首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
利用中国第四纪孢粉数据库提供的 116个 6kaBP (± 5 0 0年 )和 39个 18kaBP (± 2ka)的花粉数据 ,根据生物群区化方法 (biomization)重建了中国中全新世 (6kaBP)和未次盛冰期 (18kaBP)两个关键时段的生物群区。结果表明 ,中全新世东部森林系统地向北推进 ,温带落叶阔叶林向北推进约 4个纬度。大部分森林明显向草原区推进 ,青藏高原的冻原大面积退缩 ,在西南地区局部和热带地区气候较今略为冷湿 ,热带季雨林转变为热带雨林。末次盛冰期 ,草原大面积向南扩张 ,抵达现代的常绿阔叶林区的北缘 ,热带森林消失 ,常绿阔叶林退缩到现代热带区域边缘。  相似文献   

2.
区域尺度的中国植物功能型与生物群区   总被引:13,自引:0,他引:13  
利用“生态-外貌”原则,中国的现状植被类型及其分布,确定中国的39种优势植物功能型:高山常绿针叶、北方常绿针叶、北方夏绿针叶、冷温带常绿针叶、温带常绿针叶、暖温带常绿阔叶、暖温带硬叶阔叶、暖温带夏绿阔叶、热带常绿阔叶、热带 雨绿阔叶、热带落叶阔叶、暖温带竹、高山/亚高山灌木、温带草原灌木、温带荒漠灌木、冷温带灌木、温带灌木、暖温带灌木、热带灌木、干旱灌木、高山草、荒漠草、温带草原草、温带草、沼泽草、红树、北方农作物、冷温带农作物、温带农作物、暖温带农作物、热带农作物和裸地。再依据优势植物功能型归并中国的21类潜在生物群区:北方(寒温带)落叶林、北方(寒温带)常绿林、冷温带针阔叶混交林、温带落叶阔叶林、暖温带(亚热带)落叶常绿阔叶混交林、暖温带(亚热带)常绿阔叶林、暖温带(亚)常绿阔叶季风林、热带雨林、热带季雨林、热带落叶林、红树林、干旱疏林/稀树草原、;温带草甸/稀树草原、温带草原、温带半草原、温带荒漠、温带半荒漠、高山/高山针叶林、高山/亚高山灌丛/草甸、高山/亚高山草原和高山/亚高山荒漠。如果考虑现状农业植被类型:一年一熟农作物、二年三熟农作物、一年二熟农作物和一年三熟农作物,可归并为25类现状生物群区。这是全球生态学和古生态学研究中区域尺度旧我国植物功能型和生物群区分类的一次尝试。  相似文献   

3.
就南海北部海域17940孔的孢粉资料,利用孢粉生物群区化方法和因子分析方法,对南海北部周边地区4万年以来的植被演替序列进行研究。结果表明:对于深海沉积物,在排除远距离搬运的花粉尤其是松属(Pinus L.)花粉的噪音后,可以利用孢粉生物群区化方法恢复周边大陆古植被演替序列。因子分析表明,湿度和温度的变化是影响南海北部周边大陆植被演化的主要因子。在40500-11100aBP南海北部沿海大陆地区的古植被,主要为常绿阔叶林(WAMF),山地针叶林(MRGF)分布于低山、丘陵、而广泛出露的大陆架上则发育了以蒿属(Artemisia L.)为主的草原(STEP)景观:末次冰期时环境变化的突出特征山地针叶林(MRGF)、常绿阔叶林(WAMF)与草原(STEP)之间的频繁交替,反映了气候冷湿和温干的千年级尺度的迅速变化,可以与Heinrich事件以及Dansggard-Oscherge事件进行对比。其中在7.0m处(12700aBP)所恢复的山地针叶林(MRGF)景观反映了一次气候变冷变湿的事件,可能与新仙女木事件相对应。全新世早期和末期较多出现热带雨林(TRFO0以及热带季雨林(TSFO)景观,而全新世中期以常绿阔叶林(WAMF)为主,缺乏热带雨林(TRFO)以及热带季雨林(TSFO)景观,可能表明在全新世中期尽管温度升高,但湿度有可能降低。  相似文献   

