首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gephyrin is an essential and instructive molecule for the formation of inhibitory synapses. Gephyrin binds directly to the large cytoplasmic loop located between transmembrane helices three and four of the beta-subunit of the glycine receptor and to microtubules, thus promoting glycine receptor (GlyR) anchoring to the cytoskeleton and clustering in the postsynaptic membrane. Besides its structural role, gephyrin is involved in the biosynthesis of the molybdenum cofactor that is essential for all molybdenum-dependent enzymes in mammals. Gephyrin can be divided into an N-terminal trimeric G domain and a C-terminal E domain, which are connected by a central linker region. Here we have studied the in vitro interaction of gephyrin and its domains with the large cytoplasmic loop of the GlyR beta-sub-unit (GlyRbeta-loop). Binding of gephyrin to the GlyR is exclusively mediated by the E domain, and the binding site was mapped to one of its sub-domains (residues 496-654). By using isothermal titration calorimetry, a high affinity (K(d) = 0.2-0.4 microm) and low affinity (K(d) = 11-30 microm) binding site for the GlyRbeta-loop was found on holo-gephyrin and the E domain, respectively, with a binding stoichiometry of two GlyRbeta-loops per E domain in both cases. Binding of the GlyRbeta-loop does not change the oligomeric state of either full-length gephyrin or the isolated E domain.  相似文献   

2.
Plant annexins show distinct differences in comparison with their animal orthologues. In particular, the endonexin sequence, which is responsible for coordination of calcium ions in type II binding sites, is only partially conserved in plant annexins. The crystal structure of calcium-bound cotton annexin Gh1 was solved at 2.5 A resolution and shows three metal ions coordinated in the first and fourth repeat in types II and III binding sites. Although the protein has no detectable affinity for calcium in solution, in the presence of phospholipid vesicles, we determined a stoichiometry of four calcium ions per protein molecule using isothermal titration calorimetry. Further analysis of the crystal structure showed that binding of a fourth calcium ion is structurally possible in the DE loop of the first repeat. Data from this study are in agreement with the canonical membrane binding of annexins, which is facilitated by the convex surface associating with the phospholipid bilayer by a calcium bridging mechanism. In annexin Gh1, this membrane-binding state is characterized by four calcium bridges in the I/IV module of the protein and by direct interactions of several surface-exposed basic and hydrophobic residues with the phospholipid membrane. Analysis of the protein fold stability revealed that the presence of calcium lowers the thermal stability of plant annexins. Furthermore, an additional unfolding step was detected at lower temperatures, which can be explained by the anchoring of the N-terminal domain to the C-terminal core by two conserved hydrogen bonds.  相似文献   

3.
Calmodulin (CaM) is an essential eukaryotic calcium receptor that regulates many kinases, including CaMKII. Calcium‐depleted CaM does not bind to CaMKII under physiological conditions. However, binding of (Ca2+)4‐CaM to a basic amphipathic helix in CaMKII releases auto‐inhibition of the kinase. The crystal structure of CaM bound to CaMKIIp, a peptide representing the CaM‐binding domain (CaMBD) of CaMKII, shows an antiparallel interface: the C‐domain of CaM primarily contacts the N‐terminal half of the CaMBD. The two domains of calcium‐saturated CaM are believed to play distinct roles in releasing auto‐inhibition. To investigate the underlying mechanism of activation, calcium‐dependent titrations of isolated domains of CaM binding to CaMKIIp were monitored using fluorescence anisotropy. The binding affinity of CaMKIIp for the domains of CaM increased upon saturation with calcium, with the C‐domain having a 35‐fold greater affinity than the N‐domain. Because the interdomain linker of CaM regulates calcium‐binding affinity and contribute to conformational change, the role of each CaM domain was explored further by investigating effects of CaMKIIp on site‐knockout mutants affecting the calcium‐binding sites of a single domain. Investigation of the thermodynamic linkage between saturation of individual calcium‐binding sites and CaM‐domain binding to CaMKIIp showed that calcium binding to Sites III and IV was sufficient to recapitulate the behavior of (Ca2+)4‐CaM. The magnitude of favorable interdomain cooperativity varied depending on which of the four calcium‐binding sites were mutated, emphasizing differential regulatory roles for the domains of CaM, despite the high degree of homology among the four EF‐hands of CaM. Proteins 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

