共查询到20条相似文献,搜索用时 15 毫秒
1.
A modified procedure for the purification of soluble ATPase from the thermoacidophilic archaebacterium Sulfolobus acidocaldarius is described. In addition to (alpha) 65 and (beta) 51 kDa polypeptides, further subunits gamma * (20 kDa) and delta * (12 kDa) are demonstrated to be components of the enzyme, exhibiting a total molecular mass of 380 kDa. Molecular electron microscopic images of the native enzyme indicate a quaternary structure probably formed by the gamma *, delta *-complex as a central mass surrounded by a pseudohexagon of the peripherally arranged larger alpha and beta subunits. As can be derived from both molecular mass and electron microscopy data, the archaebacterial Sulfolobus-ATPase emerges to exist as an alpha 3 beta 3-quaternary structure with respect to the larger subunits. This is normally found in typical F1-ATPases of eubacterial and eukaryotic organisms. Therefore it is postulated that F1- and F0F1-ATPases, respectively, can occur ubiquitously in all urkingdoms of organisms as functional units of energy-transducing membranes. 相似文献
2.
The plasma-membrane-associated ATPase of the thermoacidophilic archaebacterium Sulfolobus acidocaldarius characterized in a previous work [M. Lübben & G. Sch?fer (1987) Eur. J. Biochem. 164, 533-540] has been solubilized. It can be easily removed from the membrane by mild treatment with zwitterionic detergents, therefore it appears to be a peripheral membrane protein analogous to the soluble F1-ATPase of eubacteria and eukaryotes. Further purification has been achieved by subsequent gel permeation and ion-exchange chromatography. The final purity is greater than 70% as judged by staining intensities after SDS/polyacrylamide gel electrophoresis. The ATPase consists of two major polypeptides of 65 kDa (alpha) and 51 kDa (beta) in comparable quantities; a minor band (20 kDa) is assumed to be a contaminant or a constitutive part of the enzyme, possibly copurified in substoichiometric amount. The native molecular mass of the solubilized ATPase determined by gel permeation is 430 kDa. Considering the precision of these methods, it remains open whether a 3:3 stoichiometry reflects the contribution of alpha and beta subunits to the quaternary structure, in analogy to known F1-ATPases. The catalytic properties resemble those of the membrane-bound state. There are two pH optima at 5.3 and 8.0 in the absence and only one optimum at 6.5 in the presence of the activating anion sulfite. Activity is strictly dependent on the divalent cations Mg2+ or Mn2+. ATP and dATP are hydrolyzed with highest rates; also other purine and pyrimidine nucleotides are cleaved significantly, but not ADP, pyrophosphate and p-nitrophenyl phosphate. The ATPase is insensitive to azide or vanadate but is inhibited by relatively low concentrations of nitrate. Polyclonal antisera have been raised against the beta subunit of the Sulfolobus ATPase. Cross-reactivities with cellular or membrane extracts of a number of archaebacteria, eubacteria and chloroplasts have been analyzed by means of Western blotting and immunodecoration. A strong cross-reactivity with other genera of the Sulfolobales is observed, also with Methanobacterium, Methanosarcina, Methanolobus and Halobacterium. Even membranes of the eubacterium Escherichia coli and of eukaryotic chloroplast react with the antibodies. With one exception, in all cases the molecular mass of the cross-reacting polypeptide falls in the range of 51-56 kDa. Only in Halobacterium halobium, bands at 66 and 68 kDa have been detected. In order to identify the cross-reacting polypeptides, the purified F1-ATPases of E. coli, chloroplasts and beef heart mitochondria have been tested.(ABSTRACT TRUNCATED AT 400 WORDS) 相似文献
3.
The alpha-subunit of the maize F(1)-ATPase is synthesised in the mitochondrion 总被引:1,自引:0,他引:1 下载免费PDF全文
The F1-ATPase complex has been purified from maize (Zea mays L.) mitochondria and shown to consist of five subunits with mol. wts. of 58 000 (α), 56 000 (β), 35 000 (γ), 22 000 (δ) and 8000 (ε). The α-subunit co-migrates on one- and two- dimensional isoelectric focussing-SDS polyacrylamide gels with the major polypeptide synthesised by isolated mitochondria. One-dimensional proteolytic peptide mapping and immunoprecipitation confirms that the α-subunit is a mitochondrial translation product and therefore presumably encoded in mitochondrial DNA. This contrasts with the situation in animal and fungal cells where all five subunits of the F1-ATPase are encoded by the nuclear genome and synthesised on cytosolic ribosomes. 相似文献
4.
