首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present experiment was undertaken to demonstrate the effect of muscular force as well as duration of muscular work on the electromyographic (EMG) DC potential. Thirty subjects had to lift different weights by flexing the right forearm within a defined and constant setting for 20 s. The experimental variables were weight (0.5, 1, 2, and 3 kg) and time. The EMG was recorded from the belly of the right biceps brachii muscle in a quasi-unipolar manner and split into an integrated ac channel (IEMG) and a dc channel (DC-EMG). The average IEMG showed a ramp-like shape. Analysis showed a positive relationship for weight (p less than 0.0001) and time (p less than 0.0001) with the IEMG. The average shape of the DC-EMG showed a negative initiation potential, a monotonically increasing negative potential during contraction (contraction potential), a positively peaking off potential and a slow return to baseline (after potential). Analyses of variance demonstrated a significant (p less than 0.001) relationship of weight to the magnitude of the initiation and the termination potential. Regression analyses displayed an inverse relationship of time to the termination (p less than 0.01) and to the resolution potential (p less than 0.001). The DC-EMG showed higher peaks (initiation and termination potential) for heavier weights. For the termination and after potential less positive deflections were found with increasing time (fatigue). A control condition (isometric contraction) indicated that the initiation, contraction, and termination potential of the DC-EMG may also be related to aspects of the movement. Results suggest that the DC-EMG is a more complex measure of muscular activity than the IEMG.  相似文献   

2.
1. Beef heart submitochondrial particles bound to asolectin impregnated Millipore filter, according to the method described earlier (Drachev et al. (1974) Nature 249, 321--324), are able to generate, upon addition of ATP, an electrical potential which can be directly measured. 2. The transmembrane electrical potential generated by ATP hydrolysis reaches values up to 80 mV. The half-time required to attain the plateau of potential is paradoxically long (5 to 10 min at room temperature) and is temperature-dependent. Among different phospholipid species which have been used to impregnate the Millipore filter, phosphatidylethanolamine was found to be the most effective for generation of electrical potential. 3. The potential generated by ATP hydrolysis is inhibited by inhibitors of mitochondrial ATPase, by the uncoupler FCCP and by reagents collapsing the membrane potential. 4. Addition of inhibitors of mitochondrial ATPase, when the plateau of potential is attained, results in a decay of potential. This decay of potential is as slow as the generation of potential induced by ATP hydrolysis. 5. The initial rise in electrical potential is proportional to the ATPase activity.  相似文献   

3.
Identified neurons in the abdominal ganglion of Elysia chlorotica adapted to 50% seawater (SW) had significantly different electrical properties from the same cells in animals adapted to 100% SW. Resting potential, action potential (AP) overshoot, (AP) duration, threshold and after potential were all different following salinity acclimation. The resting potential of these cells behaves as an ideal potassium electrode above 10 mM [K+]. The action potential has both sodium and calcium components to the rising phase.  相似文献   

4.
Xu C  Loew LM 《Biophysical journal》2003,84(6):4144-4156
We imaged the intramembrane potential (a combination of transmembrane, surface, and dipole potential) on N1E-115 neuroblastoma cells with a voltage-sensitive dye. After activation of the B(2) bradykinin receptor, the electric field sensed by the dye increased by an amount equivalent to a depolarization of 83 mV. The increase in intramembrane potential was blocked by the phospholipase C (PLC) inhibitors U-73122 and neomycin, and was invariably accompanied by a transient rise of [Ca(2+)](i). A depolarized inner surface potential, as the membrane loses negative charges via phosphatidylinositol 4,5-bisphosphate (PIP(2)) hydrolysis, and an increase in the dipole potential, as PIP(2) is hydrolyzed to 1,2-diacylglycerol (DAG), can each account for a small portion of the change in intramembrane potential. The primary contribution to the measured change in intramembrane potential may arise from an increased dipole potential, as DAG molecules are generated from hydrolysis of other phospholipids. We found bradykinin produced an inhibition of a M-type voltage-dependent K(+) current (I(K(M))). This inhibition was also blocked by the PLC inhibitors and had similar kinetics as the bradykinin-induced modulation of intramembrane potential. Our results suggest that the change in the local intramembrane potential induced by bradykinin may play a role in mediating the I(K(M)) inhibition.  相似文献   

