首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ca(2+)-ATPase belongs to the family of P-type ATPases and maintains low concentrations of intracellular Ca(2+). Its reaction cycle consists of four main intermediates that alternate ion binding in the transmembrane domain with phosphorylation of an aspartate residue in a cytoplasmic domain. Previous work characterized an ultrastable phosphoenzyme produced first by labeling with fluorescein isothiocyanate, then by allowing this labeled enzyme to establish a maximal Ca(2+) gradient, and finally by removing Ca(2+) from the solution. This phosphoenzyme is characterized by very low fluorescence and has specific enzymatic properties suggesting the existence of a high energy phosphoryl bond. To study the structural properties of this phosphoenzyme, we used cryoelectron microscopy of two-dimensional crystals formed in the presence of decavanadate and determined the structure at 8-A resolution. To our surprise we found that at this resolution the low fluorescence phosphoenzyme had a structure similar to that of the native enzyme crystallized under equivalent conditions. We went on to use glutaraldehyde cross-linking and proteolysis for independent structural assessment and concluded that, like the unphosphorylated native enzyme, Ca(2+) and vanadate exert a strong influence over the global structure of this low fluorescence phosphoenzyme. Based on a structural model with fluorescein isothiocyanate bound at the ATP site, we suggest that the stability as well as the low fluorescence of this phosphoenzyme is due to a fluorescein-mediated cross-link between two cytoplasmic domains that prevents hydrolysis of the aspartyl phosphate. Finally, we consider the alternative possibility that phosphate transfer to fluorescein itself could explain the properties of this low fluorescence species.  相似文献   

2.
The functional consequences of a series of point mutations in transmembrane segment M1 of sarcoplasmic reticulum Ca2+-ATPase were analyzed in steady-state and transient kinetic experiments examining the partial reaction steps involved in Ca2+ interaction and phosphoenzyme turnover. Arginine or leucine substitution of Glu51, Glu55, or Glu58, located in the N-terminal third of M1, did not affect these functions. Arginine or leucine substitution of Asp59, located right at the bend of M1 seen in the crystal structure of the thapsigargin-bound form, caused a 10-fold increase of the rate of Ca2+ dissociation toward the cytoplasmic side. Mutation of Leu60 to alanine or proline and of Val62 to alanine also enhanced Ca2+ dissociation, whereas an 11-fold reduction of the rate of Ca2+ dissociation was observed upon alanine substitution of Leu65, thus providing evidence for a relation of the middle part of M1 to a gating mechanism controlling the dissociation of occluded Ca2+ from its membranous binding sites. Moreover, phosphoenzyme processing was affected by some of the latter mutations, in particular leucine substitution of Asp59, and alanine substitution of Leu65 accelerated the transition to ADP-insensitive phosphoenzyme and blocked its dephosphorylation, thus demonstrating that this part of M1, besides being important in Ca2+ interaction, furthermore, is a critical element in the long range signaling between the transmembrane domain and the cytoplasmic catalytic site.  相似文献   

