首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Aim: To investigate the effect of curli expression on cell hydrophobicity, biofilm formation and attachment to cut and intact fresh produce surfaces. Methods and Results: Five Escherichia coli O157:H7 strains were evaluated for curli expression, hydrophobicity, biofilm formation and attachment to intact and cut fresh produce (cabbage, iceberg lettuce and Romaine lettuce) leaves. Biofilm formation was stronger when E. coli O157:H7 were grown in diluted tryptic soy broth (1 : 10). In general, strong curli‐expressing E. coli O157:H7 strains 4406 and 4407 were more hydrophobic and attached to cabbage and iceberg lettuce surfaces at significantly higher numbers than other weak curli‐expressing strains. Overall, E. coli O157:H7 populations attached to cabbage and lettuce (iceberg and Romaine) surfaces were similar (P > 0·05), indicating produce surfaces did not affect (P < 0·05) bacterial attachment. All E. coli O157:H7 strains attached rapidly on intact and cut produce surfaces. Escherichia coli O157:H7 attached preferentially to cut surfaces of all produce types; however, the difference between E. coli O157:H7 populations attached to intact and cut surfaces was not significant (P > 0·05) in most cases. Escherichia coli O157:H7 attachment and attachment strength (SR) to intact and cut produce surfaces increased with time. Conclusions: Curli‐producing E. coli O157:H7 strains attach at higher numbers to produce surfaces. Increased attachment of E. coli O157:H7 on cut surfaces emphasizes the need for an effective produce wash to kill E. coli O157:H7 on produce. Significance and Impact of the Study: Understanding the attachment mechanisms of E. coli O157:H7 to produce surfaces will aid in developing new intervention strategies to prevent produce outbreaks.  相似文献   

3.
4.
5.
The resistance of Escherichia coli O157:H7 strains ATCC 43895-, 43895-EPS (an exopolysaccharide [EPS]-overproducing mutant), and ATCC 43895+ (a curli-producing mutant) to chlorine, a sanitizer commonly used in the food industry, was studied. Planktonic cells of strains 43895-EPS and/or ATCC 43895+ grown under conditions supporting EPS and curli production, respectively, showed the highest resistance to chlorine, indicating that EPS and curli afford protection. Planktonic cells (ca. 9 log10 CFU/ml) of all strains, however, were killed within 10 min by treatment with 50 μg of chlorine/ml. Significantly lower numbers of strain 43895-EPS, compared to those of strain ATCC 43895-, attached to stainless steel coupons, but the growth rate of strain 43895-EPS on coupons was not significantly different from that of strain ATCC 43895-, indicating that EPS production did not affect cell growth during biofilm formation. Curli production did not affect the initial attachment of cells to coupons but did enhance biofilm production. The resistance of E. coli O157:H7 to chlorine increased significantly as cells formed biofilm on coupons; strain ATCC 43895+ was the most resistant. Population sizes of strains ATCC 43895+ and ATCC 43895- in biofilm formed at 12°C were not significantly different, but cells of strain ATCC 43895+ showed significantly higher resistance than did cells of strain ATCC 43895-. These observations support the hypothesis that the production of EPS and curli increase the resistance of E. coli O157:H7 to chlorine.  相似文献   

