首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Acetylation of histones leads to conformational changes of DNA. We have previously shown that the histone deacetylase (HDAC) inhibitor, suberoylanilide hydroxamic acid (SAHA), induced cell cycle arrest, differentiation, and apoptosis. In addition to their antitumor effects as single agents, HDAC inhibitors may cause conformational changes in the chromatin, rendering the DNA more vulnerable to DNA damaging agents. We examined the effects of SAHA on cell death induced by topo II inhibitors in breast cancer cell lines. Topo II inhibitors stabilize the topo II-DNA complex, resulting in DNA damage. Treatment of cells with SAHA promoted chromatin decondensation associated with increased nuclear concentration and DNA binding of the topo II inhibitor and subsequent potentiation of DNA damage. While SAHA-induced histone hyperacetylation occurred as early as 4 h, chromatin decondensation was most profound at 48 h. SAHA-induced potentiation of topo II inhibitors was sequence-specific. Pre-exposure of cells to SAHA for 48 h was synergistic, whereas shorter pre-exposure periods abrogated synergy and exposure of cells to SAHA after the topo II inhibitor resulted in antagonistic effects. Synergy was not observed in cells with depleted topo II levels. These effects were not limited to specific types of topo II inhibitors. We propose that SAHA significantly potentiates the DNA damage induced by topo II inhibitors; however, synergy is dependent on the sequence of drug administration and the expression of the target. These findings may impact the clinical development of combining HDAC inhibitors with DNA damaging agents.  相似文献   

2.
To examine the importance of topological constraints on DNA during erythroid development, we measured the effects of camptothecin and teniposide, two tumoricidal agents which are also specific inhibitors of type I and type II topoisomerases respectively, on the formation of hematopoietic colonies by cultured human bone marrow cells. When added to bone marrow culture, each inhibitor alone impairs the formation of early BFU-E-derived colonies, late CFU-E-derived colonies and mixed hematopoietic (CFU-GEMM-derived) colonies by up to 100%. Inhibition of colony formation is directly related to the time of inhibitor addition and the inhibitor concentration tested. Although either inhibitor alone reduces colony formation by 90%, when added together at a submaximal concentration, camptothecin and teniposide exert a synergistic suppressive effect. Furthermore, addition of topoisomerase inhibitors to culture impairs hemoglobinization of colony erythroblasts in a time-dependent fashion. In contrast to the effects of topoisomerase inhibitors, the antiproliferative agent aphidicolin reduces erythroid colony number and size without altering hemoglobinization of colony erythroblasts. Since neither topoisomerase inhibitor alters the morphology of cultured cells, the capacity of cells to exclude trypan blue or the potential to form erythroid colonies through the interval required for the first progenitor cell division, it is unlikely that camptothecin or teniposide are cytotoxic to hematopoietic cells. Human mononuclear cells enriched in bone marrow lymphocytes and nucleated erythroblasts from both human and mouse sources release DNA into the detergent soluble fraction. Release requires functional topoisomerases and is altered by acute exposure to topoisomerase inhibitors. Our results suggest that topoisomerases are critical not only to proliferation but also to differentiation of human marrow erythroid progenitor cells and stem cells in culture.  相似文献   

3.
Variant S49 mouse lymphoma cells with increased ornithine decarboxylase activity were obtained by selecting for resistance to alpha-difluoromethylornithine (DFMO), a specific inhibitor of the enzyme. Ornithine decarboxylase was identified as a specifically immunoprecipitable polypeptide that was made at an increased rate in the variant cells. Ornithine decarboxylase was also identified on a two-dimensional gel as a metabolically labeled polypeptide of Mr approximately 55,000 which was synthesized at an increased rate in two independently selected variants. Synthesis of this polypeptide was further augmented by treatment of cells with inhibitors of ornithine decarboxylase activity. The charge of the polypeptide was altered by treatment of either cells or cellular extracts with DFMO, a suicide substrate which binds covalently to the enzyme. This charge alteration and the inactivation of ornithine decarboxylase showed the same dependence on DFMO concentration and both effects were prevented by addition of either ornithine or putrescine. Pulse-chase experiments showed that the half-life of the ornithine decarboxylase polypeptide in these variant cells was 45 min. We conclude that ornithine decarboxylase is made at an increased rate in the resistant variants and that the polypeptide turns over rapidly.  相似文献   