4.
黄土高原西部4万多年以来植被与环境变化的孢粉记录   总被引:1,自引:0,他引:1  
采集甘肃静宁、定西、秦安等地晚更新世晚期以来几个黄土剖面的孢粉样品,分别以晚更新世每个样品分辨率200—300年,全新世20—200年,揭示了黄土高原西部4万多年以来古植被曾经历过草原、森林草原(或疏林草原)、针叶林以及荒漠草原或荒漠几种植被的多次快速变化。在44.2—11kaBP期间,静宁地区植被主要表现为森林和草原成分的相互消长,其中44—29kaBP期间(MIS3)气候以湿润为主,发育针叶林,温度低于现在;23kaBP之后,气候冷干,以稀疏草原为主,在末次盛冰期植被甚至演化为荒漠草原。全新世大部分时间内是以草原或森林草原(或疏林草原)植被为主。在全新世中期,约7.6—5.8kaBP有近1700年时间发育有森林植被,在这个时期当地自然植被覆盖度较高,而草原或疏林草原发育时期植被往往较稀疏,反映气候相对干冷。根据出现的不同类型植物的孢粉浓度及其生态环境特性,研究区早、中全新世,约8.8—5.8kaBP沉积环境较湿润;自3.8kaBP以后气候环境总的变化趋势是逐渐变干,植被开始向草原荒漠化演变。然而,研究区整个全新世气候环境存在多次干湿交替现象,据孢粉记录,其中可能存在11次气候干寒事件。  相似文献   

5.
青海湖QH85—14C钻孔孢粉分析及其古气候古环境的初步探讨   总被引:26,自引:0,他引:26  
本文主要依据青海湖具有~(14)C 年龄数据的 QH 85-14C 钻孔系统孢粉分析资料,将井深4.5m 岩芯所做的孢粉图式从下至上分为五个区域性孢粉带,进而论述了青海湖区11,000年来的植被曾经历了疏林草原(11,000—10,000年 BP)、森林草原(10,000年 BP)、森林(8,000—3,500年 BP)、森林草原(3,500—1,500竿 BP)和疏林草原(1500年前至今),反映的气候序列为凉干→温湿→温干阶段。  相似文献   

6.
藤则雄 《古生物学报》2003,42(1):138-147
根据日本中部琵琶湖深井钻探资料研究了过去3Ma的古植被、地层及古气候。由湖底取得的200m和1400m样品的孢粉组合可分别划分出19个和37个带,反映了湖区及其周围自晚上新世以来的古植被和古气候演变史。在冰期阶时琵琶湖附近山区的典型植被为亚北极带,低地为冷温带。而在间冰期阶里山区一般为温带或冷温带植被,低地则主要由落叶和常绿树组成的温带和暖温带的植被。在进行过去3Ma古植被、古气候演变对比中,当地古气候史和以下资料显示出明显的一致,例如加勒比海、西太平洋及赤道海洋的氧同位素资料,地中海西部(Mallorca)的沉积旋回,欧洲中部的风成沉积序列,日本关东和新几内亚的海平面变化记录,以及在南美波哥大高地和以色列死海裂谷根据孢粉得出的古气候变化记录。  相似文献   

7.
青藏高原30个点湖泊的孢粉记录综合研究显示: 在进入全新世之前(12 ka BP以前),除最东南部外,高原从东到西均发育为荒漠草原植被.全新世早期(12.0-9.0 ka BP)高原东南部(104°-98° E)为落叶阔叶林/针阔叶混交林; 中部(98°-92° E)为草甸或灌丛草甸,再向西至80° E左右为草原植被; 全新世中期(9.0-3.2 ka BP)高原由东向西古植被依次发育为针阔混交林和硬叶阔叶林(104°-98° E)→针阔混交林(98°-94° E)→灌丛草甸(94°-92° E)→草原(92°-80° E);全新世晚期(3.2 ka BP以后)由东向西古植被依次为硬叶阔叶林→针阔混交林→草甸→草原→荒漠.  相似文献   