3.
The functional importance of the length of the A/M1 linker (Glu(40)-Ser(48)) connecting the actuator domain and the first transmembrane helix of sarcoplasmic reticulum Ca(2+)-ATPase was explored by its elongation with glycine insertion at Pro(42)/Ala(43) and Gly(46)/Lys(47). Two or more glycine insertions at each site completely abolished ATPase activity. The isomerization of phosphoenzyme (EP) intermediate from the ADP-sensitive form (E1P) to the ADP-insensitive form (E2P) was markedly accelerated, but the decay of EP was completely blocked in these mutants. The E2P accumulated was therefore demonstrated to be E2PCa(2) possessing two occluded Ca(2+) ions at the transport sites, and the Ca(2+) deocclusion and release into lumen were blocked in the mutants. By contrast, the hydrolysis of the Ca(2+)-free form of E2P produced from P(i) without Ca(2+) was as rapid in the mutants as in the wild type. Analysis of resistance against trypsin and proteinase K revealed that the structure of E2PCa(2) accumulated is an intermediate state between E1PCa(2) and the Ca(2+)-released E2P state. Namely in E2PCa(2), the actuator domain is already largely rotated from its position in E1PCa(2) and associated with the phosphorylation domain as in the Ca(2+)-released E2P state; however, in E2PCa(2), the hydrophobic interactions among these domains and Leu(119)/Tyr(122) on the top of second transmembrane helix are not yet formed properly. This is consistent with our previous finding that these interactions at Tyr(122) are critical for formation of the Ca(2+)-released E2P structure. Results showed that the EP isomerization/Ca(2+)-release process consists of the following two steps: E1PCa(2) --> E2PCa(2) --> E2P + 2Ca(2+); and the intermediate state E2PCa(2) was identified for the first time. Results further indicated that the A/M1 linker with its appropriately short length, probably because of the strain imposed in E2PCa(2), is critical for the correct positioning and interactions of the actuator and phosphorylation domains to cause structural changes for the Ca(2+) deocclusion and release.  相似文献   

4.
In this work, we set out to identify and characterize the calcium occluded intermediate(s) of the plasma membrane Ca(2+)-ATPase (PMCA) to study the mechanism of calcium transport. To this end, we developed a procedure for measuring the occlusion of Ca(2+) in microsomes containing PMCA. This involves a system for overexpression of the PMCA and the use of a rapid mixing device combined with a filtration chamber, allowing the isolation of the enzyme and quantification of retained calcium. Measurements of retained calcium as a function of the Ca(2+) concentration in steady state showed a hyperbolic dependence with an apparent dissociation constant of 12 ± 2.2 μM, which agrees with the value found through measurements of PMCA activity in the absence of calmodulin. When enzyme phosphorylation and the retained calcium were studied as a function of time in the presence of La(III) (inducing accumulation of phosphoenzyme in the E(1)P state), we obtained apparent rate constants not significantly different from each other. Quantification of EP and retained calcium in steady state yield a stoichiometry of one mole of occluded calcium per mole of phosphoenzyme. These results demonstrate for the first time that one calcium ion becomes occluded in the E(1)P-phosphorylated intermediate of the PMCA.  相似文献   

5.
The phosphate group of the ADP-insensitive phosphoenzyme (E2-P) of sarcoplasmic reticulum Ca2+ -ATPase (SERCA1a) was studied with infrared spectroscopy to understand the high hydrolysis rate of E2-P. By monitoring an autocatalyzed isotope exchange reaction, three stretching vibrations of the transiently bound phosphate group were selectively observed against a background of 50,000 protein vibrations. They were found at 1194, 1137, and 1115 cm(-1). This information was evaluated using the bond valence model and empirical correlations. Compared with the model compound acetyl phosphate, structure and charge distribution of the E2-P aspartyl phosphate resemble somewhat the transition state in a dissociative phosphate transfer reaction; the aspartyl phosphate of E2-P has 0.02 A shorter terminal P-O bonds and a 0.09 A longer bridging P-O bond that is approximately 20% weaker, the angle between the terminal P-O bonds is wider, and -0.2 formal charges are shifted from the phosphate group to the aspartyl moiety. The weaker bridging P-O bond of E2-P accounts for a 10(11)-10(15)-fold hydrolysis rate enhancement, implying that P-O bond destabilization facilitates phosphoenzyme hydrolysis. P-O bond destabilization is caused by a shift of noncovalent interactions from the phosphate oxygens to the aspartyl oxygens. We suggest that the relative positioning of Mg2+ and Lys684 between phosphate and aspartyl oxygens controls the hydrolysis rate of the ATPase phosphoenzymes and related phosphoproteins.  相似文献   