Nuclear genes encoding the yeast mitochondrial ATPase complex. Analysis of ATP1 coding the F1-ATPase alpha-subunit and its assembly 总被引:8,自引:0,他引:8
M Takeda W J Chen J Saltzgaber M G Douglas 《The Journal of biological chemistry》1986,261(32):15126-15133
Mitochondria prepared from the yeast nuclear pet mutant N9-84 lack a detectable F1-ATPase activity. Genetic complementation of this mutant with a pool of yeast genomic DNA in the yeast Escherichia coli shuttle vector YEp13 restored its growth on a nonfermentable carbon source. Mitochondria prepared from the transformed host contained an 8-fold higher than normal level of the F1 alpha-subunit and restored ATPase activity to 50% that of the wild-type strain. Deletion and nucleotide sequence analysis of the complementing DNA on the plasmid revealed a coding sequence designated ATP1 for a protein of 544 amino acids which exhibits 60 and 54% direct protein sequence homology with the proton-translocating ATPase alpha-subunits from tobacco chloroplast and E. coli, respectively. In vitro expression and mitochondrial import experiments using this ATP1 sequence showed that additional amino-terminal sequences not present in the comparable plant and bacterial subunits function as transient sequences for import. 相似文献
5.
The mitochondrial import and assembly of the F1ATPase subunits requires, respectively, the participation of the molecular chaperones hsp70SSA1 and hsp70SSC1 and other components operating on opposite sides of the mitochondrial membrane. In previous studies, both the homology and the assembly properties of the F1ATPase alpha-subunit (ATP1p) compared to the groEL homologue, hsp60, have led to the proposal that this subunit could exhibit chaperone-like activity. In this report the extent to which this subunit participates in protein transport has been determined by comparing import into mitochondria that lack the F1ATPase alpha-subunit (delta ATP1) versus mitochondria that lack the other major catalytic subunit, the F1ATPase beta-subunit (delta ATP2). Yeast mutants lacking the alpha-subunit but not the beta-subunit grow much more slowly than expected on fermentable carbon sources and exhibit delayed kinetics of protein import for several mitochondrial precursors such as the F1 beta subunit, hsp60MIF4 and subunits 4 and 5 of the cytochrome oxidase. In vitro and in vivo the F1 beta-subunit precursor accumulates as a translocation intermediate in absence of the F1 alpha-subunit. In the absence of both the ATPase subunits yeast grows at the same rate as a strain lacking only the beta-subunit, and import of mitochondrial precursors is restored to that of wild type. These data indicate that the F1 alpha-subunit likely functions as an "assembly partner" to influence protein import rather than functioning directly as a chaperone. These data are discussed in light of the relationship between the import and assembly of proteins in mitochondria. 相似文献
6.
The mutation Gly-29----Asp in the alpha-subunit of the F1-ATPase from Escherichia coli was characterized and shown to cause the following effects. 1) Oxidative phosphorylation was markedly impaired in vivo 2) Membrane ATPase and ATP-driven proton-pumping activities were decreased markedly. 3) Membranes were proton-permeable, and membrane-bound ATPase was dicyclohexylcarbodiimide-insensitive. Therefore, it appeared that integration between F1 and F0 was abnormal. This was confirmed directly by the demonstration that the mutant F1 bound poorly to stripped membranes from a normal strain. Purified, soluble mutant F1 had normal ATPase activity. These results suggest that residue Gly-29, which is strongly conserved in alpha-subunits of F1-ATPases, lies in a region of the alpha-subunit important for membrane binding. Thus, three regions of the F1-alpha-subunit have now been recognized, specialized for membrane binding, nucleotide binding, and alpha/beta intersubunit signal transmission, respectively. The approximate locations of the three regions are described. 相似文献
7.
The isolation of protein ATPase inhibitor was attempted directly from Escherichia coli membrane extracts to examine the possible presence of a Pullman-Monroy-type inhibitor [M. E. Pullman and G. C. Monroy (1963) J. Biol. Chem. 238, 3762-3769] distinct from the epsilon subunit of E. coli ATPase. Purification to homogeneity was achieved in a sequence of steps involving trichloracetic acid precipitation, DEAE-cellulose, Sephadex G75 chromatography, and a terminal isoelectric focusing step. An inhibitory protein was obtained and was identified by its physicochemical and inhibitory properties as the epsilon subunit of E. coli ATPase. The other inhibitory fraction observed in the purification procedure consisted of aggregated epsilon subunits. 相似文献
8.
