首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Influence of soil O2 and CO2 on root respiration for Agave deserti   总被引:5,自引:0,他引:5  
Respiration measured as CO2 efflux was determined at various soil O2 and CO2 concentrations for individual, attached roots of a succulent perennial from the Sonoran Desert, Agave deserti Engelm. The respiration rate increased with increasing O2 concentration up to about 16% O2 for established roots and 5% O2 for rain roots (fine branch roots on established roots induced by wetting of the soil) and then remained fairly constant up to 21% O2. When O2 was decreased from 21 to 0%, the respiration rates were similar to those obtained with increasing O2 concentration. The CO2 concentration in the root zone, which for the shallow-rooted A. deserti in the field was about 1 000 μl l-1, did not affect root respiration at concentrations up to 2 000 μl l-1, but higher concentrations reduced it, respiration being abolished at 20 000 μl l-1 (2%) CO2 for both established and rain roots. Upon lowering CO2 to 1 000 μl l-1 after exposure to concentrations up to 10000 μl l-1 CO2, inhibition of respiration was reversible. Uptake of the vital stain neutral red by root cortical cells was reduced to zero, indicating cell death, in about 4 h at 2% CO2, substantiating the detrimental effects of high soil CO2 concentrations on roots of A. deserti . This CO2 response may explain why roots of desert succulents tend to occur in porous, well-aerated soils.  相似文献   

2.
Abstract Two denitrifying bacteria ( Pseudomonas chlororaphis and P. aureofaciens ) and a plant (barley, Hordeum vulgare ) were used to study the effect of O2 concentration on denitrification and NO3 uptake by roots under well-defined aeration conditions. Bacterial cells in the early stationary phase were kept in a chemostat vessel with vigorous stirring and thus a uniform O2 concentration in the solution. Both Pseudomonads lacked N2O reductase and so total denitrification could be directly measured as N2O production.
Denitrification decreased to 6–13% of the anaerobic rate at 0.01% O2 saturation (0.14 μM O2) and was totally inhibited at 0.04% O2 saturation (0.56 μM O2). In this well-mixed system denitrification was 10-times more oxygen sensitive than stated in earlier reports. Uptake of nitrate by plants was measured in the same system under light. The NO3 uptake rate decreased gradually from a maximum in 21% O2-saturated medium (air saturated) to zero at 1.6% O2 saturation (22.4 μM O2). Owing to the very different non-overlapping oxygen requirements of the two processes, direct competition for nitrate between plant roots and denitrifying bacteria cannot occur.  相似文献   

3.
The effects of inhibitors of alternative respiration [salicylhydroxamate (SHAM) and propyl gallate (PG)] on germination, seedling growth and O2 uptake in Avena fatua L. (wild oats) were studied. SHAM did not inhibit germination or O2 uptake prior to germination. SHAM-sensitive (alternative) respiration, therefore, cannot be a pre-requisite for germination. Following germination, both chemicals inhibited seedling growth with the root being more susceptible than the shoot. SHAM concentrations that inhibited root growth by 90 to 95%, inhibited O2 uptake of 1 cm root apices by less than 15%. While sodium azide (a cytochrome-oxidase inhibitor; 1 m M ) alone inhibited O2 uptake by only 40 to 50%, in the simultaneous presence of SHAM (or PG), O2 uptake was inhibited by 90 to 99%. Thus: 1) respiration of wild oat seedling root apices is predominantly cytochrome-mediated and incomplete inhibition of O2 uptake in the presence of azide alone is due to diversion of electrons to the alternative pathway and 2) even though these roots have little alternative respiration, they maintain the capacity to support a much greater flux of electrons via this path way. SHAM and PG at concentrations (0.05 to 0.4 m M ) which inhibited O2 uptake significantly in the presence (but not in the absence) of azide had little effect on root growth suggesting that an effect(s) other than that on respiration is involved in the inhibition of root growth at higher concentrations. The effect of SHAM on wild oat root growth is not selective as it also inhibits growth of a number of crop species.  相似文献   