6.
Jun Nakamura 《BBA》1983,723(2):182-190
The effects of ATP on Ca2+ binding in the absence of added Mg2+ to the purified sarcoplasmic reticulum Ca2+-ATPase were studied at pH 7.0 and 0°C. ATP increased the number of Ca2+-binding sites of the enzyme from 2 to 3 mol per mol of phosphorylatable enzyme. The association constant for the ATP-induced Ca2+ binding was 4·105 M?1, which was not significantly different from that obtained in the absence of ATP. AdoP[CH2]PP has little effect on the Ca2+-binding process. The amount of phosphoenzyme formed was equivalent to the level of ATP-induced Ca2+ binding. ADP decreased the level of ATP-induced Ca2+ binding and phosphoenzyme by the same amount. These results suggest that ATP-induced Ca2+ binding exists in the form of an ADP-reactive phosphoenzyme·Ca complex. In addition, the Ca2+ bound to the enzyme in the presence of ATP was released on the addition of 1 mM MgCl2; after the release of Ca2+, the phosphoenzyme decayed. These observations suggest that Mg2+, added after the ATP-induced Ca2+-binding process, may replace the Ca2+ on the phosphoenzyme and initiate phosphoenzyme decomposition.  相似文献   

7.
We describe here a protocol to prepare milligrams of active and stable heterologous sarcoplasmic reticulum Ca(2+)-ATPase (Serca1a). Serca1a was tagged with 6 histidines at its C-terminal end and overexpressed using the baculovirus-Sf9 system. In a first trial, Serca1a accounted for 24% of membrane proteins, 95% of which were inactive. Glucose in the culture medium reduced the production of Serca1a to 3 to 5% of membrane proteins and all Serca1a was active. Seventy-five percent of active Serca1a was solubilized by C(12)E(8) in the presence of phosphatidylcholine under conditions avoiding denaturation. Purification by Ni(2+)-nitrilo-triacetic acid affinity chromatography was tried, but only 3% of active Serca1a remained bound to the column, as if the His-tag were not accessible. Yields of 43% were reached by purification on reactive red 120 columns when eluting with 2 M NaCl. The purity was about 25% and Serca1a was stable for at least 1 week at 0 degrees C. Typically, 500 ml of culture medium produced 3 mg of active Serca1a and 1 mg of purified active Serca1a allowing measurements of phosphoenzyme (2 nmol/mg) or Ca(2+) affinity (2 microM at pH 7).  相似文献   

8.
Arg198 of sarcoplasmic reticulum Ca2+-ATPase was substituted with lysine, glutamine, glutamic acid, alanine, and isoleucine by site-directed mutagenesis. Kinetic analysis was performed with microsomal membranes isolated from COS-1 cells which were transfected with the mutated cDNAs. The rate of dephosphorylation of the ADP-insensitive phosphoenzyme was determined by first phosphorylating the Ca2+-ATPase with 32Pi and then diluting the sample with non-radioactive Pi. This rate was reduced substantially in the mutant R198Q, more strongly in the mutants R198A and R1981, and most strongly in the mutant R198E, but to a much lesser extent in R198K. The reduction in the rate of dephosphorylation was consistent with the observed decrease in the turnover rate of the Ca2+-ATPase accompanied by the steady-state accumulation of the ADP-insensitive phosphoenzyme formed from ATP. These results indicate that the positive charge and high hydrophilicity of Arg198 are critical for rapid hydrolysis of the ADP-insensitive phosphoenzyme.  相似文献   

