首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The space-clamped squid axon membrane and two versions of the Hodgkin-Huxley model (the original, and a strongly adapting version) are subjected to a first order dynamic analysis. Stable, repetitive firing is induced by phase-locking nerve impulses to sinusoidal currents. The entrained impulses are then pulse position modulated by additional, small amplitude perturbation sinusoidal currents with respect to which the frequencies response of impulse density functions are measured. (Impulse density is defined as the number of impulses per unit time of an ensemble of membranes with each membrane subject to the same stimulus). Two categories of dynamic response are observed: one shows clear indications of a corner frequency, the other has the corner frequency obscured by dynamics associated with first order conductance perturbations in the interspike interval. The axon membrane responds with first order perturbations whereas the unmodified Hodgkin-Huxley model does not. Quantitative dynamic signatures suggest that the relaxation times of axonal recovery excitation variables are twice as long as those of the corresponding model variables. A number of other quantitative differences between axon and models, including the values of threshold stimuli are also observed.  相似文献   

2.
The Hodgkin-Huxley model of the nerve axon describes excitation and propagation of the nerve impulse by means of a nonlinear partial differential equation. This equation relates the conservation of the electric current along the cablelike structure of the axon to the active processes represented by a system of three rate equations for the transport of ions through the nerve membrane. These equations have been integrated numerically with respect to both distance and time for boundary conditions corresponding to a finite length of squid axon stimulated intracellularly at its midpoint. Computations were made for the threshold strength-duration curve and for the repetitive firing of propagated impulses in response to a maintained stimulus. These results are compared with previous solutions for the space-clamped axon. The effect of temperature on the threshold intensity for a short stimulus and for rheobase was determined for a series of values of temperature. Other computations show that a highly unstable subthreshold propagating wave is initiated in principle by a just threshold stimulus; that the stability of the subthreshold wave can be enhanced by reducing the excitability of the axon as with an anesthetic agent, perhaps to the point where it might be observed experimentally; but that with a somewhat greater degree of narcotization, the axon gives only decrementally propagated impulses.  相似文献   

3.
In the Squilla heart ganglion, the pacemaker is located in the rostral group of cells. After spontaneous firing ceased, the electrophysiological properties of these cells were examined with intracellular electrodes. Cells respond to electrical stimuli with all-or-none action potentials. Direct stimulation by strong currents decreases the size of action potentials. Comparison with action potentials caused by axonal stimulation and analysis of time relations indicate that with stronger currents the soma membrane is directly stimulated whereas with weaker currents the impulse first arises in the axon and then invades the soma. Spikes evoked in a neuron spread into all other neurons. Adjacent cells are interconnected by electrotonic connections. Histologically axons are tied with the side-junction. B spikes of adjacent cells are blocked simultaneously by hyperpolarization or by repetitive stimulation. Experiments show that under such circumstances the B spike is not directly elicited from the A spike but is evoked by invasion of an impulse or electrotonic potential from adjacent cells. On rostral stimulation a small prepotential precedes the main spike. It is interpreted as an action potential from dendrites.  相似文献   

4.
A direct demonstration is given of interaction between specific neurons without impulses, via graded slow potentials electrotonically spread from one cell to another. Repetitive polarizing or depolarizing current pulses of 50 to 200 msec. and subthreshold intensity were passed through an intracellular electrode in the soma of a follower cell of the isolated ganglion. When the frequency is near the natural rhythm of impulse bursts corresponding to heart beats and arising in a pacemaker cell 5 to 10 mm. posteriorly, the bursts rapidly become synchronized with the pulses. The effect disappears upon withdrawing the intracellular electrode. Brief pulses or full spikes in the follower are not effective. Hyperpolarizing long pulses attract the burst to a fixed period after the end of the pulse, depolarizations after the beginning of the pulse. The natural rhythm promptly reappears when the pulses are stopped and occasionally breaks through during weak repetitive pulses. Current pulses in postsynaptic cells also alter the threshold of a presynaptic neuron to externally applied stimuli. Some kind of direct, low resistance pathway for electrotonic spread, discriminating against spikes because of their brevity, is inferred, providing a basis for subthreshold interaction which is specific and not by way of a field effect. Due to the sensitivity of modulation of ongoing rhythms, electrotonic currents can be effective even after decrementing over several millimeters.  相似文献   

