首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Analyses of small subunit ribosomal RNA genes (SSU rDNAs) have significantly influenced our understanding of the composition of aquatic microbial assemblages. Unfortunately, SSU rDNA sequences often do not have sufficient resolving power to differentiate closely related species. To address this general problem for uncultivated bacterioplankton taxa, we analysed and compared sequences of polymerase chain reaction (PCR)-generated and bacterial artificial chromosome (BAC)-derived clones that contained most of the SSU rDNAs, the internal transcribed spacer (ITS) and the large subunit ribosomal RNA gene (LSU rDNA). The phylogenetic representation in the rRNA operon PCR library was similar to that reported previously in coastal bacterioplankton SSU rDNA libraries. We observed good concordance between the phylogenetic relationships among coastal bacterioplankton inferred from SSU or LSU rDNA sequences. ITS sequences confirmed the close intragroup relationships among members of the SAR11, SAR116 and SAR86 clades that were predicted by SSU and LSU rDNA sequence analyses. We also found strong support for homologous recombination between the ITS regions of operons from the SAR11 clade.  相似文献   

2.
Immobilization of uranium in groundwater can be achieved through microbial reduction of U(VI) to U(IV) upon electron donor addition. Microbial community structure was analyzed in ethanol-biostimulated and control sediments from a high-nitrate (>130 mM), low-pH, uranium-contaminated site in Oak Ridge, TN. Analysis of small subunit (SSU) rRNA gene clone libraries and polar lipid fatty acids from sediments revealed that biostimulation resulted in a general decrease in bacterial diversity. Specifically, biostimulation resulted in an increase in the proportion of Betaproteobacteria (10% of total clones in the control sediment versus 50 and 79% in biostimulated sediments) and a decrease in the proportion of Gammaproteobacteria and Acidobacteria. Clone libraries derived from dissimilatory nitrite reductase genes (nirK and nirS) were also dominated by clones related to Betaproteobacteria (98% and 85% of total nirK and nirS clones, respectively). Within the nirK libraries, one clone sequence made up 59 and 76% of sequences from biostimulated sediments but only made up 10% of the control nirK library. Phylogenetic analysis of SSU rRNA and nirK gene sequences from denitrifying pure cultures isolated from the site indicate that all belong to a Castellaniella species; nearly identical sequences also constituted the majority of biostimulated SSU rRNA and nirK clone libraries. Thus, by combining culture-independent with culture-dependent techniques, we were able to link SSU rRNA clone library information with nirK sequence data and conclude that a potentially novel Castellaniella species is important for in situ nitrate removal at this site.  相似文献   

3.
Temporal and spatial dynamics of ammonia-oxidizing bacteria (AOB) were examined using genes encoding 16S rRNA and ammonia monooxygenase subunit A (AmoA) in Monterey Bay, Calif. Samples were collected from three depths in the water column on four dates at one mid-bay station. Diversity estimators for the two genes showed a strong positive correlation, indicating that overlapping bacterial populations had been sampled by both sets of clone libraries. Some samples that were separated by only 15 m in depth had less genetic similarity than samples that were collected from the same depth months apart. Clone libraries from the Monterey Bay AOB community were dominated by Nitrosospira-like sequences and clearly differentiated from the adjacent AOB community in Elkhorn Slough. Many Monterey Bay clones clustered with previously identified 16S rRNA and amoA groups composed entirely of marine sequences, supporting the hypothesis that these groups are specific to the marine environment and are dominant marine AOB. In addition, novel, phylogenetically distinct groups of AOB sequences were identified and compared to sequences in the database. Only one cluster of gammaproteobacterial AOB was detected using 16S rRNA genes. Although significant genetic variation was detected in AOB populations from both vertical and temporal samples, no significant correlation was detected between diversity and environmental variables or the rate of nitrification.  相似文献   