9.
The rate of Ca2+ efflux was determined with 45Ca2+-loaded sarcoplasmic reticulum vesicles (mainly with the light fraction of vesicles) at pH 6.5 and 0°C. The efflux depended on external Ca2+, Mg2+, ATP and ADP, but it was not activated by AMP. The results indicate that the efflux is derived from Ca2+-Ca2+ exchange mediated by the phosphoenzyme (EP) of membrane-bound Ca2+-ATPase. EP was formed with Ca2+-loaded vesicles (light fraction) under similar conditions without added ADP. The subsequent addition of EGTA and ADP induced triphasic EP dephosphorylation. Three species of EP (EP1, EP2, and EP3) were distinguished on the basis of this dephosphorylation kinetics, EP1, EP2 and EP3, corresponding to the first, second, and third phases of the dephosphorylation. Dephosphorylation of EP1 and EP2 resulted in stoichiometric ATP formation, while dephosphorylation of EP3 led to stoichiometric Pi liberation. The rate of Ca2+ efflux was compatible with that of EP2 dephosphorylation, whereas it was much lower than the rate of EP1 dephosphorylation and much higher than the rate of EP3 dephosphorylation. The intravesicular Ca2+ concentration dependence of the rate of EP2 dephosphorylation agreed with that of the rate of Ca2+ efflux. The results suggest that isomerization between EP1 and EP2 is the rate-limiting process in the Ca2+-Ca2+ exchange and that EP3 is not involved in this exchange.  相似文献   

10.
The rate of Ca2+ efflux was determined with 45Ca2+ -loaded sarcoplasmic reticulum vesicles (mainly with the light fraction of vesicles) at pH 6.5 and 0 degrees C. The efflux depended on external Ca2+, Mg2+, ATP and ADP, but it was not activated by AMP. The results indicate that the efflux is derived from Ca2+ -Ca2+ exchange mediated by the phosphoenzyme (EP) of membrane-bound Ca2+ -ATPase. EP was formed with Ca2+ -loaded vesicles (light fraction) under similar conditions without added ADP. The subsequent addition of EGTA and ADP induced triphasic EP dephosphorylation. Three species of EP (EP1, EP2, and EP3) were distinguished on the basis of this dephosphorylation kinetics, EP1, EP2, and EP3, corresponding to the first, second, and third phases of the dephosphorylation. Dephosphorylation of EP1 and EP2 resulted in stoichiometric ATP formation, while dephosphorylation of EP3 led to stoichiometric Pi liberation. The rate of Ca2+ efflux was compatible with that of EP2 dephosphorylation, whereas it was much lower than the rate of EP1 dephosphorylation and much higher than the rate of EP3 dephosphorylation. The intravesicular Ca2+ concentration dependence of the rate of EP2 dephosphorylation agreed with that of the rate of Ca2+ efflux. The results suggest that isomerization between EP1 and EP2 is the rate-limiting process in the Ca2+ -Ca2+ exchange and that EP3 is not involved in this exchange.  相似文献   

11.
Effects of lipid structure on the function of the Ca2+-ATPase of skeletal muscle of sarcoplasmic reticulum are reviewed. Binding of phospholipids to the ATPase shows little specificity. Phosphatidylcholines with short (C14) or long (C24) fatty acyl chains have marked effects on the activity of the ATPase, including a change in the stoichiometry of Ca binding. Low ATPase activity in gel phase lipid follows from low rate of phosphorylation. Phosphatidylinositol 4-phosphate increases ATPase activity by increasing the rate of dephosphorylation of the phosphorylated ATPase. Stimulation is not seen with other anionic phospholipids; phosphatidic acid decreases ATPase activity in a Mg2+-dependent manner.Abbreviations di(C141)PC dimyristoleoylphosphatidycholine - di(C160)PC dipalmitoylphosphatidylcholine - di(C181)PC dioleoylphosphatidylcholine - di(Br2C180)PC dibromostearoylphosphatidylcholine - di(C241)PC dinervonylphosphatidylcholine - di(C181)PA dioleoylphosphatidic acid - di(C181)PE dioleoylphosphatidylethanolamine - Ptdlns phosphatidylinositol - PtdIns-4P phos-phatidylinositol 4-phosphate  相似文献   