4.
Syntenin is an adaptor-like molecule that binds to the cytoplasmic domains of all four vertebrate syndecans. Syntenin-syndecan binding involves the C-terminal part of syntenin that contains a tandem of PDZ domains. Here we provide evidence that each PDZ domain of syntenin can interact with a syndecan. Isolated or combined mutations of the carboxylate binding lysines in the inter-betaAbetaB loops and of the alphaB1 residues in either one or both the PDZ domains of syntenin all reduce syntenin-syndecan binding in yeast two-hybrid, blot-overlay, and surface plasmon resonance assays. PDZ2 mutations have more pronounced effects on binding than PDZ1 mutations, but complete abrogation of syntenin-syndecan binding requires the combination of both the lysine and the alphaB1 mutations in both the PDZ domains of syntenin. Isothermal calorimetric titration of syntenin with syndecan peptide reveals the presence of two binding sites in syntenin. Yet, unlike a tandem of two PDZ2 domains and a reconstituted PDZ1+PDZ2 tandem, a tandem of two PDZ1 domains and isolated PDZ1 or PDZ2 domains do not interact with syndecan bait. We conclude to a co-operative binding mode whereby neither of these two PDZ domains is sufficient by itself but where PDZ2 functions as a "major" or "high affinity" syndecan binding domain, and PDZ1 functions as an "accessory" or "low affinity" syndecan binding domain. The paired, but not the isolated PDZ domains of syntenin bind also strongly to the immobilized cytoplasmic domains of neurexin and B-class ephrins. By inference, these data suggest a model whereby recruitment of syntenin to membrane surfaces requires two compatible types of bait that are in "synteny" (occurring together in location) and engages both PDZ domains of syntenin. The synteny of compatible bait may result from the assemblies and co-assemblies of syndecans and other similarly suited partners in larger supramolecular complexes. In general, an intramolecular combination of PDZ domains that are weak, taken individually, would appear to be designed to detect rather than drive the formation of specific molecular assemblies.  相似文献   

5.
Synaptic vesicle exocytosis requires three SNARE (soluble N-ethylmaleimide-sensitive-factor attachment protein receptor) proteins: syntaxin and SNAP-25 on the plasma membrane (t-SNAREs) and synaptobrevin/VAMP on the synaptic vesicles (v-SNARE). Vesicular synaptotagmin 1 is essential for fast synchronous SNARE-mediated exocytosis and interacts with the SNAREs in brain material. To uncover the step at which synaptotagmin becomes linked to the three SNAREs, we purified all four proteins from brain membranes and analyzed their interactions. Our study reveals that, in the absence of calcium, native synaptotagmin 1 binds the t-SNARE heterodimer, formed from syntaxin and SNAP-25. This interaction is both stoichiometric and of high affinity. Synaptotagmin contains two divergent but conserved C2 domains that can act independently in calcium-triggered phospholipid binding. We now show that both C2 domains are strictly required for the calcium-independent interaction with the t-SNARE heterodimer, indicating that the double C2 domain structure of synaptotagmin may have evolved to acquire a function beyond calcium/phospholipid binding.  相似文献   

6.
The initial high affinity binding of single-stranded DNA (ssDNA) by replication protein A (RPA) is involved in the tandem domains in the central region of the RPA70 subunit (RPA70AB). However, it was not clear whether the two domains, RPA70A and RPA70B, bind DNA simultaneously or sequentially. Here, using primarily heteronuclear NMR complemented by fluorescence spectroscopy, we have analyzed the binding characteristics of the individual RPA70A and RPA70B domains and compared them with the intact RPA70AB. NMR chemical shift comparisons confirmed that RPA70A and RPA70B tumble independently in solution in the absence of ssDNA. NMR chemical shift perturbations showed that all ssDNA oligomers bind to the same sites as observed in the x-ray crystal structure of RPA70AB complexed to d(C)8. Titrations using a variety of 5'-mer ssDNA oligomers showed that RPA70A has a 5-10-fold higher affinity for ssDNA than RPA70B. Detailed analysis of ssDNA binding to RPA70A revealed that all DNA sequences interact in a similar mode. Fluorescence binding measurements with a variety of 8-10'-mer DNA sequences showed that RPA70AB interacts with DNA with approximately 100-fold higher affinity than the isolated domains. Calculation of the theoretical "linkage effect" from the structure of RPA70AB suggests that the high overall affinity for ssDNA is a byproduct of the covalent attachment of the two domains via a short flexible tether, which increases the effective local concentration. Taken together, our data are consistent with a sequential model of DNA binding by RPA according to which RPA70A binds the majority of DNA first and subsequent loading of RPA70B domain is facilitated by the linkage effect.  相似文献   