4.
A method has been proposed for directed bacteria autoselection, based on their sensitivity to growth inhibitors during continuous unlimited cultivation. A smooth increase of a growth inhibitor concentration in the medium has been used in response to the appearance and autoselection of more resistant strains. The aim can be reached by continuous measurements of the specific microbial growth rate during the process and its keeping at the required level by the inhibitor additions. The experimental data are given showing application of the method for Escherichia coli and Pseudomonas sp. turbidostat cultivation with valine, low pH and formaldehyde as inhibitors.  相似文献   

5.
The feasibility of using specific enzyme and transport inhibitors to minimize the glutamine response of a potentiometric microbial sensor is demonstrated. The glutamine response of a bacterial electrode prepared with Escherichia coli as the biocatalyst in conjunction with an ammonia gas-sensing electrode was greatly reduced by treating the electrode with the enzyme inhibitor 6-diazo-5-oxo-L-norleucine (DONL) and the transport inhibitor gamma-L-glutamylhydrazide. Each inhibitor effectively decreased glutamine response to a level sufficiently low to be considered negligible in clinical studies. Although the sensor ultimately recovered from the effects of a single exposure to an inhibitor, continuous exposure at an optimum concentration maintained a low response to glutamine. Furthermore, the treatment of the sensor with both inhibitors simultaneously resulted in a negligible response to glutamine of <1 mV, indicating that both inhibitors are necessary for optimum inhibition of glutamine response. This approach is promising as a means of enhancing the selectivity of microbial sensors.  相似文献   

6.
Effects of protein kinase inhibitors on pig oocyte maturation in vitro.   总被引:1,自引:0,他引:1  
Normal oocyte maturation depends on signal transmission between granulosa cells and the oocyte. We have analysed the effects of inhibiting (I) cyclic AMP-dependent protein kinase (protein kinase A, PK-A), (II) Ca2+/phospholipid-dependent protein kinase (protein kinase C, PK-C) and (III) calmodulin (CaM) on pig oocyte maturation in vitro, protein synthesis and phosphorylation. The inhibition of PK-A using a specific inhibitor H8, decreased the maturation rate (rate of germinal vesicle breakdown, GVBD) of cumulus-enclosed pig oocytes in a dose-dependent manner by approximately 12%, reaching a plateau at 100 microM. The inhibition of PK-C with H7, an inhibitor with some side-effects on PK-A, decreased the maturation rate of cumulus-enclosed oocytes in a dose-dependent manner to a maximum of 20% at a concentration of 100 microM. The calmodulin antagonist W7 up to a concentration of 200 microM had no effects on maturation of cumulus-enclosed pig oocytes. None of the inhibitors (H7, H8 and W7) altered the patterns of protein synthesis of either pig oocytes and cumulus cells after maturation in vitro. Oocyte phosphoprotein patterns were, however, clearly changed by W7. Cumulus cell protein phosphorylation patterns were changed by all 3 agents. Since inhibition of cyclic AMP and Ca2+ phospholipid pathways by PK-A and PK-C blocking chemicals affected only a limited proportion of oocytes (12 and 20%, respectively) and inhibition of Ca2+ binding to CaM was without effect on oocyte maturation, we conclude that these pathways modulate rather than regulate oocyte maturation in the pig.  相似文献   