12.
Site-directed mutations were produced in the distal segments of the Ca(2+)-ATPase (SERCA) transmembrane region. Mutations of Arg-290 (M3-M4 loop), Lys-958, and Thr-960 (M9 - M10 loop) had minor effects on ATPase activity and Ca(2+) transport. On the other hand, Val-304 (M4) mutations to Ile, Thr, Lys, Ala, or Glu inhibited transport by 90-95% while reducing ATP hydrolysis by 83% (Ile, Thr, and Lys), 56% (Ala), or 45% (Glu). Val-304 participates in Ca(2+) coordination with its main-chain carbonyl oxygen, and this function is not expected to be altered by mutations of its side chain. In fact, despite turnover inhibition, the Ca(2+) concentration dependence of residual ATPase activity remained unchanged in Val-304 mutants. However, the rates (but not the final levels) of phosphoenzyme formation, as well the rates of its hydrolytic cleavage, were reduced in proportion to the ATPase activity. Furthermore, with the Val-304 --> Glu mutant, which retained the highest residual ATPase activity, it was possible to show that occlusion of bound Ca(2+) was also impaired, thereby explaining the stronger inhibition of Ca(2+) transport relative to ATPase activity. The effects of Val-304 mutations on phosphoenzyme turnover are attributed to interference with mechanical links that couple movements of transmembrane segments and headpiece domains. The effects of thermal activation energy on reaction rates are thereby reduced. Furthermore, inadequate occlusion of bound Ca(2+) following utilization of ATP in Val-304 side-chain mutations is attributed to inadequate stabilization of the Glu-309 side chain and consequent defect of its gating function.  相似文献   

13.
Protonation of the Ca2+ ligands of the SR Ca2+-ATPase (SERCA1a) was studied by a combination of rapid scan FTIR spectroscopy and electrostatic calculations. With FTIR spectroscopy, we investigated the pH dependence of CO bands of the Ca2+-free phosphoenzyme (E2P) and obtained direct experimental evidence for the protonation of carboxyl groups upon Ca2+ release. At least three of the infrared signals from protonated carboxyl groups of E2P are pH dependent with pKa values near 8.3: a band at 1758 cm−1 characteristic of nonhydrogen-bonded carbonyl groups, a shoulder at 1720 cm−1, and part of a band at 1710 cm−1, both characteristic of hydrogen-bonded carbonyl groups. The bands are thus assigned to H+ binding residues, some of which are involved in H+ countertransport. At pH 9, bands at 1743 and 1710 cm−1 remain which we do not attribute to Ca2+/H+ exchange. We also obtained evidence for a pH-dependent conformational change in β-sheet or turn structures of the ATPase. With MCCE on the E2P analog E2(), we assigned infrared bands to specific residues and analyzed whether or not the carbonyl groups of the acidic Ca2+ ligands are hydrogen bonded. The carbonyl groups of Glu771, Asp800, and Glu908 were found to be hydrogen bonded and will thus contribute to the lower wave number bands. The carbonyl group of some side-chain conformations of Asp800 is left without a hydrogen-bonding partner; they will therefore contribute to the higher wave number band.  相似文献   

14.
During Ca(2+) transport by sarcoplasmic reticulum Ca(2+)-ATPase, the conformation change of ADP-sensitive phosphoenzyme (E1PCa(2)) to ADP-insensitive phosphoenzyme (E2PCa(2)) is followed by rapid Ca(2+) release into the lumen. Here, we find that in the absence of K(+), Ca(2+) release occurs considerably faster than E1PCa(2) to E2PCa(2) conformation change. Therefore, the lumenal Ca(2+) release pathway is open to some extent in the K(+)-free E1PCa(2) structure. The Ca(2+) affinity of this E1P is as high as that of the unphosphorylated ATPase (E1), indicating the Ca(2+) binding sites are not disrupted. Thus, bound K(+) stabilizes the E1PCa(2) structure with occluded Ca(2+), keeping the Ca(2+) pathway to the lumen closed. We found previously (Yamasaki, K., Wang, G., Daiho, T., Danko, S., and Suzuki, H. (2008) J. Biol. Chem. 283, 29144-29155) that the K(+) bound in E2P reduces the Ca(2+) affinity essential for achieving the high physiological Ca(2+) gradient and to fully open the lumenal Ca(2+) gate for rapid Ca(2+) release (E2PCa(2) → E2P + 2Ca(2+)). These findings show that bound K(+) is critical for stabilizing both E1PCa(2) and E2P structures, thereby contributing to the structural changes that efficiently couple phosphoenzyme processing and Ca(2+) handling.  相似文献   