8.
最近12000年来青藏高原植被的时空分布   总被引:6,自引:0,他引:6  
青藏高原 30个点湖泊的孢粉记录综合研究显示 :在进入全新世之前 (12kaBP以前 ) ,除最东南部外 ,高原从东到西均发育为荒漠草原植被。全新世早期 (12 .0 - 9.0kaBP)高原东南部 (10 4° - 98°E)为落叶阔叶林 /针阔叶混交林 ;中部 (98° - 92°E)为草甸或灌丛草甸 ,再向西至 80°E左右为草原植被 ;全新世中期 (9.0 - 3 .2kaBP)高原由东向西古植被依次发育为针阔混交林和硬叶阔叶林 (10 4° - 98°E)→针阔混交林 (98° - 94°E)→灌丛草甸 (94° -92°E)→草原 (92°- 80°E) ;全新世晚期 (3.2kaBP以后 )由东向西古植被依次为硬叶阔叶林→针阔混交林→草甸→草原→荒漠。  相似文献   

9.
孢粉-植被-气候关系研究进展   总被引:20,自引:0,他引:20       下载免费PDF全文
随着全球变化研究的不断深入 ,第四纪孢粉学研究已取得了长足的进步 ,特别是近些年来 ,孢粉 植被 气候关系研究已成为世界孢粉学界的热点之一。空气孢粉学的研究在大气环境污染监测、花粉过敏症、农业收成预报和第四纪植被与环境重建等方面得到了广泛应用 ,并不断发展 ;近年来 ,为开展全球范围的古环境研究 ,各大洲相继建立了孢粉数据库 ,大量开展表土孢粉研究。中国第四纪孢粉数据库的建立 ,汇集了我国近半个世纪积累的孢粉资料 ,并利用中国第四纪孢粉数据 ,系统开展了中国现代表土孢粉、6kaBP(中全新世 )及 1 8kaBP(末次盛冰期 )的生物群区模拟及重建 ,建立了花粉 气候转换函数和响应面模型 ,并取得了良好的结果 ;冲积物孢粉学和环境考古孢粉学研究 ,也取得了一定成果 ,但研究还有待于深入 ;特征指示种花粉雨研究 ,对古生态环境重建也具有重要的意义。  相似文献   

10.
长白山区分布的泥炭地与玛珥湖是孢粉的良好载体,适宜开展晚更新世以来孢粉分析重建古植被与古气候研究以对该区未来气候变化进行准确预测。几十年来,该研究经历了从定性描述—半定量重建—定量重建的三个阶段。随着对研究剖面样本采集密度的增加,研究者们也得以观察到更多气候变化事件,尝试提出了气候周期性变化规律,并初步探索了气候变化驱动机制;同时,为了提高定量重建古植被、古气候的准确性,对长白山区也开展了现代孢粉植被关系研究,并取得了一定成果。相信随着对现代孢粉植被关系认识的加深,古植被、古气候重建精度的提高,研究者能够更准确地预测未来气候变化。  相似文献   

11.
BIOME 6000 is an international project to map vegetation globally at mid‐Holocene (6000 14C yr bp ) and last glacial maximum (LGM, 18,000 14C yr bp ), with a view to evaluating coupled climate‐biosphere model results. Primary palaeoecological data are assigned to biomes using an explicit algorithm based on plant functional types. This paper introduces the second Special Feature on BIOME 6000. Site‐based global biome maps are shown with data from North America, Eurasia (except South and Southeast Asia) and Africa at both time periods. A map based on surface samples shows the method’s skill in reconstructing present‐day biomes. Cold and dry conditions at LGM favoured extensive tundra and steppe. These biomes intergraded in northern Eurasia. Northern hemisphere forest biomes were displaced southward. Boreal evergreen forests (taiga) and temperate deciduous forests were fragmented, while European and East Asian steppes were greatly extended. Tropical moist forests (i.e. tropical rain forest and tropical seasonal forest) in Africa were reduced. In south‐western North America, desert and steppe were replaced by open conifer woodland, opposite to the general arid trend but consistent with modelled southward displacement of the jet stream. The Arctic forest limit was shifted slighly north at 6000 14C yr bp in some sectors, but not in all. Northern temperate forest zones were generally shifted greater distances north. Warmer winters as well as summers in several regions are required to explain these shifts. Temperate deciduous forests in Europe were greatly extended, into the Mediterranean region as well as to the north. Steppe encroached on forest biomes in interior North America, but not in central Asia. Enhanced monsoons extended forest biomes in China inland and Sahelian vegetation into the Sahara while the African tropical rain forest was also reduced, consistent with a modelled northward shift of the ITCZ and a more seasonal climate in the equatorial zone. Palaeobiome maps show the outcome of separate, independent migrations of plant taxa in response to climate change. The average composition of biomes at LGM was often markedly different from today. Refugia for the temperate deciduous and tropical rain forest biomes may have existed offshore at LGM, but their characteristic taxa also persisted as components of other biomes. Examples include temperate deciduous trees that survived in cool mixed forest in eastern Europe, and tropical evergreen trees that survived in tropical seasonal forest in Africa. The sequence of biome shifts during a glacial‐interglacial cycle may help account for some disjunct distributions of plant taxa. For example, the now‐arid Saharan mountains may have linked Mediterranean and African tropical montane floras during enhanced monsoon regimes. Major changes in physical land‐surface conditions, shown by the palaeobiome data, have implications for the global climate. The data can be used directly to evaluate the output of coupled atmosphere‐biosphere models. The data could also be objectively generalized to yield realistic gridded land‐surface maps, for use in sensitivity experiments with atmospheric models. Recent analyses of vegetation‐climate feedbacks have focused on the hypothesized positive feedback effects of climate‐induced vegetation changes in the Sahara/Sahel region and the Arctic during the mid‐Holocene. However, a far wider spectrum of interactions potentially exists and could be investigated, using these data, both for 6000 14C yr bp and for the LGM.  相似文献   