4.
Temporal and spatial dynamics of ammonia-oxidizing bacteria (AOB) were examined using genes encoding 16S rRNA and ammonia monooxygenase subunit A (AmoA) in Monterey Bay, Calif. Samples were collected from three depths in the water column on four dates at one mid-bay station. Diversity estimators for the two genes showed a strong positive correlation, indicating that overlapping bacterial populations had been sampled by both sets of clone libraries. Some samples that were separated by only 15 m in depth had less genetic similarity than samples that were collected from the same depth months apart. Clone libraries from the Monterey Bay AOB community were dominated by Nitrosospira-like sequences and clearly differentiated from the adjacent AOB community in Elkhorn Slough. Many Monterey Bay clones clustered with previously identified 16S rRNA and amoA groups composed entirely of marine sequences, supporting the hypothesis that these groups are specific to the marine environment and are dominant marine AOB. In addition, novel, phylogenetically distinct groups of AOB sequences were identified and compared to sequences in the database. Only one cluster of gammaproteobacterial AOB was detected using 16S rRNA genes. Although significant genetic variation was detected in AOB populations from both vertical and temporal samples, no significant correlation was detected between diversity and environmental variables or the rate of nitrification.  相似文献   

5.
The ribosomal RNA (rRNA) gene region of the microsporidium Heterosporis anguillarum has been examined. Complete DNA sequence data (4060 bp, GenBank Accession No. AF402839) of the rRNA gene of H. anguillarum are presented for the small subunit gene (SSU rRNA: 1359 bp), the internal transcribed spacer (ITS: 37 bp), and the large subunit gene (LSU rRNA: 2664 bp). The secondary structures of the H. anguillarum SSU and LSU rRNA genes are constructed and described. This is the first complete sequence of an rRNA gene published for a fish-infecting microsporidian species. In the phylogenetic analysis, the sequences, including partial SSU rRNA, ITS, and partial LSU rRNA sequences of the fish-infecting microsporidia, were aligned and analysed. The taxonomic position of H. anguillarum as suggested by Lom et al. (2000; Dis Aquat Org 43:225-231) is confirmed in this paper.  相似文献   

6.
The aim of this study was to explore the use of large-scale sequencing to better describe the genome content of naturally occurring, uncultured protists. We constructed a metagenomic fosmid library from a picoplanktonic assemblage (0.2–3 μm size cells) collected at the Blanes Bay Microbial Observatory (Western Mediterranean). Seven clones contained a small-subunit ribosomal RNA gene (SSU rDNA) affiliating with prasinophytes and uncultured alveolates. One clone (FBB25; 35 kb in size) was completely sequenced and found to be a tandem repeat array (5.5 times) of the rDNA operon, including three rRNA genes (SSU, large-subunit and 5.8S rDNAs) and three spacer regions (internal transcribed spacers 1, 2 and intergenic spacer). The SSU rDNA of FBB25 affiliated with the marine alveolates group I, cluster 1, and was almost identical to sequences retrieved only in marine surveys from a wide geographic and ecological range. Phylogenetic trees using the different rRNA genes showed FBB25 as an independent branch among the main alveolate groups, but their closest affiliation varied between the SSU tree (dinoflagellates) and the large-subunit and 5.8S trees (perkinsids). The spacer regions of FBB25 were particularly short when compared with other eukaryotes, indicating a possible genome streamlining in this picoeukaryote. Finally, not a single polymorphism was found in the rDNA repeat array, suggesting that the high SSU rDNA variability typically found in molecular surveys derives from organismal and not intragenomic diversity. This first report on the rDNA genomic structure of an uncultured marine alveolate improves their phylogenetic position and helps interpreting data generated during picoeukaryotic molecular surveys.  相似文献   

7.
Metagenomics provides access to the uncultured majority of the microbial world. The approaches employed in this field have, however, had limited success in linking functional genes to the taxonomic or phylogenetic origin of the organism they belong to. Here we present an efficient strategy to recover environmental DNA fragments that contain phylogenetic marker genes from metagenomic libraries. Our method involves the cleavage of 23S ribsosmal RNA (rRNA) genes within pooled library clones by the homing endonuclease I-CeuI followed by the insertion and selection of an antibiotic resistance cassette. This approach was applied to screen a library of 6500 fosmid clones derived from the microbial community associated with the sponge Cymbastela concentrica. Several fosmid clones were recovered after the screen and detailed phylogenetic and taxonomic assignment based on the rRNA gene showed that they belong to previously unknown organisms. In addition, compositional features of these fosmid clones were used to classify and taxonomically assign a dataset of environmental shotgun sequences. Our approach represents a valuable tool for the analysis of rapidly increasing, environmental DNA sequencing information.  相似文献   