15.
Site-specific mutagenesis was used to replace Glu309, Glu771, and Asp800 in the Ca(2+)-ATPase of rabbit fast twitch muscle sarcoplasmic reticulum with their corresponding amides. These residues are predicted to lie in the transmembrane domain and have been suggested as oxygen ligands for Ca2+ binding at high affinity sites (Clarke, D. M., Loo, T. W., Inesi, G., and MacLennan, D. H. (1989) Nature 339, 476-478). The Glu309----Gln and Asp800----Asn mutants were unable to form a phosphoenzyme from ATP at the Ca2+ concentrations examined (up to 12.5 mM), whereas the Glu771----Gln mutant phosphorylated from ATP at 2.5 mM Ca2+. In all three mutants, Ca2+ at concentrations well below 12.5 mM prevented or inhibited phosphorylation with Pi, suggesting that at least one calcium-binding site was functioning in each mutant. In the mutants Glu309----Gln and Glu771----Gln, the ADP-insensitive phosphoenzyme intermediate was unusually stable, as indicated by a very low rate of dephosphorylation observed in kinetic experiments and by an increased apparent affinity for Pi determined in equilibrium phosphorylation experiments. These data indicate a central role of Glu309 and Glu771 in the energy-transducing conformational changes and/or in the activation of phosphoenzyme hydrolysis.  相似文献   

16.
Tyr(122)-hydrophobic cluster (Y122-HC) is an interaction network formed by the top part of the second transmembrane helix and the cytoplasmic actuator and phosphorylation domains of sarcoplasmic reticulum Ca(2+)-ATPase. We have previously found that Y122-HC plays critical roles in the processing of ADP-insensitive phosphoenzyme (E2P) after its formation by the isomerization from ADP-sensitive phosphoenzyme (E1PCa(2)) (Wang, G., Yamasaki, K., Daiho, T., and Suzuki, H. (2005) J. Biol. Chem. 280, 26508-26516). Here, we further explored kinetic properties of the alanine-substitution mutants of Y122-HC to examine roles of Y122-HC for Ca(2+) release process in E2P. In the steady state, the amount of E2P decreased so that of E1PCa(2) increased with increasing lumenal Ca(2+) concentration in the mutants with K(0.5) 110-320 microm at pH 7.3. These lumenal Ca(2+) affinities in E2P agreed with those estimated from the forward and lumenal Ca(2+)-induced reverse kinetics of the E1PCa(2)-E2P isomerization. K(0.5) of the wild type in the kinetics was estimated to be 1.5 mM. Thus, E2P of the mutants possesses significantly higher affinities for lumenal Ca(2+) than that of the wild type. The kinetics further indicated that the rates of lumenal Ca(2+) access and binding to the transport sites of E2P were substantially slowed by the mutations. Therefore, the proper formation of Y122-HC and resulting compactly organized structure are critical for both decreasing Ca(2+) affinity and opening the lumenal gate, thus for Ca(2+) release from E2PCa(2). Interestingly, when K(+) was omitted from the medium of the wild type, the properties of the wild type became similar to those of Y122-HC mutants. K(+) binding likely functions via producing the compactly organized structure, in this sense, similarly to Y122-HC.  相似文献   

17.
Comparison of the effects of calmodulin on the Ca2+-ATPase activity and on the steady-state level of the phosphoenzyme, indicates that activation of the Ca2+-ATPase is mainly due to an increase in the turnover of the phosphoenzyme and does not require occupation of the regulatory site of the Ca2+-ATPase by ATP.  相似文献   