5.
An analysis has been made of the electrical responses recorded on the surface and within the substance of the first sacral spinal segment when the contained motoneurons are excited by single and repeated antidromic ventral root volleys. A succession of negative deflections, designated in order of increasing latency m, i, b, d, has been found. Each of those deflections possesses some physiological property or properties to distinguish it from the remainder. Indicated by that fact is the conclusion that the successive deflections represent impulse conduction through successive parts of the motoneurons that differ in behavior, each from the others. Since the spinal cord constitutes a volume conductor the negative deflections are anteceded by a positive deflection at all points except that at which the axonal impulses first enter from the ventral root into the spinal cord. Frequently two or more negative deflections are recorded together in overlapping sequence, but for each deflection a region can be found in which the onset of that deflection marks the transition from prodromal positivity to negativity. Deflection m is characteristic of axonal spikes. Latent period is in keeping with known axonal conduction velocity. Refractory period is brief. The response represented by m is highly resistant to asphyxia. Maximal along the line of ventral root attachment and attenuating sharply therefrom, deflection m can be attributed only to axonal impulse conduction. Deflection i is encountered only within the cord, and is always associated with a deflection b. The i,b complex is recordable at loci immediately dorsal to regions from which m is recorded, and immediately ventral to points from which b is recorded in isolation from i. Except for its great sensitivity to asphyxia, deflection i has properties in common with those of m, but very different from those of b or d. To judge by properties i represents continuing axonal impulse conduction into a region, however, that is readily depolarized by asphyxia. Deflection b possesses a unique configuration in that the ascending limb is sloped progressively to the right indicating a sharp decrease in velocity of the antidromic impulses penetrating the b segment. A second antidromic volley will not conduct from i segment to b segment of the motoneurons unless separated from the first by nearly 1 msec. longer than is necessary for restimulation of axons. This value accords with somatic refractoriness determined by other means. Together with spatial considerations, the fact suggests that b represents antidromic invasion of cell bodies. Deflection d is ubiquitous, but in recordings from regions dorsal and lateral to the ventral horn, wherein an electrode is close to dendrites, but remote from other segments of motoneurons, d is the initial negative deflection. In latency d is variable to a degree that demands that it represent slow conduction through rather elongated structures. When associated with deflection b, deflection d may arise from the peak of b with the only notable discontinuity provided by the characteristically sloped rising phase of b. Deflection d records the occupation by antidromic impulses of the dendrites. Once dendrites have conducted a volley they will not again do so fully for some 120 msec. Embracing the several deflections, recorded impulse negativity in the motoneurons may endure for nearly 5 msec. When the axonal deflection m is recorded with minimal interference from somatic currents, it is followed by a reversal of sign to positivity that endures as long as impulse negativity can be traced elsewhere, demonstrating the existence of current flow from axons to somata as the latter are occupied by impulses. Note is taken of the fact that impulse conduction through motoneurons is followed by an interval, measurable to some 120 msec., during which after-currents flow. These currents denote the existence in parts of the intramedullary motoneurons of after-potentials the courses of which must differ in different parts of the neurons, otherwise nothing would be recorded. The location of sources and sinks is such as to indicate that a major fraction of the current flows between axons and somata. For approximately 45 msec. the direction of flow is from dendrites to axons. Thereafter, and for the remaining measurable duration, flow is from axons to dendrites.  相似文献   

