首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bacteriophage recombination systems have been widely used in biotechnology for modifying prokaryotic species, for creating transgenic animals and plants, and more recently, for human cell gene manipulation. In contrast to homologous recombination, which benefits from the endogenous recombination machinery of the cell, site-specific recombination requires an exogenous source of recombinase in mammalian cells. The mechanism of bacteriophage evolution and their coexistence with bacterial cells has become a point of interest ever since bacterial viruses’ life cycles were first explored. Phage recombinases have already been exploited as valuable genetic tools and new phage enzymes, and their potential application to genetic engineering and genome manipulation, vectorology, and generation of new transgene delivery vectors, and cell therapy are attractive areas of research that continue to be investigated. The significance and role of phage recombination systems in biotechnology is reviewed in this paper, with specific focus on homologous and site-specific recombination conferred by the coli phages, λ, and N15, the integrase from the Streptomyces phage, ΦC31, the recombination system of phage P1, and the recently characterized recombination functions of Yersinia phage, PY54. Key steps of the molecular mechanisms involving phage recombination functions and their application to molecular engineering, our novel exploitations of the PY54-derived recombination system, and its application to the development of new DNA vectors are discussed.  相似文献   

2.
Genome sequencing on both strands: the Janus strategy.   总被引:12,自引:4,他引:8       下载免费PDF全文
The design of large scale DNA sequencing projects such as genome analysis demands a new approach to sequencing strategy, since neither a purely random nor a purely directed method is satisfactory. We have developed a strategy that combines these two methods in a way that preserves the advantages of both while avoiding their particular limitations. Computer simulations showed that a specific balance of random and directed sequencing was required for the most efficient strategy, termed the Janus strategy, which has been used in the Escherichia coli genome sequencing project. This approach depended on obtaining sequence easily from either strand of a cloned insert, and was facilitated by inversion of the insert in the engineered M13 vector Janus, by site-specific recombination. The inversion was accomplished simply by growth on the appropriate host strain, when the DNA strand incorporated into the new single stranded phage was complementary to that in the original phage, and was sequenced by the same simple protocol as the first strand.  相似文献   

3.
Highly efficient intermolecular crossing-over was observed occurring between regions of limited homology in a fd filamentous phage and a plasmid. These extraneous regions corresponded to two overlapping fragments of the beta-lactamase gene. Gene reconstitution through homologous recombination of these regions yielded a highly ampicillin-resistant phenotype in Escherichia coli while co-expression of the enzyme fragments afforded low and thermosensitive activity. The recombination rates were between two and three orders of magnitude higher than that reported between plasmids using a similar assay. The fd-plasmid cointegrate was detected in recombined bacteria, as was its encapsidation into phage particles and subsequent transduction. A 100-fold reduction in the recombination rate was observed in a recA mutant strain even though crossing-over was still efficient. This gene reconstitution strategy is generally applicable to phage display technology and provides an easy way for constructing large combinatorial libraries of mutants.  相似文献   

4.
Many DNA viruses concatemerize their genomes as a prerequisite to packaging into capsids. Concatemerization arises from either replication or homologous recombination. Replication is already the target of many antiviral drugs, and viral recombinases are an attractive target for drug design, particularly for combination therapy with replication inhibitors, due to their important supporting role in viral growth. To dissect the molecular mechanisms of viral recombination, we and others previously identified a family of viral nucleases that comprise one component of a conserved, two-component viral recombination system. The nuclease component is related to the exonuclease of phage lambda and is common to viruses with linear double-stranded DNA genomes. To test the idea that these viruses have a common strategy for recombination and genome concatemerization, we isolated the previously uncharacterized 34.1 gene from Bacillus subtilis phage SPP1, expressed it in Escherichia coli, purified the protein, and determined its enzymatic properties. Like lambda exonuclease, Chu (the product of 34.1) forms an oligomer, is a processive alkaline exonuclease that digests linear double-stranded DNA in a Mg(2+)-dependent reaction, and shows a preference for 5'-phosphorylated DNA ends. A model for viral recombination, based on the phage lambda Red recombination system, is proposed.  相似文献   