8.
When PCR was used to recover small-subunit (SSU) rRNA genes from a hot spring cyanobacterial mat community, chimeric SSU rRNA sequences which exhibited little or no secondary structural abnormality were recovered. They were revealed as chimeras of SSU rRNA genes of uncultivated species through separate phylogenetic analysis of short sequence domains.  相似文献   

9.
Compared to freshwater and the open ocean, less is known about bacterioplankton community structure and spatiotemporal dynamics in estuaries, particularly those with long residence times. The Chesapeake Bay is the largest estuary in the United States, but despite its ecological and economic significance, little is known about its microbial community composition. A rapid screening approach, ITS (internal transcribed spacer)-LH (length heterogeneity)-PCR, was used to screen six rRNA operon (16S rRNA-ITS-23S rRNA) clone libraries constructed from bacterioplankton collected in three distinct regions of the Chesapeake Bay over two seasons. The natural length variation of the 16S-23S rRNA gene ITS region, as well as the presence and location of tRNA-alanine coding regions within the ITS, was determined for 576 clones. Clones representing unique ITS-LH-PCR sizes were sequenced and identified. Dramatic shifts in bacterial composition (changes within subgroups or clades) were observed for the Alphaproteobacteria (Roseobacter clade, SAR11), Cyanobacteria (Synechococcus), and Actinobacteria, suggesting strong seasonal variation within these taxonomic groups. Despite large gradients in salinity and phytoplankton parameters, a remarkably homogeneous bacterioplankton community was observed in the bay in each season. Stronger seasonal, rather than spatial, variation of the bacterioplankton population was also supported by denaturing gradient gel electrophoresis and LH-PCR analyses, indicating that environmental parameters with stronger seasonal, rather than regional, dynamics, such as temperature, might determine bacterioplankton community composition in the Chesapeake Bay.  相似文献   

10.
Compared to freshwater and the open ocean, less is known about bacterioplankton community structure and spatiotemporal dynamics in estuaries, particularly those with long residence times. The Chesapeake Bay is the largest estuary in the United States, but despite its ecological and economic significance, little is known about its microbial community composition. A rapid screening approach, ITS (internal transcribed spacer)-LH (length heterogeneity)-PCR, was used to screen six rRNA operon (16S rRNA-ITS-23S rRNA) clone libraries constructed from bacterioplankton collected in three distinct regions of the Chesapeake Bay over two seasons. The natural length variation of the 16S-23S rRNA gene ITS region, as well as the presence and location of tRNA-alanine coding regions within the ITS, was determined for 576 clones. Clones representing unique ITS-LH-PCR sizes were sequenced and identified. Dramatic shifts in bacterial composition (changes within subgroups or clades) were observed for the Alphaproteobacteria (Roseobacter clade, SAR11), Cyanobacteria (Synechococcus), and Actinobacteria, suggesting strong seasonal variation within these taxonomic groups. Despite large gradients in salinity and phytoplankton parameters, a remarkably homogeneous bacterioplankton community was observed in the bay in each season. Stronger seasonal, rather than spatial, variation of the bacterioplankton population was also supported by denaturing gradient gel electrophoresis and LH-PCR analyses, indicating that environmental parameters with stronger seasonal, rather than regional, dynamics, such as temperature, might determine bacterioplankton community composition in the Chesapeake Bay.  相似文献   