6.
Synaptic inhibition in an isolated nerve cell   总被引:5,自引:0,他引:5       下载免费PDF全文
Following the preceding studies on the mechanisms of excitation in stretch receptor cells of crayfish, this investigation analyzes inhibitory activity in the synapses formed by two neurons. The cell body of the receptor neuron is located in the periphery and sends dendrites into a fine muscle strand. The dendrites receive innervation through an accessory nerve fiber which has now been established to be inhibitory. There exists a direct peripheral inhibitory control mechanism which can modulate the activity of the stretch receptor. The receptor cell which can be studied in isolation was stimulated by stretch deformation of its dendrites or by antidromic excitation and the effect of inhibitory impulses on its activity was analyzed. Recording was done mainly with intracellular leads inserted into the cell body. 1. Stimulation of the relatively slowly conducting inhibitory nerve fiber either decreases the afferent discharge rate or stops impulses altogether in stretched receptor cells. The inhibitory action is confined to the dendrites and acts on the generator mechanism which is set up by stretch deformation. By restricting depolarization of the dendrites above a certain level, inhibition prevents the generator potential from attaining the "firing level" of the cell. 2. The same inhibitory impulse may set up a postsynaptic polarization or a depolarization, depending on the resting potential level of the cell. The membrane potential at which the inhibitory synaptic potential reverses its polarity, the equilibrium level, may vary in different preparations. The inhibitory potentials increase as the resting potential is displaced in any direction from the inhibitory equilibrium. 3. The inhibitory potentials usually rise to a peak in about 2 msec. and decay in about 30 msec. After repetitive inhibitory stimulation a delayed secondary polarization phase has frequently been seen, prolonging the inhibitory action. Repetitive inhibitory excitation may also be followed by a period of facilitation. Some examples of "direct" excitation by the depolarizing action of inhibitory impulses are described. 4. The interaction between antidromic and inhibitory impulses was studied. The results support previous conclusions (a) that during stretch the dendrites provide a persisting "drive" for the more central portions of the receptor cell, and (b) that antidromic all-or-none impulses do not penetrate into the distal portions of stretch-depolarized dendrites. The "after-potentials" of antidromic impulses are modified by inhibition. 5. Evidence is presented that inhibitory synaptic activity increases the conductance of the dendrites. This effect may occur in the absence of inhibitory potential changes.  相似文献   

7.
Activation of passive iron as a model for the excitation of nerve   总被引:1,自引:0,他引:1  
The activation by cathodic polarization of passive iron in concentrated nitric acid (d = 1.4) has been investigated. 1. For short current pulses (1 msec. or less) a transient activation occurs when the product of current density and time exceeds a certain value. This limiting value is here designated as the "threshold." It is of the order of magnitude of 200 x 10(-6) coulomb/cm.(2). 2. After activation and repassivation the threshold is temporarily several times higher than before. This "refractory state" is due to the presence of nitrous acid and of oxide layers. The return of the threshold to normal values occurs in seconds or minutes, depending on the variety of iron wire. 3. Immediately after a subthreshold current pulse the threshold is reduced (summation). However, if the second pulse occurs a certain interval of time after the first the wire exhibits a certain degree of refractoriness (Gildemeister effect). 4. Oscillographic measurements reveal the existence of a latent period between the application of the stimulating pulse and the establishment of the active state. The duration of this latent period depends on the strength of the current pulse. 5. There exists a minimum current density (rheobase) below which no activation occurs however long the current is applied. Depending on the variety of iron used this current density varies between about 1 and 10 ma./cm.(2). To produce activation a current of rheobasic strength does not have to be applied for an infinite time but only for about 100 msec. (maximum utilization time). Activation becomes manifest some time after termination of the activating pulse. 6. With currents of slowly increasing strength it is possible to reach current strengths several times higher than rheobase without obtaining activation (accomodation). Accomodation to a large extent depends on the variety of iron used. Details are given for currents increasing with a time constant of 0.5 second. 7. Potential measurements on wires in the refractory state show the existence of after potentials. Wires in the refractory state which are cathodically polarized show peculiar oscillograms. Both types of experiments point to the formation of nitrous acid as an essential element in the course of events. 8. With current densities only slightly above rheobase all wires exhibit simple activations only. With higher current densities certain types of wires exhibit periodic activations. The range of current densities in which such periodic activations occur varies with the type of wire. The lower limit is sometimes quite close to the rheobase. 9. A theory of periodic activations is presented which is modelled on the theory of self-excitatory electrical oscillations. As variables describing the state of the wire, the "degree of activation" and the "degree of refractoriness" are introduced. In the physicochemical system an autocatalytic process corresponds to the "falling characteristic" of electrical oscillations. The theory leads to a rational view of the interrelations between threshold, rheobase, accomodafion, refractoriness, and rhythm. The phenomena of conduction are not discussed here but their relation to the theory is briefly touched upon.  相似文献   