Purification and properties of the ATPase solubilized from membranes of an acidothermophilic archaebacterium, Sulfolobus acidocaldarius 总被引:7,自引:0,他引:7
A novel ATPase was solubilized from membranes of an acidothermophilic archaebacterium, Sulfolobus acidocaldarius, with low ionic strength buffer containing EDTA. The enzyme was purified to homogeneity by hydrophobic chromatography and gel filtration. The molecular weight of the purified enzyme was estimated to be 360,000. Polyacrylamide gel electrophoresis of the purified enzyme in the presence of sodium dodecyl sulfate revealed that it consisted of three kinds of subunits, alpha, beta, and gamma, whose molecular weights were approximately 69,000, 54,000, and 28,000, respectively, and the most probable subunit stoichiometry was alpha 3 beta 3 gamma 1. The purified ATPase hydrolyzed ATP, GTP, ITP, and CTP but not UTP, ADP, AMP, or p-nitrophenylphosphate. The enzyme was highly heat stable and showed an optimal temperature of 85 degrees C. It showed an optimal pH of around 5, very little activity at neutral pH, and another small activity peak at pH 8.5. The ATPase activity was significantly stimulated by bisulfite and bicarbonate ions, the optimal pH remaining unchanged. The Lineweaver-Burk plot was linear, and the Km for ATP and the Vmax were estimated to be 1.6 mM and 13 mumol Pi.mg.-1.min-1, respectively, at pH 5.2 at 60 degrees C in the presence of bisulfite. The chemical modification reagent, 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole, caused inactivation of the ATPase activity although the enzyme was not inhibited by N,N'-dicyclohexylcarbodiimide, N-ethyl-maleimide, azide or vanadate. These results suggest that the ATPase purified from membranes of S. acidocaldarius resembles other archaebacterial ATPases, although a counterpart of the gamma subunit has not been found in the latter. The relationship of the S. acidocaldarius ATPase to other ion-transporting ATPases, such as F0F1 type or E1E2 type ATPases, was discussed. 相似文献
9.
Graham C. Robinson John V. Bason Martin G. Montgomery Ian M. Fearnley David M. Mueller Andrew G. W. Leslie John E. Walker 《Open biology》2013,3(2)
The structure of F1-ATPase from Saccharomyces cerevisiae inhibited by the yeast IF1 has been determined at 2.5 Å resolution. The inhibitory region of IF1 from residues 1 to 36 is entrapped between the C-terminal domains of the αDP- and βDP-subunits in one of the three catalytic interfaces of the enzyme. Although the structure of the inhibited complex is similar to that of the bovine-inhibited complex, there are significant differences between the structures of the inhibitors and their detailed interactions with F1-ATPase. However, the most significant difference is in the nucleotide occupancy of the catalytic βE-subunits. The nucleotide binding site in βE-subunit in the yeast complex contains an ADP molecule without an accompanying magnesium ion, whereas it is unoccupied in the bovine complex. Thus, the structure provides further evidence of sequential product release, with the phosphate and the magnesium ion released before the ADP molecule. 相似文献
10.
The non-catalytic nucleotide-binding site of mitochondrial ATPase is localised on the alpha-subunit(s) of factor F1 总被引:2,自引:0,他引:2
The incubation of isolated factor F1 with the di-aldehyde derivative of ADP (oxADP) which is formed as a result of ADP treatment by periodate, causes the covalent binding of 0.9--1 molecules of the oxADP with a molecule of the enzyme. This modification of factor F1 is not accompanied by any changes in the ATPase activity of the enzyme. The modification of factor F1 is preceded by the reversible binding of oxADP with the enzyme with a Kd of 80 micro M. ADP partly prevents factor F1 from modification by oxADP. The electrophoresis of modified factor F1 in polyacrylamide gel in the presence of sodium dodecyl sulphate showed that oxADP binds with the alpha-subunit(s) of factor F1. When submitochondrial particles are incubated with [3H]oxADP, the main part of the radioactive label may be discovered in the polypeptide with a molecular weight of some 30 000 which is probably the adenine nucleotides' translocase. The isolation of factor F1 from particles preincubated with [3H]oxADP showed that the membrane-bound factor F1 covalently binds 0.2--0.3 mol of oxADP per mol of enzyme. Here again, all the oxADP is bound with the alpha subunit(s) of factor F1. The modification of membrane-bound factor F1 by oxADP is accompanied by the partial inhibition of the particles' ATPase activity. The results obtained testify to the fact that the non-catalytic site of mitochondrial ATP ase located on the alpha-subunit(s) of factor F1 may participate in the mechanism of ATP hydrolysis by membrane-bound ATPase. 相似文献
11.