5.
Toxigenic conversion of Vibrio cholerae bacteria results from the integration of a filamentous phage, CTXϕ. Integration is driven by the bacterial Xer recombinases, which catalyse the exchange of a single pair of strands between the phage single-stranded DNA and the host double-stranded DNA genomes; replication is thought to convert the resulting pseudo-Holliday junction (HJ) intermediate into the final recombination product. The natural tendency of the Xer recombinases to recycle HJ intermediates back into substrate should thwart this integration strategy, which prompted a search for additional co-factors aiding directionality of the process. Here, we show that Endo III, a ubiquitous base excision repair enzyme, facilitates CTXϕ-integration in vivo. In vitro, we show that it prevents futile Xer recombination cycles by impeding new rounds of strand exchanges once the pseudo-HJ is formed. We further demonstrate that this activity relies on the unexpected ability of Endo III to bind to HJs even in the absence of the recombinases. These results explain how tandem copies of the phage genome can be created, which is crucial for subsequent virion production.  相似文献   

6.
Recombineering techniques have been developed to modify bacterial artificial chromosomes (BACs) via bacterial homologous recombination systems, simplifying the molecular manipulations of large DNA constructs. However, precise modifications of a DNA fragment larger than 2-3 kb by recombineering remain a difficult task, due to technical limitations in PCR amplification and purification of large DNA fragments. Here, we describe a new recombineering strategy for the replacement of large DNA fragments using the commonly utilized phage/Red recombination host system. This approach involved the introduction of rare restriction enzyme sites and positive selection markers into the ends of a large DNA fragment, followed by its release from the donor BAC construct and integration into an acceptor BAC. We have successfully employed this method to precisely swap a number of large DNA fragments ranging from 6 to 40 kb between two BAC constructs. Our results demonstrated that this new strategy was highly effective in the manipulations of large genomic DNA fragments and therefore should advance the conventional BAC recombineering technology to the next level.  相似文献   

7.
The genetic transformation mutant Rd(DB117)rec- has a pleiotropic phenotype that includes reduced levels of phage recombination. Physical mapping experiments showed that this strain has a 78.5-kbp insertion in the rec-2 gene. The rec-2 dependence of phage recombination was reexamined to determine whether the defective phenotype in Rd(DB117)rec- was due to the simple disruption of the rec-2 gene or whether trans-acting factors from the inserted DNA were responsible. Analysis of strains with transposon insertions in the rec-2 gene showed that they were also defective for phage recombination. Therefore, the phage recombination defect was due solely to the disruption of the rec-2 gene. Strain KB6 is proficient for phage recombination but has a defect in genetic transformation resembling that of Rd(DB117)rec-. The transformation defect of KB6 could be complemented by the wild-type rec-2 gene, showing that the rec-2 contributions to genetic transformation and phage recombination were uncoupled in this strain. The rec-2-dependent phenotype of KB6 suggests that the rec-2 gene participates in genetic transformation and phage recombination in different ways.  相似文献   

8.
9.
Bacteriophages are central components in the development of molecular tools for microbial genetics. Mycobacteriophages have proven to be a rich resource for tuberculosis genetics, and the recent development of a mycobacterial recombineering system based on mycobacteriophage Che9c-encoded proteins offers new approaches to mycobacterial mutagenesis. Expression of the phage exonuclease and recombinase substantially enhances recombination frequencies in both fast- and slow-growing mycobacteria, thereby facilitating construction of both gene knockout and point mutants; it also provides a simple and efficient method for constructing mycobacteriophage mutants. Exploitation of host-specific phages thus provides a general strategy for recombineering and mutagenesis in genetically naive systems.  相似文献   

10.
When unmodified phage T1 infects restricting host cells at high multiplicities of infection, there is an increase in recombination frequency in all regions of the T1 map compared to the level of recombination in standard crosses when short distances are examined. The enhancement of recombination frequency is not uniform for all regions but is greatest for markers near the center of the map and not so great for markers near the ends. Crosses between markers at the extremities of the map show that there is no increase in recombination frequency under restriction conditions. An examination of phage T1 heterozygotes suggests that an increase of ends created by the process of P1 restriction increases recombination. When T1 crosses are done in the absence of host restriction, recombination defects in the host have no effect on phage recombination and we conclude that phage T1 codes for its own recombination genes. Host recombination functions are also dispensable for the recombination occurring during infection of restricting host cells by unmodified phage at high multiplicities of infection.  相似文献   

11.
The extent and location of DNA synthesis associated with Rec recombination of a lambda phage mutant has been determined approximately for recombinants arising under conditions that restrict DNA duplication. The mutant bio1 contains a substitution in its DNA, and nearly all phage maturing under these conditions have undergone a recombination event within a short region in or near the inserted DNA. Density labeled phage bio1 were used to prepare a lysate under these conditions and the extent of new DNA synthesis was determined by analyzing the density of the progeny phage. On the average, about 6% of the phage chromosome was resynthesized in such a cross.DNA was extracted from bio1 phage crossed under similar conditions in the presence of 32PO4. The position of incorporated 32PO4 was determined by cleaving the DNA with EcoRI restriction endonuclease and resolving the resulting fragments by electrophoresis on agarose gels. The fragment found to have the most newly synthesized DNA and the highest average amount of synthesis per nucleotide contains the bio1 insertion near its left end and the “hot spot” for Rec-mediated recombination near its center. It appears that in these crosses recombination-associated DNA synthesis is localized about the region of the Rec-mediated recombination event.  相似文献   