7.
The respiratory molybdoenzyme nitrate reductase (NarGHI) from Escherichia coli has been studied by protein film voltammetry, with the enzyme adsorbed on a rotating disk pyrolytic graphite edge (PGE) electrode. Catalytic voltammograms for nitrate reduction show a complex wave consisting of two components that vary with pH, nitrate concentration, and the presence of inhibitors. At micromolar levels of nitrate, the activity reaches a maximum value at approximately -25 mV and then decreases as the potential becomes more negative. As the nitrate concentration is raised, the activity at more negative potentials increases and eventually becomes the dominant feature at millimolar concentrations. This leads to the hypothesis that nitrate binds more tightly to Mo(V) than Mo(IV), so that low levels of nitrate are more effectively reduced at a higher potential despite the lower driving force. However, an alternative interpretation, that nitrate binding is affected by a change in the redox state of the pterin, cannot be ruled out. This proposal, implicating a specific redox transition at the active site, is supported by experiments carried out using the inhibitors azide and thiocyanate. Azide is the stronger inhibitor of the two, and each inhibitor shows two inhibition constants, one at high potential and one at low potential, both of which are fully competitive with nitrate; closer analysis reveals that the inhibitors act preferentially upon the catalytic activity at high potential. The unusual potential dependence therefore derives from the weaker binding of nitrate or the inhibitors to a more reduced state of the active site. The possible manifestation of these characteristics in vivo has interesting implications for the bioenergetics of E. coli.  相似文献   

8.
Stabilization versus inhibition of TAFIa by competitive inhibitors in vitro   总被引:1,自引:0,他引:1  
Two competitive inhibitors of TAFIa (activated thrombin-activable fibrinolysis inhibitor), 2-guanidinoethylmercaptosuccinic acid and potato tuber carboxypeptidase inhibitor, variably affect fibrinolysis of clotted human plasma. Depending on their concentration, the inhibitors shortened, prolonged, or had no effect on lysis in vitro. The inhibitor-induced effects were both tissue-type plasminogen activator (tPA) and TAFIa concentration-dependent. Inhibitor-dependent prolongation was favored at lower tPA concentrations. The magnitude of the prolongation increased with TAFIa concentration, and the maximal prolongation observed at each TAFIa concentration increased saturably with respect to TAFIa. A theoretical maximal prolongation of 20-fold was derived from a plot of the maximum prolongation versus TAFIa. This represents, for the first time, a measurement of the maximal antifibrinolytic potential of TAFIa in vitro. Because TAFIa spontaneously decays, the stabilization of TAFIa was investigated as a mechanism explaining the inhibitor-dependent prolongation of lysis. Both inhibitors stabilized TAFIa in a concentration-dependent, non-saturable manner. Although their KI values differed by three orders of magnitude, TAFIa was identically stabilized when the fraction of inhibitor-bound TAFIa was the same. The data fit a model whereby only free TAFIa decays. Therefore, the variable effects of competitive inhibitors of TAFIa on fibrinolysis can be rationalized in terms of free TAFIa and lysis time relative to the half-life of TAFIa.  相似文献   

9.
We have previously reported that aseptically cultured mesophyll protoplasts of Vigna divide rapidly and regenerate into complete plants, while mesophyll protoplasts of Avena divide only sporadically and senesce rapidly after isolation. We measured polyamine titers in such cultures of Vigna and Avena, to study possible correlations between polyamines and cellular behavior. We also deliberately altered polyamine titer by the use of selective inhibitors of polyamine biosynthesis, noting the effects on internal polyamine titer, cell division activity and regenerative events.In Vigna cultures, levels of free and bound putrescine and spermidine increased dramatically as cell division and differentiation progressed. The increase in bound polyamines was largest in embryoid-forming callus tissue while free polyamine titer was highest in root-forming callus. In Avena cultures, the levels of total polyamines decreased as the protoplast senesced. The presence of the inhibitors -difluoromethyl-arginine (specific inhibitor of arginine decarboxylase) and dicyclohexylamine (inhibitor of spermidine synthase) reduced cell division and organogenesis in Vigna cultures. Addition of low concentration of polyamines to such cultures containing inhibitors or removal of inhibitors from the culture medium restored the progress of growth and differentiation with concomitant increase in polyamine levels.  相似文献   