11.
Assimilatory nitrate reductase gene fragments were isolated from epiphytes and plankton associated with seagrass blades collected from Tampa Bay, Florida, USA. Nitrate reductase genes from diatoms (NR) and heterotrophic bacteria (nasA) were amplified by polymerase chain reaction (PCR) using two sets of degenerate primers. A total of 129 NR and 75 nasA clones from four clone libraries, two from each of epiphytic and planktonic components, were sequenced and aligned. In addition, genomic DNA sequences for the NR fragment were obtained from Skeletonema costatum and Thalassiosira weissflogii diatom cultures. Rarefaction analysis with an operational taxonomic unit cut-off of 6% indicated that diversity of the NR and nasA clone libraries were similar, and that sequencing of the clone libraries was not yet saturated. Phylogenetic analysis indicated that 121 of the 129 NR clones sequenced were similar to diatom sequences. Of the eight non-diatom sequences, four were most closely related to the sequence of Chlorella vulgaris. Introns were found in 8% of the Tampa Bay NR sequences; introns were also observed in S. costatum, but not T. weissflogii. Introns from within the same clone library exhibited close similarity in nucleotide sequence, position and length; the corresponding exon sequences were unique. Introns from within the same component were similar in position and length, but not in nucleotide sequence. These findings raise questions about the function of introns, and mechanisms or time evolution of intron formation. A large cluster of 14 of the 75 nasA sequences was similar to sequences from Vibrio species; other sequences were closely related to sequences from Alteromonas, alpha-proteobacteria and Marinomonas-like species. Biogeographically consistent patterns were observed for the nasA Tampa Bay sequences compared with sequences from other locations: for example, Tampa Bay sequences were similar to those from the South Atlantic Bight, but not the Barents Sea. The Tampa Bay NR clone libraries contained sequences that exhibited phylogenetic similarity with sequences from coastal New Jersey and Monterey Bay, USA. For both NR and nasA, the sequences formed phylogenetic clusters containing nitrate reductase gene fragments that were common to both plankton and epiphyte components, and sequences that were unique to just one component. The implication that some organisms may be differentially represented in epiphytic versus planktonic components of the community suggests that local environmental conditions may have ramifications for regulation of nitrate assimilation processes, community composition, and ecosystem function.  相似文献   

12.
High-throughput identification of rRNA gene-containing clones in large insert metagenomic libraries is difficult, because of the high background of host ribosomal RNA (rRNA) and rRNA genes. To address this challenge, a membrane hybridization method was developed to identify all bacterial small subunit rRNA-containing fosmid clones of microbial community DNA from seven different depths in the North Pacific Subtropical Gyre. Out of 101,376 clones screened, 751 rDNA-containing clones were identified that grouped in ∼60 different clades. Several rare sequences only remotely related to known groups were detected, including a Wolbachia -related sequence containing a putative intron or intervening sequence, as well as seven sequences from Order Myxococcales not previously detected in pelagic habitats. Stratified, depth-specific population structure was evident within both cultured and uncultured lineages. Conversely, some eurybathyal members of the genera Alcanivorax and Rhizobium shared identical small subunit ribosomal DNA sequences that were distributed from surface waters to the 4000 m depth. Comparison with similar analyses in Monterey Bay microbial communities revealed previously recognized, as well as some distinctive, depth-stratified partitioning that distinguished coastal from open ocean bacterioplankton populations. While some bias was evident in fosmid clone recovery in a few particular lineages, the overall phylogenetic group recovery and distributions were consistent with previous studies, as well as with direct shotgun sequence data from the same source DNA.  相似文献   

13.
Pest and disease problems are important constraints of cassava production and host plant resistance is the most efficient method of combating them. Breeding for host plant resistance is considerably slowed down by the crop’s biological constraints of a long growth cycle, high levels of heterozygosity and a large genetic load. More efficient methods such as gene cloning and transgenesis are required to deploy resistance genes. To facilitate the cloning of resistance genes, bacterial artificial chromosome (BAC) library resources have been developed for cassava. Two libraries were constructed from the cassava clones, TMS 30001, resistant to the cassava mosaic disease (CMD) and the cassava bacterial blight (CBB), and MECU72, resistant to cassava white fly. The TMS30001 library has 55 296 clones with an insert size range of 40–150 kb with an average of 80 kb, while the MECU72 library consists of 92 160 clones and an insert size range of 25–250 kb average of 93 kb. Based on a genome size of 772 Mb, the TMS30001 and MECU72 libraries have a 5 and 11.3 haploid genome equivalents and a 95 and 99 chance of finding any sequence, respectively. To demonstrate the potential of the libraries, the TMS30001 library was screened by southern hybridization using a cassava analog (CBB1) of the Xa21 gene from rice that maps to a region containing a QTL for resistance to CBB as probe. Five BAC clones that hybridized to CBB1 were isolated and a Hind III fingerprint revealed 2–3 copies of the gene in individual BAC clones. A larger scale analysis of resistance gene analogs (RGAs) in cassava has also been conducted in order to understand the number and organization of RGAs. To scan for gene and repeat DNA content in the libraries, end-sequencing was performed on 2301 clones from the MECU72 library. A total of 1705 unique sequences were obtained with an average size of 715 bp. Database homology searches using BLAST revealed that 458 sequences had significant homology with known proteins and 321 with transposable elements. The use of the library in positional cloning of pest and disease resistance genes is discussed.  相似文献   