12.
Pollen data from China for 6000 and 18,000 14C yr bp were compiled and used to reconstruct palaeovegetation patterns, using complete taxon lists where possible and a biomization procedure that entailed the assignment of 645 pollen taxa to plant functional types. A set of 658 modern pollen samples spanning all biomes and regions provided a comprehensive test for this procedure and showed convincing agreement between reconstructed biomes and present natural vegetation types, both geographically and in terms of the elevation gradients in mountain regions of north‐eastern and south‐western China. The 6000 14C yr bp map confirms earlier studies in showing that the forest biomes in eastern China were systematically shifted northwards and extended westwards during the mid‐Holocene. Tropical rain forest occurred on mainland China at sites characterized today by either tropical seasonal or broadleaved evergreen/warm mixed forest. Broadleaved evergreen/warm mixed forest occurred further north than today, and at higher elevation sites within the modern latitudinal range of this biome. The northern limit of temperate deciduous forest was shifted c. 800 km north relative to today. The 18,000 14C yr bp map shows that steppe and even desert vegetation extended to the modern coast of eastern China at the last glacial maximum, replacing today’s temperate deciduous forest. Tropical forests were excluded from China and broadleaved evergreen/warm mixed forest had retreated to tropical latitudes, while taiga extended southwards to c. 43°N.  相似文献   

