a common host plant, fava bean, exhibited the same pattern of resistance as above. Thus, there do not appear to be nutritional or secondary chemical effects on the level of physiological resistance in the aphids due to feeding on clover or alfalfa, and therefore the difference in resistance on the two crops appears to be genetically based. (4) We assayed for genetic variation in resistance among individual pea aphid clones collected from clover fields and found no detectable genetic variation for resistance to parasitism within two populations sampled from clover. This is in contrast to Henter and Via's (1995) report of abundant genetic variation in resistance to this parasitoid within a pea aphid population on alfalfa. Low levels of genetic variation may be one factor that constrains the evolution of resistance to parasitism in the populations of pea aphids from clover, leading them to remain more susceptible than populations of the same species from alfalfa.  相似文献   

12.
The parthenogenetic snail Melanoides tuberculata, present in tropical fresh waters of most of the Old World before 1950, has now invaded the Neotropical area. The phylogeography of this snail was studied to evaluate the pathways and number of such invasions. Because of parthenogenetic reproduction, individuals are structured into genetical clones. Within populations from both the original and invaded areas, several morphologically distinct clones (referred to as morphs) often coexist but the amount of genetic divergence among morphs is unknown. Individuals from 27 morphs and 40 populations world-wide were sequenced at two mitochondrial genes (12S and 16S). Our phylogenetic reconstruction suggests that (i) most of the morphological variation observed in the New World predates invasion, (ii) at least six independent introductions have occurred, and (iii) invasive clones are found throughout most of the phylogenetic tree and do not come from a particular region of the area of origin. Two ideas are discussed in the light of these results. The first lies with the specificities of parthenogenesis in an invasion context. While in sexual species, independently introduced populations eventually merge into a single invasive population, in a parthenogenetic species independently introduced clones have distinct invasion dynamics and possibly exclude each other. Second, although repeated invasions in Melanoides may have an impact on indigenous molluscan faunas, their most likely effect is the world-wide homogenization of the invasive taxon itself.  相似文献   

13.
Many polyphenisms are examples of adaptive phenotypic plasticity where a single genotype produces distinct phenotypes in response to environmental cues. Such alternative phenotypes occur as winged and wingless parthenogenetic females in the pea aphid (Acyrthosiphon pisum). However, the proportion of winged females produced in response to a given environmental cue varies between clonal genotypes. Winged and wingless phenotypes also occur in males of the sexual generation. In contrast to parthenogenetic females, wing production in males is environmentally insensitive and controlled by the sex-linked, biallelic locus, aphicarus (api). Hence, environmental or genetic cues induce development of winged and wingless phenotypes at different stages of the pea aphid life cycle. We have tested whether allelic variation at the api locus explains genetic variation in the propensity to produce winged females. We assayed clones from an F2 cross that were heterozygous or homozygous for alternative api alleles for their propensity to produce winged offspring. We found that clones with different api genotypes differed in their propensity to produce winged offspring. The results indicate genetic linkage of factors controlling the female wing polyphenism and male wing polymorphism. This finding is consistent with the hypothesis that genotype by environment interaction at the api locus explains genetic variation in the environmentally cued wing polyphenism.  相似文献   

14.
Climate change is affecting behaviour and phenology in many animals. In migratory birds, weather patterns both at breeding and at non-breeding sites can influence the timing of spring migration and breeding. However, variation in responses to weather across a species range has rarely been studied, particularly among populations that may winter in different locations. We used prior knowledge of migratory connectivity to test the influence of weather from predicted non-breeding sites on bird phenology in two breeding populations of a long-distance migratory bird species separated by 3,000 km. We found that winter rainfall showed similar associations with arrival and egg-laying dates in separate breeding populations on an east–west axis: greater rainfall in Jamaica and eastern Mexico was generally associated with advanced American redstart (Setophaga ruticilla) phenology in Ontario and Alberta, respectively. In Ontario, these patterns of response could largely be explained by changes in the behaviour of individual birds, i.e., phenotypic plasticity. By explicitly incorporating migratory connectivity into responses to climate, our data suggest that widely separated breeding populations can show independent and geographically specific associations with changing weather conditions. The tendency of individuals to delay migration and breeding following dry winters could result in population declines due to predicted drying trends in tropical areas and the tight linkage between early arrival/breeding and reproductive success in long-distance migrants.  相似文献   

15.
Microsatellite markers were used to examine the population structure of Pemphigus bursarius, a cyclically parthenogenetic aphid. Substantial allele frequency differences were observed between populations on the primary host plant (collected shortly after sexual reproduction) separated by distances as low as 14 km. This suggested that migratory movements occur over relatively short distances in this species. However, the degree of allele frequency divergence between populations was not correlated with their geographical separation, indicating that isolation by distance was not the sole cause of spatial genetic structuring. Significant excesses of homozygotes were observed in several populations. Substantial allele frequency differences were also found between aphids on the primary host and those sampled from a secondary host plant after several parthenogenetic generations at the same location in two successive years. This could have been due to the existence of obligately parthenogenetic lineages living on the secondary host or genetically divergent populations confined to different secondary host plant species but sharing a common primary host.  相似文献   