14.
Liriodendron tulipifera L., a member of the Magnoliaceae, occupies an important phylogenetic position as a basal angiosperm that has retained numerous putatively ancestral morphological characters, and thus has often been used in studies of the evolution of flowering plants and of specific gene families. However, genomic resources for these early branching angiosperm lineages are very limited. In this study, we describe the construction of a large-insert bacterial artificial chromosome (BAC) library from L. tulipifera. Flow cytometry estimates that this nuclear genome is approximately 1,802 Mbp per haploid genome (±16 SD). The BAC library contains 73,728 clones, a 4.8-fold genome coverage, with an average insert size of 117 kb, a chloroplast DNA content of 0.2%, and little to no bacterial sequences nor empty vector content clones. As a test of the utility of this BAC library, we screened the library with six single/low-copy genic probes. We obtained at least two positive clones for each gene and confirmed the clones by DNA sequencing. A total of 182 paired end sequences were obtained from 96 of the BAC clones. Using BLAST searches, we found that 25% of the BAC end sequences were similar to DNA sequences in GenBank. Of these, 68% shared sequence with transposable elements and 25% with genes from other taxa. This result closely reflected the content of random sequences obtained from a small insert genomic library for L. tulipifera, indicating that the BAC library construction process was not biased. The first genomic DNA sequences for Liriodendron genes are also reported. All the Liriodendron genomic sequences described in this paper have been deposited in the GenBank data library. The end sequences from shotgun genomic clones and BAC clones are under accession DU169330–DU169684. Partial sequences of Gigantea, Frigida, LEAFY, cinnamyl alcohol dehydrogenase, 4-coumarate:CoA ligase, and phenylalanine ammonia-lyase genes are under accession DQ223429–DQ223434. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

15.
Immobilization of uranium in groundwater can be achieved through microbial reduction of U(VI) to U(IV) upon electron donor addition. Microbial community structure was analyzed in ethanol-biostimulated and control sediments from a high-nitrate (>130 mM), low-pH, uranium-contaminated site in Oak Ridge, TN. Analysis of small subunit (SSU) rRNA gene clone libraries and polar lipid fatty acids from sediments revealed that biostimulation resulted in a general decrease in bacterial diversity. Specifically, biostimulation resulted in an increase in the proportion of Betaproteobacteria (10% of total clones in the control sediment versus 50 and 79% in biostimulated sediments) and a decrease in the proportion of Gammaproteobacteria and Acidobacteria. Clone libraries derived from dissimilatory nitrite reductase genes (nirK and nirS) were also dominated by clones related to Betaproteobacteria (98% and 85% of total nirK and nirS clones, respectively). Within the nirK libraries, one clone sequence made up 59 and 76% of sequences from biostimulated sediments but only made up 10% of the control nirK library. Phylogenetic analysis of SSU rRNA and nirK gene sequences from denitrifying pure cultures isolated from the site indicate that all belong to a Castellaniella species; nearly identical sequences also constituted the majority of biostimulated SSU rRNA and nirK clone libraries. Thus, by combining culture-independent with culture-dependent techniques, we were able to link SSU rRNA clone library information with nirK sequence data and conclude that a potentially novel Castellaniella species is important for in situ nitrate removal at this site.  相似文献   

16.
Two populations of Epistylis wuhanensis n. sp., a new freshwater peritrich ciliate, were isolated from different freshwater ponds located in Hubei, China. Their morphological characteristics were investigated using live observation, protargol impregnation, and scanning electron microscopy (SEM). Specimens from the two populations showed identical arrangement of the infraciliature and identical small subunit ribosomal RNA (SSU rRNA) gene and ITS1‐5.8S‐ITS2 sequences. The zooids present bell‐shaped and 90–175 × 27–54 μm in vivo. Macronucleus is variable in shape and located in the middle of cell. Pellicle is usually smooth with 139–154 and 97–105 striations above and below the trochal band, respectively. SSU rRNA gene and ITS1‐5.8S‐ITS2 sequences of E. wuhanensis n. sp. did not match any available sequences in GenBank. Phylogenetically, E. wuhanensis n. sp. clusters with the other Epistylis within the family Epistylididae, but is distinct from the major clades of Epistylis. Above all, the morphological characteristics and molecular analyses support that the present Epistylis is a new species. Expanded phylogenetic analyses of sessilids based on both SSU rRNA gene sequences and ITS1‐5.8S‐ITS2 sequences reveal that the genus Epistylis consists of Epistylis morphospecies and taxonomic revision of the genus is needed.  相似文献   