4.
Nitrogenase (N2ase; EC 1.18.6.1) activity (H2 evolution) and root respiration (CO2 evolution) were measured under either N2:O2 or Ar:O2 gas mixtures in intact nodulated roots from white clover ( Trifolium repens L.) plants grown either as spaced or as dense stands. The short-term nitrate (5 m M ) inhibition of N2-fixation was promoted by competition for light between clover shoots, which reduced CO2 net assimilation rate. Oxygen-diffusion permeability of the nodule declined during nitrate treatment but after nitrate removal from the liquid medium its recovery parallelled that of nitrogenase activity. Rhizosphere pO2 was increased from 20 to 80 kPa under N2:O2. A simple mono-exponential model, fitted to the nodule permeability response to pO2, indicated NO3 induced changes in minimum and maximum nodule O2-diffusion permeability. Peak H2 production rates at 80 kPa O2 and in Ar:O2 were close to the pre-decline rates at 20 kPa O2. At the end of the nitrate treatment, this O2-induced recovery in nitrogenase activity reached 71 and 82%; for clover plants from spaced and dense stands, respectively. The respective roles of oxygen diffusion and phloem supply for the short-term inhibition of nitrogenase activity in nitrate-treated clovers are discussed.  相似文献   

5.
Measurements of the short-term response of nodulated roots of soybean ( Glycine max L. Merr, cv. Harosoy: Bradyrhizobium japonicum USDA 16) to rapid changes in surrounding pO2 indicate that their ability to reversibly adjust gaseous diffusive resistance is retained whether plants are cultured in rhizospheres of very low (2.8%) or very high (61.2%) pO2. Thus the capacity for reversible short-term diffusion adjustment is additional to structural changes in the fixed diffusional barriers of nodules which allow their continued fixation of N2 in unfavourably high or low external pO2. Anatomical evidence, involving quantitative measurement of intercellular spaces in the cortical tissues using electron microscopy of thin sections, indicates that the major fixed diffusional barrier is a boundary layer of cells in the inner cortex which may be as small as one cell thick in nodules from 2.8% O2 to 5 or 6 cells thick, and almost completely devoid of intercellular spaces, in those from 61.2% O2. The data are interpreted to indicate that the variable diffusion harrier is distinct from the boundary layer and is most likely to be a property of cells and/or intercellular spaces inside the boundary layer of the nodule cortex.  相似文献   

6.
In flood-tolerant species, a common response to inundation is growth of adventitious roots into the water column. The capacity for these roots to become photosynthetically active has received scant attention. The experiments presented here show the aquatic adventitious roots of the flood-tolerant, halophytic stem-succulent, Tecticornia pergranulata (subfamily Salicornioideae, Chenopodiaceae) are photosynthetic and quantify for the first time the photosynthetic capacity of aquatic roots for a terrestrial species. Fluorescence microscopy was used to determine the presence of chloroplasts within cells of aquatic roots. Net O2 production by excised aquatic roots, when underwater, was measured with varying light and CO2 regimes; the apparent maximum capacity ( P max) for underwater net photosynthesis in aquatic roots was 0.45  µ mol O2 m−2 s−1. The photosynthetic potential of these roots was supported by the immunolocalization of PsbA, the major protein of photosystem II, and ribulose-1-5-bisphosphate carboxylase/oxygenase (Rubisco) in root protein extracts. Chlorophyllous aquatic roots of T. pergranulata are photosynthetically active, and such activity is a previously unrecognized source of O2, and potentially carbohydrates, in flooded and submerged plants.  相似文献   

7.
The long-term role of photorespiration was investigated by comparing growth, development, gas exchange characteristics and mineral nutrition of a wheat crop ( Triticum aestivum L. cv. Courtot) cultivated in a culture chamber during a life cycle, either in 4% O2 or in normal O2 Low O2 pressure reduced photorespiration, but CO2 was controlled so that net photosynthesis remained the same as in the control crop. The growth and development of the low O2 crop was slowed down. Ear appearance was 16 days late, but the rate of tillering was the same as in the control and was maintained longer so that the final number of tillers was doubled. Pigment, ribulose bisphosphate carboxylase (EC 4.1.1.39) and soluble sugar contents were similar. The response of photosynthesis to CO2 and O2 was not appreciably changed by the low O2 treatment. There was almost no seed formation, and the senescence of the leaves was delayed. It appears that in non-stress conditions most of the photorespiration can be suppressed without damage to the photosynthetic apparatus. Retardation of development and inhibition of reproduction are likely due to other effects of O2.  相似文献   