7.
Ca(2+)-ATPase is responsible for active transport of calcium ions across the sarcoplasmic reticulum membrane. This coupling involves an ordered sequence of reversible reactions occurring alternately at the ATP site within the cytoplasmic domains, or at the calcium transport sites within the transmembrane domain. These two sites are separated by a large distance and conformational changes have long been postulated to play an important role in their coordination. To characterize the nature of these conformational changes, we have built atomic models for two reaction intermediates and postulated the mechanisms governing the large structural changes. One model is based on fitting the X-ray crystallographic structure of Ca(2+)-ATPase in the E1 state to a new 6 A structure by cryoelectron microscopy in the E2 state. This fit indicates that calcium binding induces enormous movements of all three cytoplasmic domains as well as significant changes in several transmembrane helices. We found that fluorescein isothiocyanate displaced a decavanadate molecule normally located at the intersection of the three cytoplasmic domains, but did not affect their juxtaposition; this result indicates that our model likely reflects a native E2 conformation and not an artifact of decavanadate binding. To explain the dramatic structural effect of calcium binding, we propose that M4 and M5 transmembrane helices are responsive to calcium binding and directly induce rotation of the phosphorylation domain. Furthermore, we hypothesize that both the nucleotide-binding and beta-sheet domains are highly mobile and driven by Brownian motion to elicit phosphoenzyme formation and calcium transport, respectively. If so, the reaction cycle of Ca(2+)-ATPase would have elements of a Brownian ratchet, where the chemical reactions of ATP hydrolysis are used to direct the random thermal oscillations of an innately flexible molecule.  相似文献   

8.
Vunnam N  Pedigo S 《Biochemistry》2011,50(14):2973-2982
Neural cadherin (N-cadherin) is a calcium-dependent homophilic cell-adhesive molecule and critical for synaptogenesis and synapse maintenance. The extracellular region plays an important role in cadherin-mediated cell adhesion and has five tandemly repeated ectodomains (EC1-EC5) with three calcium-binding sites situated between each of these domains. Adhesive dimer formation is significantly dependent on binding of calcium such that mutations in the calcium-binding sites adversely affect cell adhesion. To investigate the relative significance of the calcium-binding sites at the EC1-EC2 interface in calcium-induced dimerization, we mutated three important amino acids, D134, D136, and D103, in NCAD12, a construct containing EC1 and EC2. Spectroscopic and chromatographic experiments showed that all three mutations affected calcium binding and dimerization. Mutation of D134, a bidentate chelator in site 3, severely impaired the binding of calcium to all three sites. These findings confirm that binding to site 3 is required for binding to occur at site 2 and site 1. Interestingly, while the D103A mutation diminished only the affinity for calcium, it completely eliminated dimerization. Equilibrium dialysis experiments showed a stoichiometry of 3 at 2 mM calcium for D103A, but no dimerization was apparent even at 10 mM calcium. These results indicate that calcium binding alone is not sufficient for dimerization but requires cooperativity between calcium-binding sites. In summary, our findings confirm that the calcium-binding sites are occupied sequentially in the order of site 3, then site 2 and site 1, and that cooperativity between site 2 and site 1 is essential for formation of adhesive dimers by N-cadherin.  相似文献   

9.
Integrin and neurocan binding to L1 involves distinct Ig domains.   总被引:6,自引:0,他引:6  
The cell adhesion molecule L1, a 200-220-kDa type I membrane glycoprotein of the Ig superfamily, mediates many neuronal processes. Originally studied in the nervous system, L1 is expressed by hematopoietic and many epithelial cells, suggesting a more expanded role. L1 supports homophilic L1-L1 and integrin-mediated cell binding and can also bind with high affinity to the neural proteoglycan neurocan; however, the binding site is unknown. We have dissected the L1 molecule and investigated the cell binding ability of Ig domains 1 and 6. We report that RGD sites in domain 6 support alpha5beta1- or alphavbeta3-mediated integrin binding and that both RGD sites are essential. Cooperation of RGD sites with neighboring domains are necessary for alpha(5)beta(1). A T cell hybridoma and activated T cells could bind to L1 in the absence of RGDs. This binding was supported by Ig domain 1 and mediated by cell surface-exposed neurocan. Lymphoid and brain-derived neurocan were structurally similar. We also present evidence that a fusion protein of the Ig 1-like domain of L1 can bind to recombinant neurocan. Our results support the notion that L1 provides distinct cell binding sites that may serve in cell-cell or cell-matrix interactions.  相似文献   