5.
The aims of this study were (1) to measure the effect of neurotensin on the membrane potential of circular muscle of the distal colon of the rabbit and (2) to determine the mechanism by which neurotensin affects the membrane potential of this tissue. The membrane potential was measured with microelectrodes placed intracellularly and the double sucrose gap. Neurotensin (10(-11) M to 10(-7) M) dose-dependently decreased the membrane potential. The maximum decrease in membrane potential occurred with 10(-9) M neurotensin. The ED50 of neurotensin depolarization of the membrane potential was 0.87 +/- 0.33 X 10(-10) M. The frequency of the slow waves was unchanged after neurotensin. The voltage response to a constant current pulse decreased as the concentration of neurotensin increased. The amplitude of the voltage response after a 0.6 microA current pulse decreased by 6 +/- 0.5 mV after neurotensin (10(-7) M) compared to the Krebs control (P less than 0.05). Decreasing the [Na+]o to 0-23 mM did not affect the decrease in membrane potential after neurotensin. However, perfusion with a test solution containing no added Ca2+ or verapamil (10(-5) M) inhibited neurotensin depolarization of the tissue. Evidence was found that neurotensin depolarizes colonic circular smooth muscle, and the decrease in membrane potential is associated with an increase in conductance which is dependent on influx of Ca2+.  相似文献   

6.
J Ibarra  G E Morley    M Delmar 《Biophysical journal》1991,60(6):1534-1539
The potassium selective, inward rectifier current (IK1) is known to be responsible for maintaining the resting membrane potential of quiescent ventricular myocytes. However, the contribution of this current to the different phases of the cardiac action potential has not been adequately established. In the present study, we have used the action potential clamp (APC) technique to characterize the dynamic changes of a cesium-sensitive (i.e., Ik1) current which occur during the action potential. Our results show that (a) Ik1 is present during depolarization, as well as in the final phase of repolarization of the cardiac action potential. (b) The current reaches the zone of inward-going rectification before the regenerative action potential ensues. (c) The maximal outward current amplitude during repolarization is significantly lower than during depolarization, which supports the hypothesis that in adult guinea pig ventricular myocytes, Ik1 rectification is accentuated during the action potential plateau. Our results stress the importance of Ik1 in the modulation of cell excitability in the ventricular myocyte.  相似文献   

7.
Critical Water Potential for Stomatal Closure in Sitka Spruce   总被引:1,自引:0,他引:1  
Steady state rates of net photosynthesis and stomatal conductance at high water potentials were measured under controlled conditions in a leaf chamber on Sitka spruce [Picea sitchensis (Bong.) Carr.] shoots detached from the forest canopy or on seedlings. The water supply to the seedlings was terminated by excision and the shoot water potential (or critical water potential) and osmotic potential at the onset of stomatal closure measured. The turgor potential was calculated. The initial osmotic potential before insertion of the shoot into the chamber was also measured. Shoot water potential and osmotic potential at stomatal closure, and initial osmotic potential were significantly higher (less negative) in foliage from the lowest level in the canopy compared with foliage in the upper canopy, and higher in shoots of seedlings transferred to low light than in those at high light. Critical water potential also varied with season, being higher in July than in October and November. In all except one instance, turgor potential at the onset of stomatal closure was negative, possibly because of dilution of the cell sap by the extracellular water during the estimate of osmotic potential. Over all the experiments variation in critical water potential was correlated with variation in critical osmotic potential and, to a lesser extent, the initial osmotic potential. However, turgor potential at the critical potential varied from +0.6 to -4.6 bar. This suggests that difference in turgor between the guard cells and subsidiary cells, which controls stomatal aperture, is only loosely coupled with the bulk leaf turgor and hence that bulk leaf turgor is not a good index of the turbor relations of the guard cells.  相似文献   