10.
erythro-9-[3-(2-Hydroxynonyl)]adenine, an inhibitor of protein carboxylmethylation and dynein-ATPase activity, inhibited fast axonal transport in vitro in frog sciatic nerves. Its site of action might be associated with an ATPase on which transport depends, since specific carboxylmethylation inhibitors lacked effects on transport. The levels of high energy phosphates and protein synthesis were unaffected by the drug at a transport-inhibiting concentration, making disturbances due to metabolic effects less likely. An erythro-9-[3-(2-hydroxynonyl)]adenine-sensitive ATPase was looked for in various nerve fractions but has so far not been resolved.  相似文献   

11.
The predominant inhibitors of granulocyte elastase in plasma (alpha 1-proteinase inhibitor and alpha 2-macroglobulin) together with antileukoproteinase were quantified in parotid secretion and mixed saliva. Antileukoproteinase was the only inhibitor found in parotid saliva and was present in a concentration about 30 times the serum level, suggesting a local production. In mixed saliva, antileukoproteinase accounted for more than 70% of the molar concentration of the granulocyte elastase inhibitors studied. alpha 1-Proteinase inhibitor was measurable in about 1/3 of the specimens of mixed saliva. In parotid secretion, antileukoproteinase was present only as a free, active inhibitor. In mixed saliva about 15% of antileukoproteinase was in complex with granulocyte elastase, while the remaining amount of 85% was inhibitorily active. This suggests that antileukoproteinase has a biological function in a local defence mechanism directed towards the effects of granulocyte elastase in the oral cavity and salivary glands.  相似文献   

12.
13.
The effects of various agents on the newly identified cyclic CMP phosphodiesterase (C-PDE) in crude extracts of a number of rat tissues and on the enzyme partially purified from the rat liver were examined. Papaverine and 1-methyl-3-isobutylxanthine were without effects on C-PDE at concentrations that inhibited up to 90% of cyclic AMP phosphodiesterase (A-PDE) and cyclic GMP phosphodiesterase (G-PDE) activities. When assayed using 1 micron substrates, theophylline inhibited C-PDE to a lesser extent than A-PDE and G-PDE. 2'-Deoxy cyclic AMP (specific A-PDE inhibitor) and 2'-deoxy cyclic GMP (specific G-PDE inhibitor) were relatively poor and non-specific inhibitors for C-PDE. Imidazole, while augmenting the high Km A-PDE and G-PDE from the liver but not from the heart, was without effect on the liver C-PDE but stimulated the heart C-PDE. Potassium phosphate was more specific in inhibiting C-PDE than A-PDE and G-PDE. The present findings suggest that C-PDE represents a potential site of specific pharmacological regulations, and that C-PDE may be a separate enzyme distinguishable from the purine cyclic nucleotide class of phosphodiesterases.  相似文献   

14.
Eight inhibitors of acetylcholinesterase (AChE), tacrine, bis-tacrine, donepezil, rivastigmine, galantamine, heptyl-physostigmine, TAK-147 and metrifonate, were compared with regard to their effects on AChE and butyrylcholinesterase (BuChE) in normal human brain cortex. Additionally, the IC50 values of different molecular forms of AChE (monomeric, G1, and tetrameric, G4) were determined in the cerebral cortex in both normal and Alzheimer's human brains. The most selective AChE inhibitors, in decreasing sequence, were in order: TAK-147, donepezil and galantamine. For BuChE, the most specific was rivastigmine. However, none of these inhibitors was absolutely specific for AChE or BuChE. Among these inhibitors, tacrine, bis-tacrine, TAK-147, metrifonate and galantamine inhibited both the G1 and G4 AChE forms equally well. Interestingly, the AChE molecular forms in Alzheimer samples were more sensitive to some of the inhibitors as compared with the normal samples. Only one inhibitor, rivastigmine, displayed preferential inhibition for the G1 form of AChE. We conclude that a molecular form-specific inhibitor may have therapeutic applications in inhibiting the G1 form, which is relatively unchanged in Alzheimer's brain.  相似文献   