10.
Summary The maximum parsimony method was used to reconstruct the genealogical history of the family of intracellular calcium-binding proteins represented by six major present-day lineages, three of which - calcium dependent modulator protein, heart and skeletal muscle troponin Cs, and alkali light chains of myosin - were found to share a closer kinship with one another than with the other lineages. Similarly, parvalbumins and regulatory light chains of myosin were depicted as more closely related, whereas the branch of intestinal calcium-binding protein proved to have the most distant separation. The computer-generated amino acid sequence for the common ancestor of these six lineages described a four domain protein in which each domain of approximately 40 amino acid residues had a mid-region, 12 residue segment that bound calcium and had properties most resembling those of the calcium dependent modulator protein. It could then be deduced that parvalbumins evolved by deletion of domain I, inactivation of calcium-binding properties in domain II, and acquisition of increased affinity for Ca++ and Mg++ in domains III and IV. Regulatory light chains of myosin lost the cation binding property from three domains, retaining it in I, whereas alkali light chains of myosin lost this ability from each of the four domains. In skeletal muscle troponin C all domains retained their calcium-binding activity; however, like parvalbumins, domains III and IV acquired high affinity properties. Cardiac troponin C lost its binding activity from domain I but otherwise resembled the skeletal muscle form. Finally, intestinal calcium-binding protein evolved by deletion of domains III and IV.Positive selection could be implicated in these evolutionary changes in that the rate of fixation of mutations substantially increased in the mid portions of those domains which were loosing calcium-binding activity. Likewise, when the cation binding sites were changing from low to high affinity, an accelerated rate of fixed mutations was observed. Once this new functional parameter was selected these regions showed a remarkable conservatism, as did those binding sites which were maintaining the lower affinity. Moreover even in sequence regions not directly involved in cation binding, the lineage of troponin C became very conservative over the past 300 million years, perhaps because of the necessity for maintaining specific interfaces in order for the molecule to interact with troponin I and T in a functional thin myofilament. A similar phenomenon was observed in domain II of the regulatory light chains of the myosin lineage suggesting a possible binding site with the heavy chain of myosin.This paper is dedicated to the memory of Jean-Francois Pechère, deceased  相似文献   

11.
A systematic mutational analysis of human interferon-beta-1a (IFN-beta) was performed to identify regions on the surface of the molecule that are important for receptor binding and for functional activity. The crystal structure of IFN-beta-1a was used to design a panel of 15 mutant proteins, in each of which a contiguous group of 2-8 surface residues was mutated, in most instances to alanine. The mutants were analyzed for activity in vitro in antiviral and in antiproliferation assays, and for their ability to bind to the type I IFN (ifnar1/ifnar2) receptor on Daudi cells and to a soluble ifnar2 fusion protein (ifnar2-Fc). Abolition of binding to ifnar2-Fc for mutants A2, AB1, AB2, and E established that the ifnar2 binding site on IFN-beta comprises parts of the A helix, the AB loop, and the E helix. Mutations in these areas, which together define a contiguous patch of the IFN-beta surface, also resulted in reduced affinity for binding to the receptor on cells and in reductions in activity of 5-50-fold in functional assays. A second receptor interaction site, concluded to be the ifnar1 binding site, was identified on the opposite face of the molecule. Mutations in this region, which encompasses parts of the B, C, and D helices and the DE loop, resulted in disparate effects on receptor binding and on functional activity. Analysis of antiproliferation activity as a function of the level of receptor occupancy allowed mutational effects on receptor activation to be distinguished from effects on receptor binding. The results suggest that the binding energy from interaction of IFN-beta with ifnar2 serves mainly to stabilize the bound IFN/receptor complex, whereas the binding energy generated by interaction of certain regions of IFN-beta with ifnar1 is not fully expressed in the observed affinity of binding but instead serves to selectively stabilize activated states of the receptor.  相似文献   