6.
The biofilm life style helps bacteria resist oxidative stress, desiccation, antibiotic treatment, and starvation. Biofilm formation involves a complex regulatory gene network controlled by various environmental signals. It was previously shown that prophage insertions in mlrA and heterogeneous mutations in rpoS constituted major obstacles limiting biofilm formation and the expression of extracellular curli fibers in strains of Escherichia coli serotype O157:H7. The purpose of this study was to test strains from other important serotypes of Shiga toxin-producing E. coli (STEC) (O26, O45, O103, O111, O113, O121, and O145) for similar regulatory restrictions. In a small but diverse collection of biofilm-forming and non-forming strains, mlrA prophage insertions were identified in only 4 of the 19 strains (serotypes O103, O113, and O145). Only the STEC O103 and O113 strains could be complemented by a trans-copy of mlrA to restore curli production and Congo red (CR) dye affinity. RpoS mutations were found in 5 strains (4 serotypes), each with low CR affinity, and the defects were moderately restored by a wild-type copy of rpoS in 2 of the 3 strains attempted. Fourteen strains in this study showed no or weak biofilm formation, of which 9 could be explained by prophage insertions or rpoS mutations. However, each of the remaining five biofilm-deficient strains, as well as the two O145 strains that could not be complemented by mlrA, showed complete or nearly complete lack of motility. This study indicates that mlrA prophage insertions and rpoS mutations do limit biofilm and curli expression in the non-serotype O157:H7 STEC but prophage insertions may not be as common as in serotype O157:H7 strains. The results also suggest that lack of motility provides a third major factor limiting biofilm formation in the non-O157:H7 STEC. Understanding biofilm regulatory mechanisms will prove beneficial in reducing pathogen survival and enhancing food safety.  相似文献   

7.
8.
9.
In a previous study, we identified Congo red-binding and -nonbinding phase variants of Escherichia coli serotype O157:H7 strain ATCC 43895. The Congo red-binding variant, strain 43895OR, produced a dry, aggregative colony that was similar to the red, dry, and rough (rdar) phenotype characteristic of certain strains of Salmonella. In contrast, variant 43895OW produced a smooth and white colony morphology. In this study, we show that, similar to rdar strains of Salmonella enterica serovar Typhimurium, strain 43895OR forms large aggregates in broth cultures, firm pellicles at the air-medium interface on glass, and dense biofilms on glass and polystyrene. However, unlike S. enterica serovar Typhimurium, strain 43895OR does not stain positive for cellulose production. When strain 43895OR was fixed on agar, scanning electron microscopy showed cells expressing extracellular matrix (ECM) containing curli fibers. Strain 43895OW was devoid of any ECM or curli fibers on agar but showed expression of curli fibers during attachment to glass. Strain 43895OR produced >4-fold-larger amounts of biofilm than strain 43895OW on polystyrene, glass, stainless steel, and Teflon; formation was >3-fold higher in rich medium than in nutrient-limited medium. Biofilm-associated cells of both strains showed statistically greater resistance (P < 0.05) to hydrogen peroxide and quaternary ammonium sanitizer than their respective planktonic cells. This study shows that the rdar phenotype of E. coli O157:H7 strain 43895OR is important in multicellular growth, biofilm formation, and resistance to sanitizers. However, the lack of cellulose production by strain 43895OR indicates important differences in the ECM composition compared to that of Salmonella.  相似文献   

10.
Shiga toxin-producing Escherichia coli isolates from two 2006 outbreaks were compared to other O157:H7 isolates for virulence genotype, biofilm formation, and stress responses. Spinach- and lettuce-related-outbreak strains had similar pulsed-field gel electrophoresis patterns, and all carried both stx2 and stx2c variant genes. Cooperative biofilm formation involving an E. coli O157:H7 strain and a non-O157:H7 strain was also demonstrated.  相似文献   

11.
Modeling of batch kinetics in minimal synthetic medium was used to characterize Escherichia coli O157:H7 growth, which appeared to be different from the exponential growth expected in minimal synthetic medium and observed for E. coli K-12. The turbidimetric kinetics of 14 of the 15 O157:H7 strains tested (93%) were nonexponential, whereas 25 of the 36 other E. coli strains tested (70%) exhibited exponential kinetics. Moreover, the anomaly was almost corrected when the minimal medium was supplemented with methionine. These observations were confirmed with two reference strains by using plate count monitoring. In mixed cultures, E. coli K-12 had a positive effect on E. coli O157:H7 and corrected its growth anomaly. This demonstrated that commensalism occurred, as the growth curve for E. coli K-12 was not affected. The interaction could be explained by an exchange of methionine, as the effect of E. coli K-12 on E. coli O157:H7 appeared to be similar to the effect of methionine.  相似文献   