8.
Dark O2 consumption by the green alga Selenastrum minutum was sensitive to inhibition by the cytochrome pathway respiration inhibitor cyanide in the absence of an alternative oxidase inhibitor, consistent with previous work that suggested that this alga lacks alternative oxidase capacity. In contrast, addition of low concentrations of the cytochrome pathway inhibitor azide (50–750 μ M ) resulted in a stimulation of dark O2 consumption, while higher concentrations of azide (1–2 m M ) partially inhibited O2 consumption. Measurements of changes in cellular levels of pyruvate, malate and pyridine nucleotides upon cyanide addition were consistent with the absence of alternative oxidase capacity, and suggested that cyanide inhibition of O2 consumption was not due to nonspecific effects of cyanide. Addition of salicylhydroxamic acid (SHAM) also resulted in an increase in the rate of O2 consumption. Both azide- and SHAM-stimulated O2 consumption were sensitive to inhibition by 50 m M ascorbate or by cyanide. However, the ubiquinone analogs chloroquine and quinacrine specifically inhibited azide-stimulated O2 consumption, with only minor effects on SHAM-stimulated O2 consumption. These results suggest that azide-stimulated O2 consumption was not mediated by the previously characterized SHAM-stimulated oxidase, and are consistent with the possibility that azide-stimulated O2 consumption is mediated by a plasma membrane redox system.  相似文献   

9.
Brassica rapa L. (rapid-cycling Brassica), was grown in environmentally controlled chambers to determine the interactive effects of ozone (O3) and increased root temperature (RT) on biomass, reproductive output, and photosynthesis. Plants were grown with or without an average treatment of 63 ppb O3. RT treatments were 13°C (LRT) and 18°C (HRT). Air temperatures were 25°C/15°C day/night for all RT treatments.
Ozone affected plant biomass more than did root temperature. Plants in O3 had significantly smaller total plant d. wt, shoot weight, leaf weight, leaf area and leaf number than plants grown without O3. LRT plants tended to have slightly smaller total plant d. wt, shoot weight, root weight, leaf weight, leaf area, and leaf number than HRT plants. For all variables, LRT plants grown in O3 had the smallest biomass, and plants grown in HRT without O3 had the largest biomass.
Ozone reduced both fruit weight and fruit number; LRT also reduced fruit weight but had no effect on fruit number. Ozone reduced photosynthesis but RT had no effect. Conductance and internal CO2 were unaffected by O3 or RT.
These studies indicate that plant growth with LRT might be more reduced in the presence of O3 than growth in plants with HRT, which might be able to compensate for O3-caused reductions in photosynthesis to avoid decreased biomass and reproductive output.  相似文献   

10.
Oxygen and the regulation of nitrogen fixation in legume nodules   总被引:3,自引:0,他引:3  
In N2-fixing legume nodules, O2 is required in large amounts for aerobic respiration, yet nitrogenase, the bacterial enzyme that fixes N2, is O2 labile. A high rate of O2 consumptition and a cortical barrier to gas diffusion work together to maintain a low, non-inhibitory O2 concentration in the central, infected zone of the nodule. At this low O2 concentration, cytosolic leghemoglobin is required to facilitate the diffusion of O2 through the infected cell to the bacteria. The resistance of the cortical diffusion barrier is variable and is used by legume nodules to regulate the O2 concentration in the infected cells such that it limits aerobic respiration and N2 fixation at all times. The resistance of the diffusion barrier and therefore the degree of O2 limitation seems to be regulated in response to changes in the O2 concentration of the central infected zone, the supply of phloem sap to the nodule, and the rate of N assimilation into the end products of fixation.  相似文献   

11.
Cells of the green alga Selenastrum minutum display a high capacity for extra-mitochondrial O2 consumption in the presence of effectors such as salicylhydroxamic acid and/or NADH. We provide evidence that this O2 consumption is mediated by extracellular peroxidase. Peroxidase capacity, measured as the potential for stimulation of O2 consumption by a combination of salicylhydroxamic acid and NADH, changed over a 10-day time course. Maximal stimulation of O2 consumption occurred at day three, at which point the capacity for peroxidase-mediated O2 consumption was three-to four-fold higher than that of the control O2 consumption rate. Peroxidase-mediated O2 consumption was sensitive to inhibition by 50 m M ascorbate and by cyanide. Cyanide titration curves indicated that O2 consumption by peroxidase was much more sensitive to inhibition by cyanide than was O2 consumption by cytochrome oxidase (I50 < 1.6 μ M and I50= 18.3 μ M cyanide, respectively). By using evidence from a combination of cyanide titration curves and ascorbate inhibition, we concluded that despite a large capacity for peroxidase-mediated O2 consumption, peroxidase did not measurably contribute to control rates of O2 consumption. In the absence of effectors, O2 consumption was mediated primarily by cytochrome oxidase.  相似文献   