12.
To further identify amino acid domains involved in the ligand binding specificity of alpha(IIb)beta(3), chimeras of the conserved calcium binding domains of alpha(IIb) and the alpha subunit of the fibronectin receptor alpha(5)beta(1) were constructed. Chimeras that replaced all four calcium binding domains, replaced all but the second calcium binding domain of alpha(IIb) with those of alpha(5), or deleted all four calcium binding domains were synthesized but not expressed on the cell surface. Additional chimeras exchanged subsets or all of the variant amino acids in the second calcium binding domain, a region implicated in ligand binding. Cell surface expression of each second calcium binding domain mutant complexed with beta(3) was observed. Each second calcium binding domain mutant was able to 1) bind to immobilized fibrinogen, 2) form fibrinogen-dependent aggregates after treatment with dithiothreitol, and 3) bind the activation-dependent antibody PAC1 after LIBS 6 treatment. Soluble fibrinogen binding studies suggested that there were only small changes in either the K(d) or B(max) of any mutant. We conclude that chimeras of alpha(IIb) containing the second calcium binding domain sequences of alpha(5) are capable of complexing with beta(3), that the complexes are expressed on the cell surface, and that mutant complexes are capable of binding both immobilized and soluble fibrinogen, suggesting that the second calcium binding domain does not determine ligand binding specificity.  相似文献   

13.
Human low-molecular-weight kininogen (LK) was shown by fluorescence titration to bind two molecules of cathepsins L and S and papain with high affinity. By contrast, binding of a second molecule of cathepsin H was much weaker. The 2:1 binding stoichiometry was confirmed by titration monitored by loss of enzyme activity and by sedimentation velocity experiments. The kinetics of binding of cathepsins L and S and papain showed the two proteinase binding sites to have association rate constants kass,1 = 10.7-24.5 x 10(6) M-1 s-1 and kass,2 = 0.83-1.4 x 10(6) M-1 s-1. Comparison of these kinetic constants with previous data for intact LK and its separated domains indicate that the faster-binding site is also the tighter-binding site and is present on domain 3, whereas the slower-binding, lower-affinity site is on domain 2. These results also indicate that there is no appreciable steric hindrance for the binding of proteinases between the two binding sites or from the kininogen light chain.  相似文献   

14.
Insulin-like growth factor I (IGF-I) is a peptide related to insulin and IGF-II. These three related peptides produce similar biological effects, but each of them has its irreplaceable physiological significance in the organism. Multisided functional role of IGF-I in the organism is due to its unique binding properties. Specifically, but with different degree of affinity, it is able to interact with three receptors (IGF-I-receptor, insulin receptor, and IGF-II-receptor) and six binding proteins (IGFBP 1–6). To interact with each of the above objects, the IGF-I molecule contains individual structural determinants—binding domains (BD) providing strict specificity of interaction with them. Responsible for the IGF-I biological effects and binding with IGF-I-receptor is α-domain, for binding with insulin receptor—β-, EGF-II—γ-, while with all BP—δ-BD, respectively. Results of experimental study of binding domains not always can be estimated unanimously. The proposed by the author system of criteria for evaluation of changes in affinity of the IGF-I analogies allows unraveling the structural organization of each of the domains and tracing dependence on it of the peptide affinity to the particular object. This work considers composition, organization, and principle of formation of affinity of three binding IGF-I domains (α-, γ-, and δ-BD). The α-domain includes three tyrosines from three different molecule sites (B-24, C-31, and A-60) disposed spatially in the direct vicinity on its one surface. The β-domain also is considered as the domain participating in the high-affinity interaction; by composition and location in molecule it principally differs from α-BD, with the structural organization that so far has not been deciphered. Analyzed in detail is the key significance of the N-terminal site of the B-chain—the linear site of the domain—for binding of IGF-I with BP, functional heterogeneity of its constituent residues, and the characteristic principle of formation of affinity to BP. Analysis indicates a probability of the second δ-BD, quite possibly not the only one, and a high sensitivity of the domain to configuration of the IGH-I molecule surface. Structural organization and peculiarities of formation of affinity in the γ-domain are studied the best in three related peptides; it consists of two linearly exposed sites of A-chain. Composition of the site S-1 A (Phen8, Arg9, Ser10) provides a possibility of binding the ligand with IGF-I-receptor, while the level of affinity to it depends on the composition of S-2. The S-2 A composition (Arg14, Arg15) determines the low affinity of IGF-I to the IGF-II-receptor. The clear functioning of IGF-I and elimination of mixture of functions at the level of the binding activity depend on the spatial autonomy of BD of different nature, difference in structural organization of each of the domains, and a peculiarity of principles of formation of affinity in each case. The spatial coordination of several BD sites is the condition for transmission of the “structural signal“ by regulatory peptide. The performed analysis provides the direct notion of dependence of the binding ability of the IGF-I molecule that has BD of different nature on their structural peculiarities and allows using the revealed regularities at searching for BD in the newly discovered insulinlike peptides.  相似文献   