8.
Afferent activity in a receptor afferent fiber with several encoding sites is generally believed to represent the activity of the fastest pacemaker that resets all more slowly encoding sites. Alternatively, some impulse mixing as well as some nonlinear summation of receptor current to a single encoder have been considered. In this article the repetitive firing activity of a Hodgkin-Huxley axon consisting of two branches that join into a single stem axon was investigated. The model axon was stimulated by constant-current injection into either the right or the left or both branches. It was found that the model axon generated an (infinite) train of action potentials if the input current was large enough. The discharge frequency found was constant, and on combined stimulation of both branches with different current, the site of impulse initiation was always in the branch receiving the higher input current, excluding a simple impulse mixing. On the other hand, the combined stimulation of both branches evoked repetitive firing with a higher frequency than expected by the pacemaker-resetting hypothesis. Moreover, a stimulus that is subthreshold for repetitive firing if injected into one branch yields repetitive firing when it is injected into both branches, a behavior inconsistent with impulse mixing and pacemaker resetting. On the other hand, current injection into one branch allowed repetitive activity only within a rather limited range of firing frequencies. Using distributed current injection into both branches, however, allowed many more different firing frequencies. Such behavior is inconsistent with both pacemaker resetting and (nonlinear) input current summation. Consequently, the repetitive firing behavior of a branched Hodgkin-Huxley axon with multiple encoding sites appears to be more complex than postulated in the simple hypotheses.  相似文献   

9.
A single submaximal intramural application of rectangular stimuli (duration 0.2–0.5 msec) to an atropine-treated taenia coli muscle band evoked inhibitory postsynaptic potentials (IPSP) and a marked relaxation of the muscle band in the vast majority of muscle cells. The latency period of the IPSP was 122±16 msec; the times for a rise and fall of amplitude were 96±8 and 370±60 msec, respectively. The mean latency period of muscle relaxation was 800 msec. The latency period, and especially the amplitude of the IPSP depended on the intensity of the intramural stimulation. This indicates that one muscle cell is inhibited by several nerve fibers. IPSP evoked by threshold stimuli displayed a tendency toward summation, while the amplitude of the second and of subsequent IPSP evoked by low-frequency maximal stimuli was always less than that of the first IPSP. After periodic stimulation (frequency 10–60 impulses/min) was discontinued, a posttetanic decrease in IPSP amplitude was observed. Anodic polarization of the muscle band with a direct current raised the effectiveness of synaptic transmission, as was evidenced by the considerable increase in IPSP amplitude. When the muscle membrane was hyperpolarized with noradrenaline, IPSP inhibition was reversible. This is evidence that the unknown mediator and noradrenaline have a common ionic inhibitory mechanism.A. A. Bogomol'ts Institute of Physiology of the Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 2, No. 5, pp. 544–551, September–October, 1970.  相似文献   

10.
Responses of electroreceptors (ampullae of Lorenzini) in Black Sea rays to electrical stimuli were recorded in vivo as spike activity of single nerve fibers. Depending on their functional properties the fibers could be divided into silent, those with regular activity (10–15 spikes/sec) and those with grouped activity. Electrical stimuli evoked a tonic response with a varied degree of adaptation in the nerve fibers. The threshold currents were between 10?10 and 10?11 A/mm2. The minimal latent period of the on-responses to pulses of current of maximal intensity was 15–40 msec, whereas that of the off-responses was 15–200 msec. The effect of intensity, duration, and polarity of the stimuli on the responses of the receptors and the adaptation of the electroreceptors during application of a steady current were investigated. The properties of the ampullae of Lorenzini were compared with those of other types of electroreceptors.  相似文献   

11.
The Mechanism of Discharge Pattern Formation in Crayfish Interneurons   总被引:1,自引:1,他引:0  
Excitatory and inhibitory processes which result in the generation of output impulses were analyzed in single crayfish interneurons by using intracellular recording and membrane polarizing techniques. Individual spikes which are initiated orthodromically in axon branches summate temporally and spatially to generate a main axon spike; temporally dispersed branch spikes often pace repetitive discharge of the main axon. Hyperpolarizing IPSP's sometimes suppress axonal discharge to most of these inputs, but in other cases may interact selectively with some of them. The IPSP's reverse their polarity at a hyperpolarized level of membrane potential; they sometimes exhibit two discrete time courses indicating two different input sources. Outward direct current at the main axon near branches causes repetitive discharges which may last, with optimal current intensities, for 1 to 15 seconds. The relation of discharge frequency to current intensity is linear for an early spike interval, but above 100 to 200 impulses/sec. it begins to show saturation. In one unit the current-frequency curve exhibited two linear portions, suggesting the presence of two spike-generating sites in the axon. Current threshold measurements, using test stimuli of different durations, showed that both accommodation and "early" or "residual" refractoriness contribute to the determination of discharge rate at different frequencies.  相似文献   