15.
In assays containing a physiological concentration of inositol 1,3,4,5-tetrakisphosphate (1 microM), this isomer was attacked by both 3- and 5-phosphatases present in rat parotid homogenates and 100,000 X g supernatant and particulate fractions. As the concentration of cytosolic protein in the assay was decreased, the specific activity of the soluble 3-phosphatase increased significantly. In contrast, the specific activity of particulate 3-phosphatase was independent of protein concentration. At the lowest protein concentrations tested, the sum of soluble and particulate 3-phosphatase specific activities was 2.5-fold greater than that of the parent homogenate. These observations indicate that parotid cytosol contains a hitherto undescribed endogenous mechanism for inhibiting 3-phosphatase. The effects upon 3- and 5-phosphatase of a number of inositol polyphosphates were studied. Both activities were inhibited by inositol 1,4,5-trisphosphate and inositol 1,3,4-trisphosphate (IC50 approximately 50 microM). Inositol 3,4,5,6-tetrakisphosphate was a more potent inhibitor of 3-phosphatase (IC50 about 10 microM) and did not affect 5-phosphatase. Inositol 1,3,4,5,6-pentakisphosphate and inositol hexakisphosphate were very potent inhibitors of 3-phosphatase (IC50 values of 1 and 0.5 microM, respectively); these polyphosphates did not affect 5-phosphatase activity at concentrations of up to 10 microM. Inositol 1,3,4,5,6-pentakisphosphate was a competitive inhibitor of the 3-phosphatase, whereas inositol hexakisphosphate was a mixed inhibitor. These data lead to the proposal that the inositol 1,3,4,5-tetrakisphosphate 3-phosphatase is unlikely to be an important enzyme activity in vivo.  相似文献   

16.
Summary Sodium tetrathionate reacts with the glucose carrier of human erythrocytes at a rate which is greatly altered in the presence of competitive inhibitors of glucose transport. Inhibitors bound to the carrier on the outer surface of the membrane, either at the substrate site (maltose) or at the external inhibition site (phloretin and phlorizin), more than double the reaction rate. Inhibitors bound at the internal inhibition site (cytochalasin B and androstenedione), protect the system against tetrathionate. After treatment with tetrathionate, the maximum transport rate falls to less than one-third, and the properties of the binding sites are modified in unexpected ways. The affinity of externally bound inhibitors rises: phloretin is bound up to seven times more strongly and phlorizin and maltose twice as strongly. The affinity of cytochalasin B, bound at the internal inhibition site, falls to half while that of androstenedione is little changed. The affinity of external glucose falls slightly. Androstenedione prevents both the fall in transport activity and the increase in phloretin affinity produced by tetrathionate. An inhibitor of anion transport has no effect on the reaction. The observations support the following conclusions: (1) Tetrathionate produces its effects on the glucose transport system by reacting with the carrier on the outer surface of the membrane. (2) The carrier assumes distinct inward-facing and outward-facing conformations, and tetrathionate reacts with only the outward-facing form. (3) The thiol group with which tetrathionate is presumed to react is not present in either the substrate site or the internal or external inhibitor site. (4) In binding asymmetrically to the carrier, a reversible inhibitor shifts the carrier partition between inner and outer forms and thereby raises or lowers the rate of tetrathionate reaction with the system. (5) Reaction with tetrathionate converts the carrier to an altered state in which the conformation at all three binding sites is changed and the rate of carrier reorientation is reduced.  相似文献   

17.
A screening assay program on HIV-protease was carried out on more than fifty commercially available N-protected amino acids and has revealed that those with a long side chain such as lysine, ornithine and arginine exhibited significant inhibition of HIV protease enzyme. The presence of an Fmoc group was found to be essential to obtain micromolar inhibitors and the addition of an alkyl group at the Nalpha-position resulted in the discovery of the lead compound 11 displaying a 5 nM inhibition constant. Although this new inhibitor series is not categorized among those mimicking the substrate with a non-hydrolyzable transition-state isoster, it was found very specific to inhibit HIV protease enzyme in comparison to the mammalian aspartyl proteases pepsin, renin and cathepsin. Furthermore, these inhibitors did not show any cytotoxicity at a concentration below 75 microM.  相似文献   