18.
Solubilized Ca2+, Mg2+-ATPase of sarcoplasmic reticulum was phosphorylated with ATP without added MgCl2. The phosphoenzyme formed was ADP-sensitive. Ca2+ in the medium was chelated after phosphorylation. This induced a slow transition of the phosphoenzyme from ADP-sensitive to ADP-insensitive forms. The ADP-sensitivity was restored by subsequent addition of CaCl2. These results showed that the transition was caused by dissociation of Ca2+ bound to the phosphoenzyme. Further observations indicated that, when Ca2+ in the medium was chelated, Ca2+ bound to the phosphoenzyme was dissociated much more slowly than Ca2+ bound to the dephosphoenzyme. This suggests a possible formation of the occluded form of the Ca2+-binding site in the phosphoenzyme.  相似文献   

19.
Use of the nonphosphorylating beta,gamma-bidentate chromium(III) complex of ATP to induce a stable Ca(2+)-occluded form of the sarcoplasmic reticulum Ca(2+)-ATPase was combined with molecular sieve high performance liquid chromatography of detergent-solubilized protein to examine the ability of the Ca(2+)-ATPase mutants Gly-233-->Glu, Gly-233-->Val, Glu-309-->Gln, Gly-310-->Pro, Pro-312-->Ala, Ile-315-->Arg, Leu-319-->Arg, Asp-703-->Ala, Gly-770-->Ala, Glu-771-->Gln, Asp-800-->Asn, and Gly-801-->Val to occlude Ca2+. This provided a new approach to identification of amino acid residues involved in Ca2+ binding and in the closure of the gates to the Ca2+ binding pocket of the Ca(2+)-ATPase. The "phosphorylation-negative" mutant Asp-703-->Ala and mutants of ADP-sensitive phosphoenzyme intermediate type were fully capable of occluding Ca2+, as was the mutant Gly-770-->Ala. Mutants in which carboxylic acid-containing residues in the putative transmembrane segments had been substituted ("Ca(2+)-site mutants") and mutant Gly-801-->Val were unable to occlude either of the two calcium ions. In addition, the mutant Gly-310-->Pro, previously classified as ADP-insensitive phosphoenzyme intermediate type (Andersen, J.P., Vilsen, B., and MacLennan, D.H. (1992). J. Biol. Chem. 267, 2767-2774), was unable to occlude Ca2+, even though Ca(2+)-activated phosphorylation from MgATP took place in this mutant.  相似文献   

20.
B Vilsen  J P Andersen 《FEBS letters》1992,306(2-3):247-250
Site-specific mutagenesis was used to analyse the role of the residue, Glu309, in the function of the Ca(2+)-ATPase of frog skeletal muscle sarcoplasmic reticulum by substitution with Ala or Lys. At pH 6.0, 100 microM Ca2+ was unable to prevent phosphorylation from Pi, consistent with previous observations on the Ca(2+)-ATPase of rabbit fast twitch muscle [Clarke, D.M., Loo, T.W, Inesi, G. and MacLennan, D.H. (1989) Nature 339, 476-478]. At neutral pH, however, micromolar concentrations of Ca2+ were sufficient to inhibit phosphorylation of the Glu309----Lys mutant from inorganic phosphate, suggesting that at least one high-affinity Ca2+ site was relatively intact in this mutant. The Glu309----Lys mutant was unable to form a phosphoenzyme from ATP at all Ca2+ concentrations studied (up to 12.5 mM), whereas phosphorylation of the Glu309----Ala mutant occurred at 12.5 mM Ca2+, but not at Ca2+ concentrations in the submillimolar range. Kinetic studies demonstrated a reduced rate of dephosphorylation of the E2P intermediate in the Glu309----Lys mutant. A less pronounced stabilization of E2P was observed with the Glu309----Ala mutant, suggesting a possible role of the charge at the position of Glu309 in phosphoenzyme hydrolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号