15.
Cooperative calcium binding to the two homologous domains of calmodulin (CaM) induces conformational changes that regulate its association with and activation of numerous cellular target proteins. Calcium binding to the pair of high-affinity sites (III and IV in the C-domain) can be monitored by observing calcium-dependent changes in intrinsic tyrosine fluorescence intensity (lambda(ex)/lambda(em) of 277/320 nm). However, calcium binding to the low-affinity sites (I and II in the N-domain) is more difficult to measure with optical spectroscopy because that domain of CaM does not contain tryptophan or tyrosine. We recently demonstrated that calcium-dependent changes in intrinsic phenylalanine fluorescence (lambda(ex)/lambda(em) of 250/280 nm) of an N-domain fragment of CaM reflect occupancy of sites I and II (VanScyoc, W. S., and M. A. Shea, 2001, Protein Sci. 10:1758-1768). Using steady-state and time-resolved fluorescence methods, we now show that these excitation and emission wavelength pairs for phenylalanine and tyrosine fluorescence can be used to monitor equilibrium calcium titrations of the individual domains in full-length CaM. Calcium-dependent changes in phenylalanine fluorescence specifically indicate ion occupancy of sites I and II in the N-domain because phenylalanine residues in the C-domain are nonemissive. Tyrosine emission from the C-domain does not interfere with phenylalanine fluorescence signals from the N-domain. This is the first demonstration that intrinsic fluorescence may be used to monitor calcium binding to each domain of CaM. In this way, we also evaluated how mutations of two residues (Arg74 and Arg90) located between sites II and III can alter the calcium-binding properties of each of the domains. The mutation R74A caused an increase in the calcium affinity of sites I and II in the N-domain. The mutation R90A caused an increase in calcium affinity of sites III and IV in the C-domain whereas R90G caused an increase in calcium affinity of sites in both domains. This approach holds promise for exploring the linked energetics of calcium binding and target recognition.  相似文献   

16.
We have investigated the mechanisms of activation of the plasma membrane (PM) Ca-ATPase by calmodulin (CaM), which result in enhanced calcium transport rates and the maintenance of low intracellular calcium levels. We have isolated the amino- or carboxyl-terminal domains of CaM (i.e. CaMN or CaMC), permitting an identification of their relative specificity for binding to sites on either the PM Ca-ATPase or a peptide (C28W) corresponding to the CaM-binding sequence. We find that either CaMN or CaMC alone is capable of productive interactions with the PM Ca-ATPase that induces enzyme activation. There are, however, large differences in the affinity and specificity of binding between CaMN and CaMC and either C28W or the PM Ca-ATPase. The initial binding interaction between CaMC and the PM Ca-ATPase is highly specific, having approximately 10,000-fold greater affinity in comparison with CaMN. However, following the initial association of either CaMC or CaMN, there is a 300-fold enhancement in the affinity of CaMN for the secondary binding site. Thus, while CaMC binds with a high affinity to the two CaM-binding sites within the PM Ca-ATPase in a sequential manner, CaMN binds cooperatively with a lower affinity to both binding sites. These large differences in the binding affinities and specificities of the amino- and carboxyl-terminal domains ensure that CaM binding to the PM Ca-ATPase normally involves the formation of a specific complex in which the initial high affinity association of the carboxyl-terminal domain promotes the association of the amino-terminal domain necessary for enzyme activation.  相似文献   