13.
Ecogeographical regionalization is the basis for spatial differentiation of biodiversity research. In view of the principle of international ecogeographical regionalization, this study has applied multivariate analysis and GIS method and based on some ecogeographical attributes limited to the distribution of plant and vegetation, including climatic factors, such as minimum temperature, mean temperature of the coldest month, mean temperature of the wannest month, annual average temperature, precipitation of the coldest month, precipitation of the wannest month, annual precipitation, CV of annual precipitation, biological factors such as vegetation types, vegetation division types, NPP, fiorisitic types, fauna types, abundance of plant species, genus and endemic genus; soil factors such as soil types, soil pH;topographical factors as longitude, latitude and altitude etc. The ecogeographical regionalization for biodiversity in China was made synthetically by using fuzzy cluster method. Four classes of division were used, viz., biodomain, subbiodomain, biome and bioregion. Five biodomains, seven subbiodomains and eighteen biomes were divided in China as follows: Ⅰ Boreal forest biodomain. Ⅰ A Eurasian boreal forest subbiodomain. Ⅰ A1 Southern Taiga mountain cold-temperate coniferous forest biome; Ⅰ A2 North Asian mixed coniferous-broad-leaved forest biome. Ⅱ Northern steppe and desert biodomain. Ⅱ B Eurasian steppe subbiodomain. Ⅱ BI Inner Asian temperate grass steppe biome; Ⅱ B2 Loess Plateau warm-temperate forest/shmb steppe biome. Ⅱ C Asia-Mrica desert subbiodomain. Ⅱ C1 Mid-Asian temperate desert biome; Ⅱ C2 Mongolian/Inner Asian temperate desert biome. Ⅲ East Asian biodomain. Ⅲ D East Asian deciduous broad-leaved forest subbiodomain. Ⅲ D1 East Asian deciduous broad-leaved forest biome, Ⅲ E East Asian evergreen broad-leaved forest subbiodomain. Ⅲ El East Asian mixed deciduous-evergreen broad-leaved forest biome; Ⅲ E2 East Asian evergreen broad-leaved forest biome; Ⅲ E3 East Asian monsoon evergreen broad-leaved forest biome; Ⅲ FA Western East Asian mountain evergreen broadleaved forest biome. Ⅳ Palaeotropical subdomain. IV F India-Malaysian tropical forest subbiodomain.Ⅳ Fl Northern tropical rain forest/seasonal rain forest biome; Ⅳ F2 Tropical island coral reef vegetation biome. Ⅴ Asian plateau biodomain. Ⅴ G Tibet Plateau subbiodomain. Ⅴ G1 Tibet alpine highcold shrub meadow biome;Ⅴ G2 Tibet alpine high-cold steppe biome; Ⅴ G3 Tibet alpine high-cold desert biome; Ⅴ G4 Tibet alpine temperate steppe biome; Ⅴ G5 Tibet alpine temperate desert biome.  相似文献   

14.
Pollen data from 18,000 14C yr bp were compiled in order to reconstruct biome distributions at the last glacial maximum in southern Europe and Africa. Biome reconstructions were made using the objective biomization method applied to pollen counts using a complete list of dryland taxa wherever possible. Consistent and major differences from present‐day biomes are shown. Forest and xerophytic woods/scrub were replaced by steppe, both in the Mediterranean region and in southern Africa, except in south‐western Cape Province where fynbos (xerophytic scrub) persisted. Sites in the tropical highlands, characterized today by evergreen forest, were dominated by steppe and/or xerophytic vegetation (cf. today’s Ericaceous belt and Afroalpine grassland) at the last glacial maximum. Available data from the tropical lowlands are sparse but suggest that the modern tropical rain forest was largely replaced by tropical seasonal forest while the modern seasonal or dry forests were encroached on by savanna or steppe. Montane forest elements descended to lower elevations than today.  相似文献   

15.
Jian Ni 《Folia Geobotanica》2001,36(2):113-129
A biome classification for China was established based on plant functional types (PFTs) using the BIOME3 model to include 16 biomes. In the eastern part of China, the PFTs of trees determine mostly the physiognomy of landscape. Biomes range from boreal deciduous coniferous forest/woodland, boreal mixed forest/woodland, temperate mixed forest, temperate broad-leaved deciduous forest, warm-temperate broad-leaved evergreen/mixed forest, warm-temperate/cool-temperate evergreen coniferous forest, xeric woodland/scrub, to tropical seasonal and rain forest, and tropical deciduous forest from north to south. In the northern and western part of China, grass is the dominant PFT. From northeast to west and southwest the biomes range from moist savannas, tall grassland, short grassland, dry savannas, arid shrubland/steppe, desert, to alpine tundra/ice/polar desert. Comparisons between the classification introduced here and the four classifications which were established over the past two decades, i.e. the vegetation classification, the vegetation division, the physical ecoregion, and the initial biome classification have showed that the different aims of biome classifications have resulted in different biome schemes each with its own unique characteristics and disadvantages for global change study. The new biome classification relies not only on climatic variables, but also on soil factor, vegetation functional variables, ecophysiological parameters and competition among the PFTs. It is a comprehensive classification that using multivariables better expresses the vegetation distribution and can be compared with world biome classifications. It can be easily used in the response study of Chinese biomes to global change, regionally and globally.  相似文献   

16.

Aim

The two main hypotheses about the Neotropical palaeovegetation, namely that of Amazonian refugia by Haffer and of the Pleistocene arc by Prado and Gibbs, are still constantly debated. We offer new insights on this debate using ecological niche modelling with combined climate–soil predictors to test both hypotheses, reconstruct the palaeovegetation of the Last Glacial Maximum (LGM; 21 ka) and Mid‐Holocene (Mid‐H; 6 ka) and indicate the configuration of refugia areas.