8.
Experiments were performed on single cells to investigate the relations between the total bioelectrical potential difference (PD) across the cell membrane (so-called transmembrane potential) and the net negative surface charge of the cell (zeta potential). The experiments were carried out on FL-cells, leucocytes and ovarian tumour cells. The PD was measured electrophysiologically by means of intracellular glass microelectrodes; the surface charge or the zeta potential was determined using cell electrophoresis. Both measuring methods are critically discussed.Under different conditions (hypothermia, hyperthermia, mitotic blocking agent, cell cycle), the transmembrane potential and zeta potential showed changes in an identical direction and often the response of transmembrane potential was found to be quicker and more intensive than that of the zeta potential. In other experiments (e.g. changing the extracellular Cl? ion concentration) the reactions of both potentials showed no coincidence. Depending on the type of functionally or experimentally borne changes on the cytoplasmatic membrane, either both potentials or only one of them may be altered.  相似文献   

9.
OBJECTIVES--To measure the potential for cadaver organ retrieval in New South Wales and to determine the reasons for potential donors failing to become actual donors. DESIGN--Prospective audit of all patients dying in five hospitals in New South Wales between 1 December 1989 and 30 November 1990; quality assurance of the data by independent medical specialist and if disagreement by study committee. PATIENTS--2879 patients (100% of all deaths) yielding 364 patients with coma and 181 potential donors. OUTCOME MEASURES--Realistic medically suitable potential donor rate, missed potential donor rate, rate of potential donors with permission refused, donor rate, reasons for realistic medically suitable potential donors failing to become actual donors. RESULTS--2879 deaths yielded 73 medically suitable potential donors, resulting in 19 actual donors, 30 missed potential donors, 19 potential donors with permission refused, and five in whom adequate resuscitation failed. The most common reason for a potential donor failing to become an actual donor was a decision by the senior medical practitioner to withdraw or not to institute ventilatory or haemodynamic support (26/73). The second major obstacle was refusal of permission by the next of kin (17/73). Assuming that the potential donor rate was that implied by the observed donor rate (13/million population/year) the projected missed potential donor rate was 9/million population/year (95% confidence interval 4 to 15) and the projected rate of potential donors with permission refused was 13/million population/year (95% confidence interval 5 to 22). Assuming that the rate of potential donors in the study hospitals was the same as in the other New South Wales hospitals, the projected donor rate for New South Wales was 18/million population/year (10 to 26); the projected missed potential donor rate was 15/million population/year (7 to 23); and the projected rate of potential donors with permission refused was 18/million population/year (10 to 27). CONCLUSIONS--The donor rate could be increased 70%-80% by overcoming the reluctance of medical practitioners to resuscitate missed potential donors and increased further by gaining permission for organ retrieval from the next of kin.  相似文献   

10.
The main objective of this study is to determine the nature of electric fields inside articular cartilage while accounting for the effects of both streaming potential and diffusion potential. Specifically, we solve two tissue mechano-electrochemical problems using the triphasic theories developed by Lai et al. (1991, ASME J. Biomech Eng., 113, pp. 245-258) and Gu et al. (1998, ASME J. Biomech. Eng., 120, pp. 169-180) (1) the steady one-dimensional permeation problem; and (2) the transient one-dimensional ramped-displacement, confined-compression, stress-relaxation problem (both in an open circuit condition) so as to be able to calculate the compressive strain, the electric potential, and the fixed charged density (FCD) inside cartilage. Our calculations show that in these two technically important problems, the diffusion potential effects compete against the flow-induced kinetic effects (streaming potential) for dominance of the electric potential inside the tissue. For softer tissues of similar FCD (i.e., lower aggregate modulus), the diffusion potential effects are enhanced when the tissue is being compressed (i.e., increasing its FCD in a nonuniform manner) either by direct compression or by drag-induced compaction; indeed, the diffusion potential effect may dominate over the streaming potential effect. The polarity of the electric potential field is in the same direction of interstitial fluid flow when streaming potential dominates, and in the opposite direction of fluid flow when diffusion potential dominates. For physiologically realistic articular cartilage material parameters, the polarity of electric potential across the tissue on the outside (surface to surface) may be opposite to the polarity across the tissue on the inside (surface to surface). Since the electromechanical signals that chondrocytes perceive in situ are the stresses, strains, pressures and the electric field generated inside the extracellular matrix when the tissue is deformed, the results from this study offer new challenges for the understanding of possible mechanisms that control chondrocyte biosyntheses.  相似文献   