12.
目的:探索通过细菌人工染色体(BAC)同源重组系统构建条件基因敲除载体的高效率方法,提高条件基因敲除小鼠(Flox小鼠)的构建效率。方法:利用作者自己构建的噬菌体重组酶系统,通过BAC同源重组进行条件型基因敲除载体构建工作。首先通过亚克隆构建了一系列载体含有同源臂的靶向质粒,线性化后,打靶片段经电穿孔法转入大肠杆菌内,与相应的BAC同源重组,再经过三步同源重组和一步位点特异性重组,构建小鼠条件型基因敲除载体。结果:高效率构建了小鼠基因的最终条件基因敲除载体。结论:通过BAC同源重组高效构建条件基因敲除载体,为条件基因敲除载体的构建提供了全新思路,并为FLox小鼠的建立,及相应基因在发育、生理、致病机制等方面的功能研究奠定了基础。  相似文献   

13.
A new physical method was developed to assay genetic recombination of phage T7 in vivo. The assay utilized T7 mutants that carry unique restriction sites and was based on the detection of a new restriction fragment generated by recombination. Using this assay, we reexamined the genetic requirements for recombination of T7 DNA. Our results were in total agreement with previous findings in that recombination required the products of genes 3 (endonuclease), 4 (primase), 5 (DNA polymerase), and 6 (exonuclease). Recombination was found to be independent of DNA ligase and DNA packaging and maturation functions.  相似文献   

14.
The role of recombination in transfection of B. subtilis   总被引:18,自引:0,他引:18  
Summary A comparative study of transfection with four different phage DNAs is being presented. Two types of transfection systems are distinguished, one with nearly linear dependence of the number of infective centers produced on the concentration of the phage DNA, the other type displaying multihit dose response. Studies of genetic recombination in transfection show that in systems of the latter type two (SPP 1) or three (SP 50) input genomes have to cooperate in a recombination event prior to replication. This obligatory process, termed primary recombination, is exclusively mediated by the host recombination system and cannot be effected by the phage recombination system.  相似文献   

15.
Doan PL  Belanger KG  Kreuzer KN 《Genetics》2001,157(3):1077-1087
Recombination hotspots have previously been discovered in bacteriophage T4 by two different approaches, marker rescue recombination from heavily damaged phage genomes and recombination during co-infection by two undamaged phage genomes. The phage replication origin ori(34) is located in a region that has a hotspot in both assays. To determine the relationship between the origin and the two kinds of hotspots, we generated phage carrying point mutations that should inactivate ori(34) but not affect the gene 34 reading frame (within which ori(34) is located). The mutations eliminated the function of the origin, as judged by both autonomous replication of plasmids during T4 infection and two-dimensional gel analysis of phage genomic replication intermediates. As expected from past studies, the ori(34) mutations also eliminated the hotspot for marker rescue recombination from UV-irradiated genomes. However, the origin mutations had no effect on the recombination hotspot that is observed with co-infecting undamaged phage genomes, demonstrating that some DNA sequence other than the origin is responsible for inflated recombination between undamaged genomes. The hotspots for marker rescue recombination may result from a replication fork restart process that acts upon origin-initiated replication forks that become blocked at nearby DNA damage. The two-dimensional gel analysis also revealed phage T4 replication intermediates not previously detected by this method, including origin theta forms.  相似文献   

16.
We designed a bacteriophage T2 system to display proteins fused at the N-terminus of the head protein small outer capsid (SOC) of a T2 phage. To facilitate selection of chimeric phage, a T2 phage encoding the beta-galactosidase gene (betagal) upstream of the soc gene was constructed. The phage, named T2betaGal, produces blue plaques on agar plates containing XGal. Subsequently, a plasmid encoding the target protein upstream of soc was constructed and used to transform E. coli B(E) cells. Transformed cells were infected with T2betaGal and homologous recombination between phage DNA and the plasmid resulted in a chimeric phage that produced transparent plaques due to the excision of the betagal gene. Chitosanase of Bacillus sp. strain K17 (ChoK), consisting of 453 amino acids, was used as a model target protein. Recombinant T2 phage that produced ChoK was named T2ChoK. T2ChoK was produced from T2betaGal at a recombination frequency of about 0.1%. On the other hand, the value for T2betaGal produced from wild-type T2 was 0.001 %. This new system enables us to select recombinant phage very quickly and accurately. The number of molecules of ChoK was calculated at 14.7 per single phage. Latent period and burst size were estimated for the chimeric phages.  相似文献   