Location

Brazil.

Time period

Last 21 ka.

Major taxa studied

Biomes.

Methods

We modelled the environmental space of the 10 most representative biomes with the RandomForest classifier, using climate predictors from three atmospheric general circulation models (CCSM4, MPI‐ESM‐P and MIROC‐ESM) and soil predictors, the same for the different situations. Based on the consensus among the models, we reconstructed the palaeovegetation cover for LGM and Mid‐H and used fossil pollen sites to validate the reconstructions in a direct comparison.

Results

The climate in the past was cooler and wetter throughout most of the territory. The Amazon basin region was the most affected by climate change in the last 21 ka, with equatorial rain forest retracting to refugia areas, while the tropical rain forest (with climatic preferences similar to the Atlantic forest) expanded in the basin. In southern Brazil, the mixed forest (Araucaria forest) shifted to lower latitudes, while the grasslands expanded. In most biomes, the greatest changes occurred in the ecotonal zones, supported by pollen fossils.

Main conclusions

With regard to Haffer's hypothesis, the forests of the Amazonian lowlands retreated to refugia areas, while the colder and wetter climate of the basin created a favourable niche for another type of forest, instead of savanna. The advance of dry vegetation was restricted to ecotonal conditions, preventing the formation of a continuous Pleistocene arc, predicted by Prado and Gibbs's hypothesis.  相似文献   

17.
Aim This paper documents reconstructions of the vegetation patterns in Australia, Southeast Asia and the Pacific (SEAPAC region) in the mid‐Holocene and at the last glacial maximum (LGM). Methods Vegetation patterns were reconstructed from pollen data using an objective biomization scheme based on plant functional types. The biomization scheme was first tested using 535 modern pollen samples from 377 sites, and then applied unchanged to fossil pollen samples dating to 6000 ± 500 or 18,000 ± 1000 14C yr bp . Results 1. Tests using surface pollen sample sites showed that the biomization scheme is capable of reproducing the modern broad‐scale patterns of vegetation distribution. The north–south gradient in temperature, reflected in transitions from cool evergreen needleleaf forest in the extreme south through temperate rain forest or wet sclerophyll forest (WSFW) and into tropical forests, is well reconstructed. The transitions from xerophytic through sclerophyll woodlands and open forests to closed‐canopy forests, which reflect the gradient in plant available moisture from the continental interior towards the coast, are reconstructed with less geographical precision but nevertheless the broad‐scale pattern emerges. 2. Differences between the modern and mid‐Holocene vegetation patterns in mainland Australia are comparatively small and reflect changes in moisture availability rather than temperature. In south‐eastern Australia some sites show a shift towards more moisture‐stressed vegetation in the mid‐Holocene with xerophytic woods/scrub and temperate sclerophyll woodland and shrubland at sites characterized today by WSFW or warm‐temperate rain forest (WTRF). However, sites in the Snowy Mountains, on the Southern Tablelands and east of the Great Dividing Range have more moisture‐demanding vegetation in the mid‐Holocene than today. South‐western Australia was slightly drier than today. The single site in north‐western Australia also shows conditions drier than today in the mid‐Holocene. Changes in the tropics are also comparatively small, but the presence of WTRF and tropical deciduous broadleaf forest and woodland in the mid‐Holocene, in sites occupied today by cool‐temperate rain forest, indicate warmer conditions. 3. Expansion of xerophytic vegetation in the south and tropical deciduous broadleaf forest and woodland in the north indicate drier conditions across mainland Australia at the LGM. None of these changes are informative about the degree of cooling. However the evidence from the tropics, showing lowering of the treeline and forest belts, indicates that conditions were between 1 and 9 °C (depending on elevation) colder. The encroachment of tropical deciduous broadleaf forest and woodland into lowland evergreen broadleaf forest implies greater aridity. Main conclusions This study provides the first continental‐scale reconstruction of mid‐Holocene and LGM vegetation patterns from Australia, Southeast Asia and the Pacific (SEAPAC region) using an objective biomization scheme. These data will provide a benchmark for evaluation of palaeoclimate simulations within the framework of the Palaeoclimate Modelling Intercomparison Project.  相似文献   