17.
18.
The phylogenetic diversity of an oligotrophic marine picoplankton community was examined by analyzing the sequences of cloned ribosomal genes. This strategy does not rely on cultivation of the resident microorganisms. Bulk genomic DNA was isolated from picoplankton collected in the north central Pacific Ocean by tangential flow filtration. The mixed-population DNA was fragmented, size fractionated, and cloned into bacteriophage lambda. Thirty-eight clones containing 16S rRNA genes were identified in a screen of 3.2 x 10(4) recombinant phage, and portions of the rRNA gene were amplified by polymerase chain reaction and sequenced. The resulting sequences were used to establish the identities of the picoplankton by comparison with an established data base of rRNA sequences. Fifteen unique eubacterial sequences were obtained, including four from cyanobacteria and eleven from proteobacteria. A single eucaryote related to dinoflagellates was identified; no archaebacterial sequences were detected. The cyanobacterial sequences are all closely related to sequences from cultivated marine Synechococcus strains and with cyanobacterial sequences obtained from the Atlantic Ocean (Sargasso Sea). Several sequences were related to common marine isolates of the gamma subdivision of proteobacteria. In addition to sequences closely related to those of described bacteria, sequences were obtained from two phylogenetic groups of organisms that are not closely related to any known rRNA sequences from cultivated organisms. Both of these novel phylogenetic clusters are proteobacteria, one group within the alpha subdivision and the other distinct from known proteobacterial subdivisions. The rRNA sequences of the alpha-related group are nearly identical to those of some Sargasso Sea picoplankton, suggesting a global distribution of these organisms.  相似文献   

19.
To isolate genes of interest in plants, it is essential to construct bacterial artificial chromosome (BAC) libraries from specific genotypes. Construction and organisation of BAC libraries is laborious and costly, especially from organisms with large and complex genomes. In the present study, we developed the pooled BAC library strategy that allows rapid and low cost generation and screening of genomic libraries from any genotype of interest. The BAC library is constructed, directly organised into a few pools and screened for BAC clones of interest using PCR and hybridisation steps, without requiring organization into individual clones. As a proof of concept, a pooled BAC library of approximately 177,000 recombinant clones has been constructed from the barley cultivar Cebada Capa that carries the Rph7 leaf rust resistance gene. The library has an average insert size of 140 kb, a coverage of six barley genome equivalents and is organised in 138 pools of about 1,300 clones each. We rapidly established a single contig of six BAC clones spanning 230 kb at the Rph7 locus on chromosome 3HS. The described low-cost cloning strategy is fast and will greatly facilitate direct targeting of genes and large-scale intra- and inter-species comparative genome analysis.Edwige Isidore and Beatrice Scherrer contributed equally to the work.  相似文献   

20.
Bacterial artificial chromosome (BAC) library is an important tool in genomic research. We constructed two libraries from the genomic DNA of grass carp (Ctenopharyngodon idellus) as a crucial part of the grass carp genome project. The libraries were constructed in the EcoRI and HindIII sites of the vector CopyControl pCC1BAC. The EcoRI library comprised 53,000 positive clones, and approximately 99.94% of the clones contained grass carp nuclear DNA inserts (average size, 139.7 kb) covering 7.4× haploid genome equivalents and 2% empty clones. Similarly, the HindIII library comprised 52,216 clones with approximately 99.82% probability of finding any genomic fragments containing single-copy genes; the average insert size was 121.5 kb with 2.8% insert-empty clones, thus providing genome coverage of 6.3× haploid genome equivalents of grass carp. We selected gene-specific probes for screening the target gene clones in the HindIII library. In all, we obtained 31 positive clones, which were identified for every gene, with an average of 6.2 BAC clones per gene probe. Thus, we succeeded in constructing the desired BAC libraries, which should provide an important foundation for future physical mapping and whole-genome sequencing in grass carp.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号