12.
The present study compares the structure and function of retinal ganglion and amacrine cell dendrites. Although a superficial similarity exists between amacrine and ganglion cell dendrites, a comparison between the branching pattern of the two cell types reveals differences which can only be appreciated at the microscopic level. Whereas decremental branching is found in ganglion cells, a form of non-decremental or "trunk branching" is observed in amacrine cell dendrites. Physiological differences are also observed in amacrine vs ganglion cells in which many amacrine cells generate dendritic impulses which can be readily distinguished from those of the soma, while separate dendritic impulses in ganglion cell dendrites have not been reported. Despite these differences, both amacrine and ganglion cell dendrites appear to contain voltage-gated ion channels, including TTX-sensitive sodium channels. One way to account for separate dendritic impulses in amacrine cells is to have a higher density of sodium channels and we generally find in modeling studies that a dendritic sodium channel density that is more than about 50% of that in the soma is required for excitatory, synaptic currents to give rise to local dendritic spike activity. Under these conditions, impulses can be generated in the dendrites and propagate for some distance along the dendritic tree. When the soma generates impulse activity in amacrine cells, it can activate, antidromically, the entire dendritic tree. Although ganglion cell dendrites do not appear to generate independent impulses, the presence of voltage-gated ion channels in these structures appears to be important for their function. Modeling studies demonstrate that when dendrites lack voltage-gated ion channels, impulse activity evoked by current applied to the cell body is generated at rates that are much higher than those observed physiologically. However, by placing ion channels in the dendrites at a reduced density compared to those of amacrine cells, the firing rate of ganglion cells becomes more physiological and the relationship between frequency and current (F/I relationship) can be precisely matched with physiological data. Recent studies have demonstrated the presence of T-type calcium channels in ganglion cells and our analysis suggests that they are found in higher density in the dendrites compared to the soma. This is the first voltage-gated ion channel which appears more localized to the dendrites than other cell copartments and this difference alone cries for an interpretation. The presence of a significant T-type calcium channel density in the dendrites can influence their integrative properties in several important ways. First, excitatory synaptic currents can be augmented by the activation of T-type calcium channels, although this is more likely to occur for transient rather than sustained synaptic currents because T-type currents show strong inactivation properties. In addition, T-type calcium channels may serve to limit the electrical load which dendrites impose on the spike initiation process and thus enhance the speed with which impulses can be triggered by the impulse generation site. This role whill enhance the safety factor for impulses traveling in the orthograde direction.  相似文献   

13.
Tetanic stimulation of the tooth pulp produced long lasting increases in potentials released by stimulation of the tooth pulp with single stimuli in the sensomotor cortex of rabbits. Stimulation with 200 impulses/sec for 5 sec produced changes of irritability that are demonstrable for 10-50 min depending on the intensity of stimulation. The lower rate limit for producing such changes is 25 impulses/sec. At a rate of 200 impulses/sec, a stimulation time of 25 msec was necessary to produce these changes. The postexcitatory depression occuring after single stimuli within 10-40 msec was increased by tetanic stimulation, whereas facilitation observed 5 msec after single stimuli was unaffected.  相似文献   