11.
Lin CH  Tsai MC 《Life sciences》2005,76(14):1641-1666
Effects of procaine on a central neuron (RP1) of the giant African snail (Achatina fulica Ferussac) were studied pharmacologically. The RP1 neuron showed spontaneous firing of action potential. Extra-cellular application of procaine (10 mM) reversibly elicited bursts of potential. The bursts of potential elicited by procaine were not blocked after administration of (1) prazosin, propranolol, atropine, d-tubocurarine, (2) calcium-free solution, (3) ryanodine (4) pretreatment with KT-5720 or chelerythrine. The bursts of potential elicited by procaine were blocked by adding U73122 (10 microM) and the bursts of potential were decreased if physiological sodium ion was replaced with lithium ion or incubated with either neomycin (3.5 mM) or high magnesium solution (30 mM). Preatment with U73122 (10 microM) blocked the initiation of bursts of potential. Ruthenium red (100 microM) or caffeine (10 mM) facilitated the procaine-elicited bursts of potential. It is concluded that procaine reversibly elicits bursts of potential in the central snail neuron. This effect was not directly related to (1) the extra-cellular calcium ion fluxes, (2) the ryanodine sensitive calcium channels in the neuron, or (3) the PKC or PKA related messenger systems. The procaine-elicited bursts of potential were associated with the phospholipase activity and the calcium mobilization in the neuron.  相似文献   

12.
1. Intracellular injection of tetraethylammonium chloride (TEA) into a giant axon of the squid prolongs the duration of the action potential without changing the resting potential (Fig. 3). The prolongation is sometimes 100-fold or more. 2. The action potential of a giant axon treated with TEA has an initial peak followed by a plateau (Fig. 3). The membrane resistance during the plateau is practically normal (Fig. 4). Near the end of the action potential, there is an apparent increase in the membrane resistance (Fig. 5D and Fig. 6, right). 3. The phenomenon of abolition of action potentials was demonstrated in the squid giant axon treated with TEA (Fig. 7). Following an action potential abolished in its early phase, there is no refractoriness (Fig. 8). 4. By the method of voltage clamp, the voltage-current relation was investigated on normal squid axons as well as on axons treated with TEA (Figs. 9 and 10). 5. The presence of stable states of the membrane was demonstrated by clamping the membrane potential with two voltage steps (Fig. 11). Experimental evidence was presented showing that, in an "unstable" state, the membrane conductance is not uniquely determined by the membrane potential. 6. The effect of low sodium water was investigated in the axon treated with TEA (Fig. 12). 7. The similarity between the action potential of a squid axon under TEA and that of the vertebrate cardiac muscle was stressed. The experimental results were interpreted as supporting the view that there are two stable states in the membrane. Initiation and abolition of an action potential were explained as transitions between the two states.  相似文献   