12.
Measurements of photosynthesis and respiration in plants   总被引:6,自引:1,他引:5  
Hunt S 《Physiologia plantarum》2003,117(3):314-325
Methods for measuring the rates of photosynthesis and respiration in plants are reviewed. Closed systems that involve manometric techniques, 14CO2 fixation, O2 electrodes and other methods for measuring dissolved and gas phase O2 are described. These methods typically provide time-integrated rate measurements, and limitations to their use are discussed. Open gas exchange systems that use infra-red CO2 gas analysers and differential O2 analysers for measuring instantaneous rates of CO2 and O2 exchange are described. Important features of the analysers, design features of gas exchange systems, and sources of potential error are considered. The analysis of chlorophyll fluorescence parameters for estimating the quantum yield for O2 evolution and CO2 fixation is described in relation to new fluorescence imaging systems for large scale screening of photosynthetic phenotypes, and the microimaging of individual chloroplasts.  相似文献   

13.
Flooding tolerance in halophytes   总被引:3,自引:1,他引:2  
Flooding is a common environmental variable with salinity. Submerged organs can suffer from O2 deprivation and the resulting energy deficits can compromise ion transport processes essential for salinity tolerance. Tolerance of soil waterlogging in halophytes, as in glycophytes, is often associated with the production of adventitious roots containing aerenchyma, and the resultant internal O2 supply. For some species, shallow rooting in aerobic upper soil layers appears to be the key to survival on frequently flooded soils, although little is known of the anoxia tolerance in halophytes. Halophytic species that inhabit waterlogged substrates are able to regulate their shoot ion concentrations in spite of the hypoxic (or anoxic) medium in which they are rooted, this being in stark contrast with most other plants which suffer when salinity and waterlogging occur in combination. Very few studies have addressed the consequences of submergence of the shoots by saline water; these have, however, demonstrated tolerance of temporary submergence in some halophytes.  相似文献   

14.
When completely submerged, the leaves of some species retain a surface gas film. Leaf gas films on submerged plants have recently been termed 'plant plastrons', analogous with the plastrons of aquatic insects. In aquatic insects, surface gas layers (i.e. plastrons) enlarge the gas–water interface to promote O2 uptake when under water; however, the function of leaf gas films has rarely been considered. The present study demonstrates that gas films on leaves of completely submerged rice facilitate entry of O2 from floodwaters when in darkness and CO2 entry when in light. O2 microprofiles showed that the improved gas exchange was not caused by differences in diffusive boundary layers adjacent to submerged leaves with or without gas films; instead, reduced resistance to gas exchange was probably due to the enlarged water–gas interface (cf. aquatic insects). When gas films were removed artificially, underwater net photosynthesis declined to only 20% of the rate with gas films present, such that, after 7 days of complete submergence, tissue sugar levels declined, and both shoot and root growth were reduced. Internal aeration of roots in anoxic medium, when shoots were in aerobic floodwater in darkness or when in light, was improved considerably when leaf gas films were present. Thus, leaf gas films contribute to the submergence tolerance of rice, in addition to those traits already recognized, such as the shoot-elongation response, aerenchyma and metabolic adjustments to O2 deficiency and oxidative stress.  相似文献   

15.
Rates of oxygen consumption were measured in the geothermal, hot spring fish, Oreochromis alcalicus grahami by stopped flow respirometry. At 37° C, routine oxygen consumption followed the allometric relationship: V o2=0.738 M 0.75, where V o2 is ml O2 h −1 and M is body mass (g). This represents a routine metabolic rate for a 10 g fish at 37° C of 0.415 ml O2 g−1 h −1 (16.4 μmol O2 g −1 h −1). Acutely increasing the temperature from 37 to 42° C significantly elevated the rate of O2 consumption from 0.739 to 0.970 ml O2 g −1 h −1 ( Q 10=l.72). In the field, O. a. grahami was observed to be 'gulping' air from the surface of the water especially in hot springs that exceeded 40° C. O. a. grahami may utilize aerial respiration when O2 requirements are high.  相似文献   

16.
Phosphate addition to P-limited cells of Chlamydomonas reinhardtii resulted in an immediate increase in the rate of respiratory O2 consumption. The respiration rate continued to increase for several minutes after the addition of P1. Similar patterns of P1 stimulation of respiratory O2 consumption were observed in the presence of cyanide (cytochrome oxidase inhibitor) and propyl gallate (alternative oxidase inhibitor). Stimulation of O2 consumption was accompanied by rapid changes in levels of glycolytic intermediates. These changes were consistent with activation of ATP-dependent phosphofructokinase and pyruvate kinase. The adenylate pool exhibited only minor perturbations, P1, uptake resulted in extracellular acidification, which continued for several minutes after the exhaustion of added P1, whereas exhaustion of extracellular P1 resulted in a rapid decline in the O2 consumption rate. These results are consistent with control of respiration in P-limited cells occurring largely at the level of glycolysis.  相似文献   