17.
Bacteriophage P22 Abc2 protein binds to the RecBCD enzyme from Escherichia coli to promote phage growth and recombination. Overproduction of the RecC subunit in vivo, but not RecB or RecD, interfered with Abc2-induced UV sensitization, revealing that RecC is the target for Abc2 in vivo. UV-induced ATP crosslinking experiments revealed that Abc2 protein does not interfere with the binding of ATP to either the RecB or RecD subunits in the absence of DNA, though it partially inhibits RecBCD ATPase activity. Productive growth of phage P22 in wild-type Salmonella typhimurium correlates with the presence of Abc2, but is independent of the absolute level of ATP-dependent nuclease activity, suggesting a qualitative change in the nature of Abc2-modified RecBCD nuclease activity relative to the native enzyme. In lambda phage crosses, Abc2-modified RecBCD could substitute for lambda exonuclease in Red-promoted recombination; lambda Gam could not. In exonuclease assays designed to examine the polarity of digestion, Abc2 protein qualitatively changes the nature of RecBCD double-stranded DNA exonuclease by increasing the rate of digestion of the 5' strand. In this respect, Abc2-modified RecBCD resembles a RecBCD molecule that has encountered the recombination hotspot Chi. However, unlike Chi-modified RecBCD, Abc2-modified RecBCD still possesses 3' exonuclease activity. These results are discussed in terms of a model in which Abc2 converts the RecBCD exonuclease for use in the P22 phage recombination pathway. This mechanism of P22-mediated recombination distinguishes it from phage lambda recombination, in which the phage recombination system (Red) and its anti-RecBCD function (Gam) work independently.  相似文献   

18.
A major determinant of Vibrio cholerae pathogenicity, the cholera enterotoxin, is encoded in the genome of an integrated phage, CTXvarphi. CTXvarphi integration depends on two host-encoded tyrosine recombinases, XerC and XerD. It occurs at dif1, a 28 bp site on V. cholerae chromosome 1 normally used by XerCD for chromosome dimer resolution. The replicative form of the phage contains two pairs of binding sites for XerC and XerD in inverted orientations. Here we show that in the single-stranded genome of the phage, these sites fold into a hairpin structure, which creates a recombination target for XerCD. In the presence of XerD, XerC can catalyze a single pair of strand exchanges between this target and dif1, resulting in integration of the phage. This integration strategy explains why the rules that normally apply to tyrosine recombinase reactions seemed not to apply to CTXvarphi integration and, in particular, why integration is irreversible.  相似文献   

19.
Sequencing of bacterial genomes has revealed an abundance of prophage sequences in many bacterial species. Since these sequences are accessible, through recombination, to infecting phages, bacteria carry an arsenal of genetic material that can be used by these viruses. We develop a mathematical model to isolate the effects of this phenomenon on the coevolution of temperate phage and bacteria. The model predicts that prophage sequences may play a key role in maintaining the phage population in situations that would otherwise favor host cell resistance. In addition, prophage recombination facilitates the existence of multiple phage types, thus promoting diverse co‐existence in the phage‐host ecosystem. Finally, because the host carries an archive of previous phage strategies, prophage recombination can drive waves of innovation in the host cell population.  相似文献   

20.
Intracellular events following infection of competent Haemophilus influenzae cells by N3 phage or transfection by DNA from phage were examined. After infection by whole phage three forms of intracellular phage DNA were observed by sedimentation velocity analysis. These forms are probably twisted circles, open circles and linear duplexes. In transfection only about 15% of the phage DNA is efficiently taken up by the competent cells. After entry of phage DNA into wild-type cells in transfection the DNA is degraded at early times, but later some of the fragments are reassembled, resulting in molecules that sediment faster than the monomer length of phage DNA. These presumably concatamer forms are generated by recombination. In strain rec-1 the fast-sedimenting molecules do not appear and degradation of phage DNA is even more pronounced than in the wild-type cells. Since rec-1 is transfected with much lower efficiency than the wild-type our hypothesis is that both fragmentation and generation of fast-sedimenting phage DNA by recombination are required for efficient transfection. These results also show that although phage N3 codes for its own recombination system it cannot operate in the early stages of transfection and succesful transfection is entirely dependent upon the host recombination system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号