13.
The intracellular chloride activity (aiCl), measured with Cl-selective microelectrodes on stimulated rabbit papillary muscles (1 Hz) incubated in serum, was 7.2 +/- 2.2 mM (48 measurements). Under the same condition, on the quiescent muscle, aiCl was 7.5 +/- 2.8 mM (45 measurements). The membrane potential of quiescent papillary muscles and diastolic potential of stimulated papillary muscles were -79.0 +/- 0.7 (50 measurements) and -83.5 +/- 0.5 mV (50 measurements), respectively. The experimental conditions were chosen to reproduce the in vivo conditions where the Cl equilibrium potential is close to the membrane potential or to the diastolic potential. After correcting for cytoplasmic interference (4 mM) on the aiCl measurements, the Cl equilibrium potential (ECl) was -84 mV. In conclusion, the Cl distribution in cardiac cells bathed in serum is passive as for in vivo cardiac cells.  相似文献   

14.
The whole-cell configuration of the patch clamp technique was used to study both outward and inward ion currents across the plasma membrane of tobacco (Nicotiana tabacum) protoplasts from cell-suspension cultures. The ion currents across the plasma membrane were analyzed by the application of stepwise potential changes from a holding potential or voltage ramps. In all protoplasts, a voltage- and time-dependent outward rectifying current was present. The conductance increased upon depolarization of the membrane potential (to >0 mV) with a sigmoidal time course. The reversal potential of the outward current shifted in the direction of the K+ equilibrium potential upon changing the external K+ concentration. The outward current did not show inactivation. In addition to the outward rectifying current, in about 30% of the protoplasts, a time- and voltage-dependent inward rectifying current was present as well. The inward rectifying current activated upon hyperpolarization of the membrane potential (<-100 mV) with an exponential time course. The reversal potential of the inward conductance under different ionic conditions was close to the K+ equilibrium potential.  相似文献   

15.
The water potential and the osmotic potential in plants which dominate Greek phryganic ecosystems (Phlomis fruticosa, Sarcopoterium spinosum, Gistus sp.) were measured from April to Nowember. Water potential decreased considerably reaching a minimum in September. Higher values of osmotic potential than that of water potential were found during dry period (i.e. negative values of pressure potential). This interesting fact was confirmed by artificial desiccation.  相似文献   

16.
Xu C  Loew LM 《Biophysical journal》2003,84(4):2768-2780
Ratiometric imaging of styryl potentiometric dyes can be used to measure the potential gradient inside the membrane (intramembrane potential), which is the sum of contributions from transmembrane potential, dipole potential, and the difference in the surface potentials at both sides of the membrane. Here changes in intramembrane potential of the bilayer membranes in two different preparations, lipid vesicles and individual N1E-115 neuroblastoma cells, are calculated from the fluorescence ratios of di-4-ANEPPS and di-8-ANEPPS as a function of divalent cation concentration. In lipid vesicles formed from the zwitterionic lipid phosphatidylcholine (PC) or from a mixture of the negatively charged lipid phosphatidylserine (PS) and PC, di-4-ANEPPS produces similar spectral changes in response to both divalent cation-induced changes in intramembrane potential and transmembrane potential. The changes in potential on addition of divalent cations measured by the fluorescence ratios of di-4-ANEPPS are consistent with a change in surface potential that can be modeled with the Gouy-Chapman-Stern theory. The derived intrinsic 1:1 association constants of Ba and Mg with PC are 1.0 and 0.4 M(-1); the intrinsic 1:1 association constants of Ba and Mg with PS are 1.9 and 1.8 M(-1). Ratiometric measurements of voltage sensitive dyes also allow monitoring of intramembrane potentials in living cells. In neuroblastoma cells, a tenfold increase of concentration of Ba, Mg, and Ca gives a decrease in intramembrane potential of 22 to 24 mV. The observed changes in potential could also be described by Gouy-Chapman theory. A surface charge density of 1 e(-)/115 A(2) provides the best fit and the intrinsic 1:1 association constants of Ba, Mg, and Ca with acidic group in the surface are 1.7, 6.1, and 25.3 M(-1).  相似文献   