12.
M T De Gómez-Puyou K Nordenbrand U Muller A Gómez-Puyou L Ernster 《Biochimica et biophysica acta》1980,592(3):385-395
The interaction of soluble mitochondrial ATPase from beef heart with the natural ATPase inhibitor was studied. It was found that the phosphorylation of small amounts of ADP by phosphoenolpyruvate and pyruvate kinase, and an ensuing catalytic cycle supports the binding of the inhibitor to the enzyme. The association of the inhibitor with F1-ATPase does not increase the content of ATP in the F1-ATPase-inhibitor complex. The inhibitor of catalytic activity bathophenanthroline-Fe2+ chelate prevents the interaction, while the association of the inhibitor with F1-ATPase is delayed if the reaction is carried out in 2H2O. The date indicate that a transient state involved in the catalytic cycle is the form of the enzyme that interacts with the inhibitor. The proton-motive force-induced dissociation of the inhibitor from particulate ATPase is prevented by bathophenanthroline-Fe2+ chelate and nitrobenzofurazan chloride, which indicates that a functional catalytic (beta) subunit is required for the proton-motive force-induced release of the inhibitor. The data suggest a direct involvement of catalytic (beta) subunit in the mechanism by which the F1-ATPase senses the proton-motive force. 相似文献
13.
Mitochondrial F1-ATPases purified from several dicotyledonous plants contain six different subunits of alpha, beta, gamma, delta, delta' and epsilon. Previous N-terminal amino acid sequence analyses indicated that the gamma-, delta-, and epsilon-subunits of the sweet potato mitochondrial F1 correspond to the gamma-subunit, the oligomycin sensitivity-conferring protein and the epsilon-subunit of animal mitochondrial F1F0 complex (Kimura, T., Nakamura, K., Kajiura, H., Hattori, H., Nelson, N., and Asahi, T. (1989) J. Biol. Chem. 264, 3183-3186). However, the N-terminal amino acid sequence of the delta'-subunit did not show any obvious homologies with known protein sequences. A cDNA clone for the delta'-subunit of the sweet potato mitochondrial F1 was identified by oligonucleotide-hybridization selection of a cDNA library. The 1.0-kilobase-long cDNA contained a 600-base pair open reading frame coding for a precursor for the delta'-subunit. The precursor for the delta'-subunit contained N-terminal presequence of 21-amino acid residues. The mature delta'-subunit is composed of 179 amino acids and its sequence showed similarities of about 31-36% amino acid positional identity with the delta-subunit of animal and fungal mitochondrial F1 and about 18-25% with the epsilon-subunit of bacterial F1 and chloroplast CF1. The sweet potato delta'-subunit contains N-terminal sequence of about 45-amino acid residues that is absent in other related subunits. It is concluded that the six-subunit plant mitochondrial F1 contains the subunit that is homologous to the oligomycin sensitivity-conferring protein as one of the component in addition to five subunits that are homologous to subunits of animal mitochondrial F1. 相似文献
14.
15.
In mitochondria, the hydrolytic activity of ATP synthase is prevented by an inhibitor protein, IF1. The active bovine protein (84 amino acids) is an alpha-helical dimer with monomers associated via an antiparallel alpha-helical coiled coil composed of residues 49-81. The N-terminal inhibitory sequences in the active dimer bind to two F1-ATPases in the presence of ATP. In the crystal structure of the F1-IF1 complex at 2.8 A resolution, residues 1-37 of IF1 bind in the alpha(DP)-beta(DP) interface of F1-ATPase, and also contact the central gamma subunit. The inhibitor opens the catalytic interface between the alpha(DP) and beta(DP) subunits relative to previous structures. The presence of ATP in the catalytic site of the beta(DP) subunit implies that the inhibited state represents a pre-hydrolysis step on the catalytic pathway of the enzyme. 相似文献
16.
The beta-subunit of the F1F0-ATPase is conserved in mycoplasmas 总被引:4,自引:0,他引:4
D Zilberstein M H Shirvan M F Barile S Rottem 《The Journal of biological chemistry》1986,261(16):7109-7111
Monospecific polyclonal antibodies that were generated against the beta-subunit of Escherichia coli ATPase (F1Fo) cross-reacted with a protein present in the cells of several Mycoplasma and Acholeplasma species. In Mycoplasma gallisepticum, the reactive protein was found almost exclusively in the cell membrane. This protein had an apparent molecular mass of approximately 52 kDa and could not be released from the membranes by repeated washings with either low or high salt solutions in the presence or absence of EDTA. The reactive protein was found to be catalytically active, exhibiting up to 44% of the total membrane-bound ATPase activity. We suggest that mycoplasmas possess a F1Fo-ATPase which undergoes structural modification(s) allowing its integration into the membrane. 相似文献
17.