14.
We recorded the motor evoked potentials (MEPs) from the abductor pollicis brevis muscle, after supramaximal electrical transcranial stimulation, and studied the effect of paired transcranial shocks with varying interstimulus time intervals, in 10 normal subjects, 4 patients with median nerve neuropathy and 2 patients with motoneurone disease.In relaxed muscles the amplitude of the MEP evoked by a single shock averaged 30% of the M wave. With intervals from 1 to 2.5 msec 2 shocks evoked one MEP far larger in size than the control MEP (70% of the M wave). With intervals of 10 msec and longer, the 2 shocks evoked 2 independent MEPs; the size of the MEP following the second shock (test) was inversely correlated with the size of the control MEP: the more the control MEP approached the size of the M wave, the smaller the test MEP. Single motor unit records showed that, in the normal subjects and patients with peripheral neuropathy, the same motor unit was activated either by the first or the second shock, whereas in the patients with motoneurone disease it fired twice. In active muscles, the control MEP averaged 70% of the M wave. With intervals of 10 msec and longer the test MEP was markedly suppressed; with 100 msec intervals it fully recovered. In relaxed muscles, by delivering a double shock at a 1.5 msec interval, thus evoking a large MEP, followed by a second double-shock, the test MEP was completely suppressed for a period of 20 msec; it began to recover at 50 msec intervals and fully recovered after 150 msec.These results indicate that: (1) high-threshold spinal motoneurones can profit from temporal summation if double-shocks are delivered at short time intervals; (2) the synchronous excitation of the motoneuronal pool produced by transcranial stimulation is followed by a 20 msec period of absolute inhibition, possibly through a massive activation of the Renshaw system; (3) during voluntary contraction, only a portion of the motoneuronal pool remains refractory, possibly because of the enhanced spinal excitability.  相似文献   

15.
In excitable cells, the generation of an action potential (AP) is associated with transient changes of the intra- and extracellular concentrations of small ions such as Na+, K+ and Cl. If these changes cannot be fully reversed between successive APs cumulative changes of trans-membrane ion gradients will occur, impinging on the cell volume and the duration, amplitude and frequency of APs. Previous computational studies focused on effects associated with excitation-induced changes of potassium and sodium. Here we present a model based study on the influence of chloride on the fidelity of AP firing and cellular volume regulation during excitation. Our simulations show that depending on the magnitude of the basal chloride permeability two complementary types of responsiveness and volume variability exist: (i) At high chloride permeability (typical for muscle cells), large excitatory stimuli are required to elicit APs; repetitive stimuli of equal strength result in almost identical spike train patterns (Markovian behavior), however, long excitation may lead to after discharges due to an outward directed current of intracellular chloride ions which accumulate during excitation; cell volume changes are large. (ii) At low chloride permeability (e.g., neurons), small excitatory stimuli are sufficient to elicit APs, repetitive stimuli of equal strength produce spike trains with progressively changing amplitude, frequency and duration (short-term memory effects or non-Markovian behavior); cell volume changes are small. We hypothesize that variation of the basal chloride permeability could be an important mechanism of neuronal cells to adapt their responsiveness to external stimuli during learning and memory processes.  相似文献   

16.
An in vitro preparation of the guinea-pig cornea was used to study the effects of changing temperature on nerve terminal impulses recorded extracellularly from cold-sensitive receptors. At a stable holding temperature (31-32.5 degrees C), cold receptors had an ongoing periodic discharge of nerve terminal impulses. This activity decreased or ceased with heating and increased with cooling. Reducing the rate of temperature change reduced the respective effects of heating and cooling on nerve terminal impulse frequency. In addition to changes in the frequency of activity, nerve terminal impulse shape also changed with heating and cooling. At the same ambient temperature, nerve terminal impulses were larger in amplitude and faster in time course during heating than those recorded during cooling. The magnitude of these effects of heating and cooling on nerve terminal impulse shape was reduced if the rate of temperature change was slowed. At 29, 31.5, and 35 degrees C, a train of 50 electrical stimuli delivered to the ciliary nerves at 10-40 Hz produced a progressive increase in the amplitude of successive nerve terminal impulses evoked during the train. Therefore, it is unlikely that the reduction in nerve terminal impulse amplitude observed during cooling is due to the activity-dependent changes in the nerve terminal produced by the concomitant increase in impulse frequency. Instead, the differences in nerve terminal impulse shape observed at the same ambient temperature during heating and cooling may reflect changes in the membrane potential of the nerve terminal associated with thermal transduction.  相似文献   