17.
Electric potential control of DNA immobilization on gold electrode   总被引:5,自引:0,他引:5  
The assembly of synthetic, controllable molecules is one of the goals in nanotechnology. The primary objective of this contribution is to selectively immobilize DNA on gold via electric potential control. The self-assembly monolayer (SAM) was prepared with 2-aminoethanethiol (AET) on the gold electrode. A new approach based on electric potential was firstly used to control DNA immobilization covalently onto the SAM with the activation of 1-ethyl-3(3-dimethyl-aminopropyl)-carbodiimide (EDC) and N-hydroxysulfosuccinimide (NHS) in low ionic strength solution. The influence of electric potential on DNA immobilization was investigated by means of cyclic voltammogram, A.C. impedance, auger electron spectrometer as well as atomic force microscope (AFM) on template-stripped gold surface. The result proves that controlled potential can affect the course of DNA immobilization. More negative potential can restrain the DNA immobilization, while the more positive potential can accelerate the DNA immobilization. It is of great significance for the control of DNA self-assembly and will find wide application in the fields of DNA-based devices.  相似文献   

18.
The large micromeres (lMics) of echinoid embryos are reported to have distinct potentials with regard to inducing endo-mesoderm and autonomous differentiation into skeletogenic cells. However, the developmental potential of small micromeres (sMics), the sibling of lMics, has not been clearly demonstrated. In this study we produced chimeric embryos from an animal cap recombined with various numbers of sMics, in order to investigate the developmental potential of sMics in the sea urchin Hemicentrotus pulcherrimus and the sand dollar Scaphechinus mirabilis. We found that sMics of H. pulcherrimus had weak potential for inducing presumptive ectoderm cells to form endo-mesoderm structures. The inducing potential of ten sMics was almost equivalent to that of one lMic. The sMics also had the potential to differentiate autonomously into skeletogenic cells. Conversely, the sMics of S. mirabilis did not show either inductive or skeletogenic differentiation potential. The sMics of both species had the potential to induce oral-aboral axis establishment. These results suggest that the potential for sMics to differentiate into skeletogenic cells and for inducing the presumptive ectoderm to differentiate into endomesoderm differs across species, while the potential of sMics to induce the oral-aboral axis is conserved among species.  相似文献   

19.
The fertilization potential of the egg of the nemertean worm Cerebratulus lacteus consisted of a rapid shift from a resting potential of about -65 mV to a peak of about +44 mV; the peak was followed by a positive plateau at about +24 mV, lasting an average of 80 min. Reduction of extracellular calcium reduced the peak of the fertilization potential, indicating that the peak resulted from a calcium conductance, while reduction of extracellular sodium reduced the plateau potential, indicating that the plateau resulted from a sodium conductance. Microinjection of ethylene glycol bis(beta-aminoethyl ether)-N,N'-tetraacetic acid (EGTA) or 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA)/CaBAPTA buffers, having a free calcium concentration of less than or equal to about 0.1 microM lowered the fertilization potential plateau. Injection of a BAPTA/CaBAPTA mixture with a free calcium concentration of about 1 microM resulted in a prolonged positive potential at the level of the fertilization potential plateau. These observations indicated that the fertilization potential of the Cerebratulus egg depended on a calcium-activated sodium conductance. The plateau potential was reduced little, if any, when calcium-free seawater was perfused through the bath during the fertilization potential; nor was it reduced in seawater containing cadmium. These observations suggested the possibility that intracellular calcium stores could be important in producing the fertilization potential.  相似文献   

20.
pH对紫膜表面电位的影响   总被引:1,自引:1,他引:0  
用荧光标记物1,8-AMS与紫膜结合,测量了能化态和非能化态下紫膜表面电位随介质pH的变化.在pH5.5以下,紫膜表面电位随pH的降低而下降,但囊泡中的紫膜表面电位变化幅度较大;在pH5.5以上,处于非能化态的紫膜(无论是紫膜碎片还是处于囊泡中)的表面电位都没有明显变化,处于能化态时,紫膜碎片的表面电位在pH9.2出现一个峰.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号