18.
Pollen and plant macrofossil data from northern Eurasia were used to reconstruct the vegetation of the last glacial maximum (LGM: 18,000 ± 2000 14C yr bp ) using an objective quantitative method for interpreting pollen data in terms of the biomes they represent ( Prentice et al., 1996 ). The results confirm previous qualitative vegetation reconstructions at the LGM but provide a more comprehensive analysis of the data. Tundra dominated a large area of northern Eurasia (north of 57°N) to the west, south and east of the Scandinavian ice sheet at the LGM. Steppe‐like vegetation was reconstructed in the latitudinal band from western Ukraine, where temperate deciduous forests grow today, to western Siberia, where taiga and cold deciduous forests grow today. The reconstruction shows that steppe graded into tundra in Siberia, which is not the case today. Taiga grew on the northern coast of the Sea of Azov, about 1500 km south of its present limit in European Russia. In contrast, taiga was reconstructed only slightly south of its southern limit today in south‐western Siberia. Broadleaved trees were confined to small refuges, e.g. on the eastern coast of the Black Sea, where cool mixed forest was reconstructed from the LGM data. Cool conifer forests in western Georgia were reconstructed as growing more than 1000 m lower than they grow today. The few scattered sites with LGM data from the Tien‐Shan Mountains and from northern Mongolia yielded biome reconstructions of steppe and taiga, which are the biomes growing there today.  相似文献   

19.
Aim The coastal temperate rain forests of north‐western North America are internationally renowned as the archetypal expression of the temperate rain forest biome. Less well documented is the existence of somewhat similar forests 500–700 km inland on the windward slopes of the Columbia and Rocky Mountains. Here we attempt to show that these inland ‘wetbelt’ forests warrant rain forest status. Location North‐western North America. Methods We use tree‐dwelling macrolichens to assess the degree of environmental congruence between the coastal temperate rain forests and their inland counterparts. Results We report three key findings: (1) 40% of oceanic, epiphytic macrolichens found in Pacific coastal rain forests occur also in inland regions; (2) epiphytic species richness decreases with decreasing latitude, such that roughly 70% of disjunct oceanic species are restricted to regions north of 51° N; and (3) the southward decline in lichen diversity is correlated with a parallel decrease in summer precipitation, but not with mean annual precipitation. Main conclusions These observations are consistent with the recognition of an inland rain forest formation between 50 and 54° N. Inland rain forests represent a small, biologically significant ecosystem whose continued fragmentation and conversion to tree plantations warrant close scrutiny.  相似文献   

20.
A new compilation of pollen and packrat midden data from western North America provides a refined reconstruction of the composition and distribution of biomes in western North America for today and for 6000 and 18,000 radiocarbon years before present (14C yr bp ). Modern biomes in western North America are adequately portrayed by pollen assemblages from lakes and bogs. Forest biomes in western North America share many taxa in their pollen spectra and it can be difficult to discriminate among these biomes. Plant macrofossils from packrat middens provide reliable identification of modern biomes from arid and semiarid regions, and this may also be true in similar environments in other parts of the world. However, a weighting factor for trees and shrubs must be used to reliably reconstruct modern biomes from plant macrofossils. A new biome, open conifer woodland, which includes eurythermic conifers and steppe plants, was defined to categorize much of the current and past vegetation of the semiarid interior of western North America. At 6000 14C yr bp , the forest biomes of the coastal Pacific North‐west and the desert biomes of the South‐west were in near‐modern positions. Biomes in the interior Pacific North‐west differed from those of today in that taiga prevailed in modern cool/cold mixed forests. Steppe was present in areas occupied today by open conifer woodland in the northern Great Basin, while in the central and southern Rocky Mountains forests grew where steppe grows today. During the mid‐Holocene, cool conifer forests were expanded in the Rocky Mountains (relative to today) but contracted in the Sierra Nevada. These differences from the forests of today imply different climatic histories in these two regions between 6000 14C yr bp and today. At 18,000 14C yr bp , deserts were absent from the South‐west and the coverage of open conifer woodland was greatly expanded relative to today. Steppe and tundra were present in much of the region now covered by forests in the Pacific North‐west.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号