17.
Responses of Photoreceptors in Hermissenda   总被引:7,自引:4,他引:3  
The five photoreceptors in the eye of the mollusc Hermissenda crassicornis respond to light with depolarization and firing of impulses. The impulses of any one cell inhibit other cells, but the degree of inhibition differs in different pairs. Evidence is presented to show that the interactions occur at terminal branches of the photoreceptor axons, inside the cerebropleural ganglion. Properties of the generator potential are examined and it is shown that the depolarization develops in two phases which are affected differently by extrinsic currents. Finally, it is shown that by enhancing the differences in the responses of individual cells to a variety of stimuli, the interactions may facilitate a number of simple discriminations.  相似文献   

18.
Characteristics of responses of the small pit organs of the catfishIctalurus nebulosus to the action of electrical stimuli of varied polarity, intensity, and duration were studied. Single fibers of the lateral nerve innervating these organs possessed regular spontaneous activity with a frequency of 35–45/sec or grouped activity, coinciding with the rhythm of the animal's swimming movements. Threshold current densities varied from 10−11 to 10−10 A/mm2. Electrical stimuli evoked a phasic-tonic response of the receptor. The latent period was 10–50 msec for on-responses and 10–200 msec for off-responses. In the presence of strong electric fields the receptor responded to a cathodal stimulus by excitation, whereas under ordinary experimental conditions an anodal stimulus is excitatory. The properties of small pit organs are compared with the characteristics of other electroreceptors.  相似文献   

19.
Strength-duration curves of the ascending and descending conductive spinal cord potentials (SCEPs) in cats were obtained using constant current stimuli. For the formulation of numeric indices of excitability, the rheobase is defined as the minimal current strength below which response cannot occur even if the current continues, and the chronaxie is defined as the minimal duration of a current required to evoke the potential at twice the rheobase strength. The chronaxies and rheobases were calculated from the constructed strength-duration curves. The purpose of this study is to produce strength-duration curves and to evaluate the utility of chronaxies and rheobases for SCEPs. This study showed the following results: (1) there was a hyperbolic relationship between stimulus strength and stimulus duration at threshold values, similar to that seen in peripheral nerves; (2) the ascending and descending tracts of SCEP were mediated through the same pathway (based on the similar chronaxies and rheobases); (3) following spinal cord compression the chronaxie and rheobase increased significantly (P < 0.05), which is similar to peripheral nerve disturbance. However, the rheobase decreased significantly following slight spinal cord compression (P < 0.05) and systemic cooling (P < 0.01), and the strength-duration curve shifted showing a tendency towards decrease of the galvanic threshold therefore, amplitude augmentation with slight compression and with decrease in temperature seems to contribute to the reduction of the threshold. The strength-duration curve, the chronaxie and the rheobase may be useful in assessing spinal cord function.  相似文献   

20.
An attempt was made to evaluate critically the extent to which the background electrocorticogram, neuronal impulse activity, and evoked potentials reflect the state of cortical excitation and inhibition. It was shown that during electrocorticogram desynchronization, firing neurons predominated in the surface (mainly afferent) layers, while inhibited neurons were in the majority in the lower layers of the cortex. Consequently, desynchronization does not reflect diffuse excitation of the cortex and cannot be taken as an index of central excitation. Slow electrocortical waves cannot be used as indicators of an inhibitory state, even though they may be associated with processes leading to the development of inhibition. Under the effects of different stimuli, the number of neurons participating in impulse condition, and the number of neurons temporarily inhibiting impulse activity in the projection cortical area were stable (ratio 2:1). It was found that the correlation between impulse discharges of neuronal pairs increases during both central excitation and central inhibition. Nonetheless, differences between cortical excitation and inhibition were seen in the reorganization of neuronal columns. The use of evoked potentials to determine cortical excitation or inhibition is complicated by the fact that the amplitude of evoked-potential components reflects the divergent influences of many factors. It was shown that conditional excitation diminished the evoked potential to a light stimulus in the projection cortical area, but caused it to increase in the region of the motor analyzer. The elaboration of a conditional inhibition (extinction) is accompanied by the growth of an evoked potential to a stimulus in the primary cortical area, and by its repression in the region of the motor analyzer. In this case, a large delayed negative wave appears in the evoked potential.This report was presented at the All-Union Symposium on Electric Responses of the Cerebral Cortex to Afferent Stimuli, Kiev, October, 1969.Rostov-on-Don State University. Translated from Neirofiziologiya, Vol. 2, No. 2, pp. 140–154, March–April, 1970.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号