12.
Although the main reservoirs for pathogenic Escherichia coli O157:H7 are cattle and the cattle environment, factors that affect its tenure in the bovine host and its survival outside humans and cattle have not been well studied. It is also not understood what physiological properties, if any, distinguish these pathogens from commensal counterparts that live as normal members of the human and bovine gastrointestinal tracts. To address these questions, individual and competitive fitness experiments, indirect antagonism assays, and antibiotic resistance and carbon utilization analyses were conducted using a strain set consisting of 122 commensal and pathogenic strains. The individual fitness experiments, under four different environments (rich medium, aerobic and anaerobic; rumen medium, anaerobic; and a minimal medium, aerobic) revealed no differences in growth rates between commensal E. coli and E. coli O157:H7 strains. Indirect antagonism assays revealed that E. coli O157:H7 strains more frequently produced inhibitory substances than commensal strains did, under the conditions tested, although both groups displayed moderate sensitivity. Only minor differences were noted in the antibiotic resistance patterns of the two groups. In contrast, several differences between commensal and O157:H7 groups were observed based on their carbon utilization profiles. Of 95 carbon sources tested, 27 were oxidized by commensal E. coli strains but not by the E. coli O157:H7 strains. Despite the observed physiological and biochemical differences between these two groups of E. coli strains, however, the O157:H7 strains did not appear to possess traits that would confer advantages in the bovine or extraintestinal environment.  相似文献   

13.
We studied injury of Escherichia coli O157:H7 cells in 11 food items during freeze storage and methods of isolating freeze-injured E. coli O157:H7 cells from foods. Food samples inoculated with E. coli O157:H7 were stored for 16 weeks at −20°C in a freezer. Noninjured and injured cells were counted by using tryptic soy agar and sorbitol MacConkey agar supplemented with cefixime and potassium tellurite. Large populations of E. coli O157:H7 cells were injured in salted cabbage, grated radish, seaweed, and tomato samples. In an experiment to detect E. coli O157:H7 in food samples artificially contaminated with freeze-injured E. coli O157:H7 cells, the organism was recovered most efficiently after the samples were incubated in modified E. coli broth without bile salts at 25°C for 2 h and then selectively enriched at 42°C for 18 h by adding bile salts and novobiocin. Our enrichment method was further evaluated by isolating E. coli O157:H7 from frozen foods inoculated with the organism prior to freezing. Two hours of resuscitation at 25°C in nonselective broth improved recovery of E. coli O157:H7 from frozen grated radishes and strawberries, demonstrating that the resuscitation step is very effective for isolating E. coli O157:H7 from frozen foods contaminated with injured E. coli O157:H7 cells.  相似文献   

14.
Escherichia coli O157:H7 is an important food-borne pathogen. Often E. coli O157:H7 is difficult to detect, because it is present sporadically at very low levels together with very high levels of competitor organisms which can be difficult to distinguish phenotypically. Cultural methods are time-consuming and give variable results in the detection of E. coli O157:H7. This study examined the performance of BAX for Screening/E. coli O157:H7, a new rapid method for the detection of E. coli O157:H7, against traditional and improved cultural methods and an immunodiffusion assay. All cultural methods demonstrated inadequacy in detecting the presence of E. coli O157:H7 in inoculated samples. The limitations of these cultural methods further complicate evaluation of screening methodologies. The BAX for Screening/E. coli O157:H7 assay outperformed the other methods, with a detection rate of 96.5%, compared to 39% for the best cultural method and 71.5% for the immunodiffusion method. The BAX for Screening/E. coli O157:H7 assay proved to be a rapid, highly sensitive test for the detection of low levels of E. coli O157:H7 in ground beef.  相似文献   