18.
D K Lee  C E Bird  A F Clark 《Steroids》1973,22(5):677-685
The inhibitory effects of a variety of estrogens on rat prostate testosterone Δ4–5α-reductase activity were measured by a specific in vitro assay. The conversion of 3H-testosterone (initial concentration 2.8 × 10?9 M) to labelled 5α-dihydrotestosterone and 5α-androstane-3α, 17β-diol was used as a measure of Δ4?5a-reductase activity. At a concentration of 1.8 × 10?6 M, estradiol was the most potent inhibitor (83.4%) of the estrogens tested. Various ester derivatives, e.g. 3-acetate, 3-phosphate, were effective inhibitors. The 17-glucuronide and 3-sulfate conjugates were less effective inhibitors. The estriol isomers exerted similar degrees of inhibition (40–60%). The 3-methoxy derivatives of estradiol and estriol were poor inhibitors. The introduction of certain groups into the steroid structure, e.g. 15α-hydroxy and 6-ketone, greatly decreased the inhibitory effect of estradiol. The nature of the oxygen function at carbon 17 did not greatly influence the inhibitory effects.  相似文献   

19.
The kinetic constants for the interactions between HIV-1 protease and a selection of inhibitors were determined at different pH-values using a biosensor based interaction assay. Since this technique does not involve a substrate, it was possible to determine the pH-dependencies of the association and dissociation rates of an inhibitor, without the complication of a pH-dependent enzyme-substrate/product equilibrium. The importance of these interactions was evaluated by correlating the free energy changes upon association and dissociation of inhibitors with the predicted change in electrostatic properties of the interacting groups as a result of altered pH. It was found that the kinetic parameters varied with pH in a unique manner for all inhibitors, demonstrating that the kinetic features were associated with the specific structure of each inhibitor. Association and dissociation had different pH-profiles, indicating that the two processes proceeded by different pathways/mechanisms. The energy barrier for dissociation of the enzyme-indinavir complex increased with pH from 4.1 to 7.4, while it was generally reduced for the other inhibitors as the pH was increased from 5.1 to 7.4. The pH-dependent interactions involved in the recognition/binding of inhibitors and in the stabilization of the complex were identified by analysing three-dimensional structures of enzyme-inhibitor complexes. The interaction between the pyridine nitrogen of indinavir with Arg-8 was hypothesized to be responsible for the unique pH-dependency of indinavir. The analysis revealed features of interactions that are significant for understanding enzyme function and for optimization of new drug leads. It also highlighted the importance of environmental conditions on interactions.  相似文献   

20.
Extracellular matrix (ECM) glycoproteins such as laminin, fibronectin, or collagen IV play a major role in cell behavior regulation. The molecular mechanisms taking place at the interface between the ECM and the cell surface are now rather well defined; however, very little is known about intracellular signals induced by these interactions. In order to get insights into the transduction pathways involved in cell-ECM interactions we have investigated the effects of several intracellular kinase inhibitors. Calmodulin-dependent kinase inhibitors, W-7 and sphingosine, have negative effects on cell-matrix interactions. They inhibit adhesion of several cell lines to laminin (IC50 = 4-10 microM), fibronectin and collagen IV (IC50 = 7-25 microM). The effects are immediate, reversible, and also cell specific, certain combinations of cell line-substrate being irresponsive to these inhibitors. In contrast, two inhibitors, H-7 and staurosporine, for which protein kinase C is a common target, increase two- to fourfold the attachment of HT1080, OVCAR-4, and B16F10 cells to laminin but not to fibronectin. Another inhibitor, HA-1004, known to inhibit protein kinase A at low concentrations, has an activating effect only at high concentration (> 200 microM) when it becomes an inhibitor of protein kinase C. These inhibitors are without effect on RuGli and Saos-2 cell adhesion on the three substrates. Altogether these results suggest that calmodulin-dependent kinases and protein kinase C could be separately involved in ECM-induced cellular responses. However, the effects of kinase inhibitors are substrate-specific and cell type-specific, suggesting that the intracellular signals induced by the extracellular matrix vary with the nature of integrin involved in signal transmission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号