17.
Regulation of nitrate reductase (NR, EC 1.6.6.1) by oxygen concentration and light was studied in segments of oat ( Avena sativa L. cv. Suregrain) leaves, using the in vivo nitrate reductase assay. The activity of NR decreased after excision in either light or darkness; the addition of cycloheximide prevented this decrease. Treatments that increased tissue permeability (anoxia, Triton X-100) also increased NR activity. There was in general less NR activity in the light than in the dark and also less under aerobic (21–100% O2) than under anaerobic (0.3% O2) conditions. Treatments with antioxidants improved the activity in the light, but only at high O2 levels (21–100% O2).
The results suggest that NR may be regulated by inhibitory proteins synthesized in either light or darkness, by permeability changes and by light-induced oxidations that occur when O2 is present. Oxygen may control the activity by stimulating the synthesis of inhibitory proteins in the light and in the dark and by promoting oxidation of SH-groups in the light.  相似文献   

18.
Experiments with washed suspensions of holotrich protozoa (Isotricha spp. and Dasytricha ruminantium ) showed that both organisms have an efficient 0,-scavenging capability (apparent Km values 2.3 and 0.3 μM, respectively). Reversible inhibition of H2, production increased almost linearly with increasing O2 up to 1.5 μM; higher levels of O2 gave irreversible inhibition. In situ determinations of H, CH4, O2, and CO2, in ovine rumen liquor, using a membrane inlet mass spectrometer probe, indicated that O2, was present before feeding at 1-1.5 μM and decreased to undetectable levels (<0.25 μM) within 25 min after feeding. A transient increase in O2. concentration after feeding occurred only in defaunated animals and resulted in suppression of CH4 and CO2 production. The presence of washed holotrich protozoa decreases the O2 sensitivity of CH4 production by suspensions of a cultured methanogenic bacterium Methanosarcina barkeri . It is concluded that holotrich protozoa play a role in ruminal O2 utilization as well as in the production of fermentation end products (especially short-chain volatile fatty acids) utilized by the ruminant and H, utilized by methanogenic bacteria. These hydrogenosome-containing protozoa thus both control patterns of fermentation by influencing O2 levels, and are themselves regulated by the low ambient O2 concentrations they experience in the rumen.  相似文献   

19.
The carboxanilide systemic fungicide 2-iodobenzanilide (2-IB) after 2 h pretreatment at 0.25 m M inhibited K+ and SO42- uptake by excised corn roots ( Zea mays L., cv. Dekalb 342) up to ca 70 and 40%, respectively. Proton extrusion from corn roots was also reduced by ca 50% after 1 h contact, and the microsomal K+-stimulated ATPase activity from corn roots and pea stems ( Pisum sativum L., cv. Alaska) inhibited by 50 and 72%, respectively. In contrast, the Mg2+-ATPase activities of microsomes and mitochondria at pH 6.0 and 8.7, respectively, were unaffected. After 2 h of preincubation with 0.25 m M 2-IB, O2 consumption by corn roots and pea stems was inhibited by 12 and 18%, respectively. ATP content of corn roots was not altered by 2-IB treatment. Therefore, energy availability "in vivo" was unaffected and the primary effect on corn roots is suggested to be at the plasmalemma ATPase which forms the proton gradient.
With isolated pea stem mitochondria, 0.25 m M 2-IB inhibited O2 consumption by ca 60% when NADH or malate plus pyruvate were added as substrates; when succinate was used O2 consumption was unaffected. The mode of action on isolated mitochondria was different from that shown for carboxin and also formerly attributed to the whole class of carboxanilide fungicides.  相似文献   

20.
S ummary . The changes in electrode potential recorded by a platinum foil electrode, and in pH, during the incubation of Clostridium butyricum spores in a medium continuously sparged with a sterile gas mixture have been correlated with the biological events occurring simultaneously. The marked fall in E h which occurs during incubation is recorded by this type of electrode as occurring during the period of rapid cell replication; this observation may be an artefact associated with foil electrodes and the authors feel that results obtained with such electrodes should be interpreted with caution. The stimulating effect of CO2 and the increasingly inhibitory effect on germination of O2, as the concentration of the latter in the gas mixture is increased, have been noted. The inhibitory effect is thought to be due to the O2 itself and not to the high E h produced in the medium by the O2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号