It has been suggested that the F1-ATPase β-subunit is the enterostatin receptor. We investigated the binding activity of the purified protein with a labeled antagonist, β-casomorphin1–7, in the absence and presence of cold enterostatin. 125I-β-casomorphin1–7 weakly binds to the rat F1-ATPase β-subunit. Binding was promoted by low concentrations of cold enterostatin but displaced by higher concentrations. To study the relationship between binding activity and feeding behavior, we examined the ability of a number of enterostatin analogs to affect β-casomorphin1–7 binding to the F1-ATPase β-subunit. Peptides that suppressed food intake promoted β-casomorphin1–7 binding whereas peptides that stimulated food intake or did not affect the food intake displaced β-casomorphin1–7 binding. Surface plasmon resonance measurements show that the β-subunit of F1-ATPase binds immobilized enterostatin with a dissociation constant of 150 nM, where no binding could be detected for the assembled F1-ATPase complex. Western blot analysis showed the F1-ATPase β-subunit was present on plasma and mitochondrial membranes of rat liver and amygdala. The data provides evidence that the F1-ATPase β-subunit is the enterostatin receptor and suggests that enterostatin and β-casomorphin1–7 bind to distinct sites on the protein. 相似文献
18.
K Denda J Konishi T Oshima T Date M Yoshida 《The Journal of biological chemistry》1988,263(33):17251-17254
The gene which encodes the beta subunit of the novel membrane-associated ATPase has been identified and characterized. The beta subunit, which is most likely the soluble part of the non-F0F1 type H+-ATPase, was obtained from the archaebacterium, Sulfolobus acidocaldarius. In terms of its location, it follows just after the gene for its alpha subunit. It is comprised of 1398 nucleotides, corresponding to a protein of 465 amino acids, and the consensus sequence in the nucleotide binding proteins is poorly conserved. Together with previously described results, the distant homology of the S. acidocaldarius ATPase alpha and beta subunits when compared to those of F0F1-ATPases indicates that this archaebacterial ATPase belongs to an ion-translocating ATPase family uniquely different than F0F1-ATPases even if S. acidocaldarius ATPase and F0F1-ATPases have been derived from a common ancestral ATPase. 相似文献
19.
Imamura H Ikeda C Yoshida M Yokoyama K 《The Journal of biological chemistry》2004,279(17):18085-18090
V(1)-ATPase from the thermophilic bacterium Thermus thermophilus is a molecular rotary motor with a subunit composition of A(3)B(3)DF, and its central rotor is composed of the D and F subunits. To determine the role of the F subunit, we generated an A(3)B(3)D subcomplex and compared it with A(3)B(3)DF. The ATP hydrolyzing activity of A(3)B(3)D (V(max) = 20 s(-1)) was lower than that of A(3)B(3)DF (V(max) = 31 s(-1)) and was more susceptible to MgADP inhibition during ATP hydrolysis. A(3)B(3)D was able to bind the F subunit to form A(3)B(3)DF. The C-terminally truncated F((Delta85-106)) subunit was also bound to A(3)B(3)D, but the F((Delta69-106)) subunit was not, indicating the importance of residues 69-84 of the F subunit for association with A(3)B(3)D. The ATPase activity of A(3)B(3)DF((Delta85-106)) (V(max) = 24 s(-1)) was intermediate between that of A(3)B(3)D and A(3)B(3)DF. A single molecule experiment showed the rotation of the D subunit in A(3)B(3)D, implying that the F subunit is a dispensable component for rotation itself. Thus, the F subunit binds peripherally to the D subunit, but promotes V(1)-ATPase catalysis. 相似文献
20.
The structure of the gene for ribosomal protein L5 in the archaebacterium Sulfolobus acidocaldarius.
The gene for the ribosomal protein L5 from the archaebacterium Sulfolobus acidocaldarius has been isolated and sequenced. The gene codes for a basic protein of molecular weight 29 165 Da. This protein shows substantial similarity to the equivalent protein from other archaebacteria as well as from yeast, and considerably less similarity to the equivalent eubacterial protein. These results support the concept of the archaebacteria as a monophyletic kingdom more closely related to eukaryotes than to eubacteria. 相似文献