17.
The structure of annexin V, crystallised in the presence of two calcium or barium ions for each protein molecule, was solved by molecular replacement to 0.24 nm resolution. The two metal ions are found in domains I and IV, i.e. on the same side of the channel that lies in the centre of the molecule. The structures of the barium and calcium form are extremely close, the only differences localised in the metal-binding sites that lie on the surface of the molecule. The occupancies of the metal ions, however, are lower for barium than for calcium, expressing the lower affinity of the protein for the former. The packing of the annexin molecules in the crystal asymmetric unit may represent a model for the calcium driven association of membrane-bound annexins that leads to membrane fusion.  相似文献   

18.
19.
Wyka IM  Dhar K  Binz SK  Wold MS 《Biochemistry》2003,42(44):12909-12918
Human replication protein A (RPA) is a heterotrimeric (70, 32, and 14 kDa subunits), eukaryotic single-stranded DNA (ssDNA) binding protein required for DNA recombination, repair, and replication. The three subunits of human RPA are composed of six conserved DNA binding domains (DBDs). Deletion and mutational studies have identified a high-affinity DNA binding core in the central region of the 70 kDa subunit, composed of DBDs A and B. To define the roles of each DBD in DNA binding, monomeric and tandem DBD A and B domain chimeras were created and characterized. Individually, DBDs A and B have a very low intrinsic affinity for ssDNA. In contrast, tandem DBDs (AA, AB, BA, and BB) bind ssDNA with moderate to high affinity. The AA chimera had a much higher affinity for ssDNA than did the other tandem DBDs, demonstrating that DBD A has a higher intrinsic affinity for ssDNA than DBD B. The RPA-DNA interface is similar in both DBD A and DBD B. Mutational analysis was carried out to probe the relative contributions of the two domains to DNA binding. Mutation of polar residues in either core DBD resulted in a significant decrease in the affinity of the RPA complex for ssDNA. RPA complexes with pairs of mutated polar residues had lower affinities than those with single mutations. The decrease in affinity observed when polar mutations were combined suggests that multiple polar interactions contribute to the affinity of the RPA core for DNA. These results indicate that RPA-ssDNA interactions are the result of binding of multiple nonequivalent domains. Our data are consistent with a sequential binding model for RPA, in which DBD A is responsible for positioning and initial binding of the RPA complex while DBD A together with DBD B direct stable, high-affinity binding to ssDNA.  相似文献   

20.
Design, synthesis and DNA binding activity of a nonlinear 102 residue peptide are reported. The peptide contains four sequence-specific DNA binding domains of 434 Cro protein. These four domains were linked covalently to a symmetrical carboxyterminal crosslinker that contains four arms each ending with an aliphatic aminogroup. From CD studies we have found that in aqueous buffer in the presence of 20% trifluoroethanol the peptide residues assume alpha helical, beta-sheet and random coiled conformations with an alpha helical content of about 16% at room temperature. The alpha helicity is increased up to 40% in the presence of 40% trifluoroethanol. Upon complex formation between the peptide and DNA a change in the peptide conformation takes place which is consistent with an alpha-beta transition in the DNA binding, helix-turn-helix motif of 434 Cro repressor. Evidently residues present in helices alpha(2) and alpha(3) form a beta hairpin which is inserted in the minor DNA groove. The latter inference is supported by our observations that the peptide can displace minor groove binding antibiotic distamycin A from a complex with poly(dA).poly(dT). As revealed from DNase protection studies the peptide exhibits preferences for binding to operator and pseudooperator sites recognized by 434 Cro repressor. It binds strongly to operator sites OR1, OR2 and OR3 and exhibits a greater affinity for pseudooperator site Op1. From analysis of nucleotide sequences in the strong affinity binding sites for the peptide on DNA a conclusion is drawn that it binds to pseudosymmetrical nucleotide sequences 5'-ACAA(W)nCTGT-3', where W is an arbitrary nucleotide. n is equal to six or seven. In the strongest affinity binding site for the peptide on DNA (Op1) motif 5'-ACAA-3' is replaced by sequence 5'-ACCA-3'. A difference in binding specificity shown by the peptide and 434 Cro protein could be attributed to a flexibility of the connecting chains between DNA-binding domains in the peptide molecule as well as to a replacement of Thr - Ala in the alpha 2 helix. Removal of two residues from the N-terminal end of helix alpha 2 in each of the four DNA binding domains of 434 Cro present in the peptide leads to a loss of binding specificity, although the modified peptide binds to DNA unspecifically.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号