15.
Feedlot cattle were observed for fecal excretion of and rectoanal junction (RAJ) colonization with Escherichia coli O157:H7 to identify potential “supershedders.” RAJ colonization and fecal excretion prevalences were correlated, and E. coli O157:H7 prevalences and counts were significantly greater for RAJ samples. Based on a comparison of RAJ and fecal ratios of E. coli O157:H7/E. coli counts, the RAJ appears to be preferentially colonized by the O157:H7 serotype. Five supershedders were identified based on persistent colonization with high concentrations of E. coli O157:H7. Cattle copenned with supershedders had significantly greater mean pen E. coli O157:H7 RAJ and fecal prevalences than noncopenned cattle. Cumulative fecal E. coli O157:H7 excretion was also significantly higher for pens housing a supershedder. E. coli O157:H7/E. coli count ratios were higher for supershedders than for other cattle, indicating greater proportional colonization. Pulsed-field gel electrophoresis analysis demonstrated that isolates from supershedders and copenned cattle were highly related. Cattle that remained negative for E. coli O157:H7 throughout sampling were five times more likely to have been in a pen that did not house a supershedder. The data from this study support an association between levels of fecal excretion of E. coli O157:H7 and RAJ colonization in pens of feedlot cattle and suggest that the presence of supershedders influences group-level excretion parameters. An improved understanding of individual and population transmission dynamics of E. coli O157:H7 can be used to develop preslaughter- and slaughter-level interventions that reduce contamination of the food chain.  相似文献   

16.
Escherichia coli O157:H7 (strains ATCC 43895 and FO46) became nonculturable in sterile, distilled, deionized water or after exposure to chlorine. Recovery of nonculturable E. coli O157:H7 was examined by in vitro and in vivo methods. The decline in culturability of starved E. coli O157:H7 was measured by plate count on rich medium. Recovery in vitro of nonculturable cells was conducted with media amended with catalase or sodium pyruvate; however, there was no apparent increase over culturable cell counts on amended versus nonamended media. Although nonculturable E. coli O157:H7 did not recover under in vitro conditions, a mouse model was used to determine if in vivo conditions would provide sufficient conditions for recovery of nonculturable E. coli O157:H7. In separate studies, mice were orally challenged with starvation-induced nonculturable cells (FO46) or chlorine-induced nonculturable cells (43895 and FO46). Passage through the mouse gastrointestinal tract had no effect on recovery of nonculturable (starvation or chlorine induced) E. coli O157:H7 (43895 or FO46), based on analysis of fecal samples. Mouse kidneys were assayed for the presence of Shiga toxin using the Vero cell assay. Differences in cytotoxicity towards Vero cells from kidney samples of mice receiving nonculturable cells and control mice were not significant, suggesting a loss of virulence.  相似文献   

17.
Gallbladders and rectal contents were collected from cattle (n = 933) at slaughter to determine whether the gallbladder harbors Escherichia coli O157:H7. Both gallbladder mucosal swabs and homogenized mucosal tissues were used for isolation. Only five gallbladders (0.54%) were positive for E. coli O157:H7. Fecal prevalence averaged 7.1%; however, none of the cattle that had E. coli O157:H7 in the gallbladder was positive for E. coli O157:H7 in feces. Therefore, the gallbladder does not appear to be a common site of colonization for E. coli O157:H7 in beef cattle.  相似文献   

18.
19.
20.
Sprout producers have recently been faced with several Salmonella enterica and Escherichia coli O157:H7 outbreaks. Many of the outbreaks have been traced to sprout seeds contaminated with low levels of human pathogens. Alfalfa seeds were inoculated with S. enterica and E. coli O157:H7 strains isolated from alfalfa seeds or other environmental sources and sprouted to examine growth of these human pathogens in association with sprouting seeds. S. enterica strains grew an average of 3.7 log10 on sprouting seeds over 2 days, while E. coli O157:H7 strains grew significantly less, an average of 2.3 log10. The initial S. enterica or E. coli O157:H7 inoculum dose and seed-sprouting temperature significantly affected the levels of both S. enterica and E. coli O157:H7 on the sprouts and in the irrigation water, while the frequency of irrigation water replacement affected only the levels of E. coli O157:H7. Colonization of sprouting alfalfa seeds by S. enterica serovar Newport and E. coli O157:H7 strains transformed with a plasmid encoding the green fluorescent protein was examined with fluorescence microscopy. Salmonella serovar Newport colonized both seed coats and sprout roots as aggregates, while E. coli O157:H7 colonized only sprout roots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号