16.
Genetic variability and similarity were analysed in four parthenogenetic and five bisexual populations of the snail Melanoides tuberculata found in Israel. Electrophoretic studies of six enzymatic systems revealed 28 zones of activity. The average genetic identity between populations was low—0.725. A particularly low similarity (0.628) was obtained between parthenogenetic populations, compared to the average of 0.822 observed among the bisexual ones. The percentage of fixed electrophoretic bands in parthenogens was 53.9% compared to 12.5% observed in bisexual populations. The diversity of parthenogenetic populations was found to be lower than those of bisexual. The amount of electrophoretic diversity between populations of the parthenogenetic group was found to be 80%, whereas within the bisexual group the diversity between populations was only 42%.  相似文献   

17.
The performance of one clone of the pea aphid,Acyrthosiphon pisum (Harris), was assessed on 37 different cultivars and species ofPisum L. In addition, random samples of 36 pea aphid clones collected on alfalfa and clover were tested on a selection of fivePisum sativum L. cultivars. Aphid performance was evaluated in terms of the mean relative growth rate (MRGR) during the first five days of life or other life history variables. The MRGR of the first-mentioned pea aphid clone differed little between cultivars. No significant differences in MRGR were found between wild and cultivatedPisum species or between modern and oldP. sativum cultivars. There was considerable variation in host adaptation among the 36 pea aphid clones within each sampled field. The pea aphid clones showed no consistent pattern in performance on four of the five pea cultivars i.e. there was a significant pea aphid genotype —pea genotype interaction. On one of the cultivars all clones performed well. Pea aphid clones collected from red clover generally performed relatively poorly on pea cultivars, in contrast to the pea aphid clones collected on alfalfa. There was no difference in performance between the two pea aphid colour forms tested. Possible reasons for the high variation and the observed adaptation patterns are discussed. The fact that all clones were collected in two adjacent fields indicates thatA. pisum shows high local intraspecific variability in terms of host adaptation.  相似文献   

18.
C. Moritz 《Genetics》1991,129(1):211-219
The parthenogenetic form of the gecko lizard species Heteronotia binoei has an unusually broad geographic range and high genetic diversity. Restriction enzyme analysis revealed two basic types of mitochondrial DNA (mtDNA) among the parthenogens. One type is restricted to western populations. The other type, analyzed in detail here, was widespread, being found in populations from central to western Australia. The diversity within this widespread type was low. The variation among parthenogens from central to western Australia was similar to that found within local populations of the sexual species that provided the mtDNA, and was an order of magnitude less than the differentiation shown between sexual populations across the same geographic distance. Phylogenetic analysis revealed that the widespread type of mtDNA in the parthenogens is most closely related to mtDNAs from western populations of the "CA6" sexual parent. These data suggest that these parthenogenetic clones arose recently within a small geographic area, most probably in Western Australia. The parthenogens must have spread rapidly to occupy much of the central and western Australian deserts. This rapid and extensive range expansion provides strong evidence that parthenogenesis can be a successful strategy for lizards in an environment with low and unpredictable rainfall.  相似文献   

19.
There is growing evidence that transitions from sexual to asexual reproduction are often provoked by internal genetic factors rather than extrinsic selection pressures. In the cladoceran crustacean Daphnia pulex, the shift to asexuality has been linked to sex-limited meiosis suppression. Most populations of this species reproduce by obligate parthenogenesis, but cyclically parthenogenetic populations persist in the southern portion of its range. The meiosis-suppressor model predicts that asexuality in D. pulex has polyphyletic origins and that the coexistence of cyclically parthenogenetic lines with male-producing obligately asexual clones should be unstable. For the present study, we examined the genotypic structure of D. pulex populations from a region in which there is an abrupt microgeographical shift in breeding system. Populations in Michigan largely reproduce by cyclic parthenogenesis, while those in Ontario are obligately asexual. Allozyme studies on 77 populations from this area revealed 50 obligately asexual clones, divisible into two groups: one derived from a single parent species and the other derived via interspecific hybridization. Although nearly 50% of the clones retained male production, there was, as predicted, no evidence of coexistence between cyclically parthenogenetic populations and male-producing obligately asexual clones. The survey did, however, reveal a low incidence of cyclically parthenogenetic populations in Ontario. The high genotypic diversity of these populations suggests that they are not only resistant to meiosis suppression, but able to rework genetic variation gained from asexual clones into a sexual breeding system.  相似文献   

20.
The simultaneous effects of habitat traits and interspecific interactions determine the occurrence and habitat use of wildlife populations. However, little research has been devoted to examining spatial co-occurrence among closely related species while considering the effect of habitat variation and imperfect detectability of species in the field. In this study, we focused on migratory and resident 'wood-warblers' that coexist during the winter in a Neotropical working landscape in southern Mexico to understand if habitat occupancy of resident wood-warblers is influenced by habitat characteristics and by the presence of other species of resident and migratory wood-warblers. For this purpose, we implemented two-species occupancy models, which account for the imperfect detectability of these birds in the field. Our results revealed that habitat occupancy of resident wood-warblers was positively influenced by the presence of other closely related species (both migratory and resident). These positive relationships may be explained by the fact that different species of wood-warblers frequently participate in mixed-species flocks. However, these patterns of species co-occurrence were more evident among resident species than between migratory and resident species, which may be explained by micro-habitat segregation and differences in behaviours between resident and migratory wood-warblers. We also found that some habitat characteristics may mediate the observed patterns of species co-occurrence. Specifically, sites with larger trees were associated with the co-occurrence of some species of resident wood-warblers. In addition, we discuss the possibility that species co-occurrence might be the result of shared preferences for environmental factors that we did not consider. Our study highlights the importance of the interplay between species co-occurrence and habitat traits in determining the presence and habitat use of resident birds in Neotropical working landscapes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号