首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
2.
MOTIVATION: Sequence annotations, functional and structural data on snake venom neurotoxins (svNTXs) are scattered across multiple databases and literature sources. Sequence annotations and structural data are available in the public molecular databases, while functional data are almost exclusively available in the published articles. There is a need for a specialized svNTXs database that contains NTX entries, which are organized, well annotated and classified in a systematic manner. RESULTS: We have systematically analyzed svNTXs and classified them using structure-function groups based on their structural, functional and phylogenetic properties. Using conserved motifs in each phylogenetic group, we built an intelligent module for the prediction of structural and functional properties of unknown NTXs. We also developed an annotation tool to aid the functional prediction of newly identified NTXs as an additional resource for the venom research community. AVAILABILITY: We created a searchable online database of NTX proteins sequences (http://research.i2r.a-star.edu.sg/Templar/DB/snake_neurotoxin). This database can also be found under Swiss-Prot Toxin Annotation Project website (http://www.expasy.org/sprot/).  相似文献   

3.
4.
The spore polar tube is a unique organelle required for cell invasion by fungi-related microsporidian parasites. Two major polar tube proteins (PTP1 and PTP2) are encoded by two tandemly arranged genes in Encephalitozoon species. A look at Antonospora (Nosema) locustae contigs (http://jbpc.mbl.edu/Nosema/Contigs/) revealed significant conservation in the order and orientation of various genes, despite high sequence divergence features, when comparing with Encephalitozoon cuniculi complete genome. This syntenic relationship between distantly related Encephalitozoon and Antonospora genera has been successfully exploited to identify ptp1 and ptp2 genes in two insect-infecting species assigned to the Antonospora clade (A. locustae and Paranosema grylli). Targeting of respective proteins to the polar tube was demonstrated through immunolocalization experiments with antibodies raised against recombinant proteins. Both PTPs were extracted from spores with 100mM dithiothreitol. Evidence for PTP1 mannosylation was obtained in studied species, supporting a key role of PTP1 in interactions with host cell surface.  相似文献   

5.
6.
A profile-based search of the SWISS-PROT database reveals that most protein tyrosine phosphatases (PTPs) contain at least one caveolin-1-binding motif. To ascertain if the presence of caveolin-binding motif(s) in PTPs corresponds to their actual localization in caveolin-1-enriched membrane fractions, we performed subcellular fractionating experiments. We found that all tested PTPs (PTP1B, PTP1C, SHPTP2, PTEN, and LAR) are actually localized in caveolin-enriched membrane fractions, despite their distribution in other subcellular sites, too. More than 1/2 of LAR and about 1/4 of SHPTP2 and PTP-1C are localized in caveolin-enriched membrane fractions whereas, in these fractions, PTP-1B and PTEN are poorly concentrated. Co-immunoprecipitation experiments with antibodies specific for each tested PTP demonstrated that all five phosphatases form molecular complexes with caveolin-1 in vivo. Collectively, our findings propose that particular PTPs could perform some of their cellular actions or are regulated by recruitment into caveolin-enriched membrane fractions.  相似文献   

7.
Src homology 2 (SH2) domains mediate protein-protein interactions by recognizing short phosphotyrosyl (pY) peptide motifs in their partner proteins. Protein tyrosine phosphatases (PTPs) catalyze the dephosphorylation of pY proteins, counteracting the protein tyrosine kinases. Both types of proteins exhibit primary sequence specificity, which plays at least a partial role in dictating their physiological interacting partners or substrates. A combinatorial peptide library method has been developed to systematically assess the sequence specificity of SH2 domains and PTPs. A "one-bead-one-compound" pY peptide library is synthesized on 90-microm TentaGel beads and screened against an SH2 domain or PTP of interest for binding or catalysis. The beads that carry the tightest binding sequences against the SH2 domain or the most efficient substrates of the PTP are selected by an enzyme-linked assay and individually sequenced by a partial Edman degradation/mass spectrometry technique. The combinatorial method has been applied to determine the sequence specificity of 8 SH2 domains from Src and Csk kinases, adaptor protein Grb2, and phosphatases SHP-1, SHP-2, and SHIP1 and a prototypical PTP, PTP1B.  相似文献   

8.
Protein tyrosine phosphatases (PTPs) play important, highly dynamic roles in signaling. Currently about 90 different PTP genes have been described. The enzymes are highly regulated at all levels of expression, and it is becoming increasingly clear that substrate specificity of the PTP catalytic domains proper contributes considerably to PTP functionality. To investigate PTP substrate selectivity, we have set up a procedure to generate phage libraries that presents randomized, phosphotyrosine-containing peptides. Phages that expressed suitable substrates were selected by immobilized, substrate-trapping GST-PTP fusion proteins. After multiple rounds of selection, positive clones were confirmed by SPOT analysis, dephosphorylation by wild-type enzyme, and Km determinations. We have identified distinct consensus substrate motifs for PTP1B, Sap-1, PTP-beta, SHP1, and SHP2. Our results confirm substrate specificity for individual PTPs at the peptide level. Such consensus sequences may be useful both for identifying potential PTP substrates and for the development of peptidomimetic inhibitors.  相似文献   

9.
Protein tyrosine phosphatases (PTPs) regulate various physiological events in animal cells. They comprise a diverse family which are classified into two categories, receptor type and nonreceptor type. From the domain organization and phylogenetic tree, we have classified known PTPs into 17 subtypes (9 receptor-type and 8 nonreceptor-type PTPs) which are characterized by different organization of functional domain and independent cluster in tree. The receptor type PTPs are thought to be implicated in cell–cell adhesion by association of cell adhesion molecules. Since sponges are the most primitive multicellular animals and are thought to be lacking cell cohesiveness and coordination typical of eumetazoans, cloning and sequencing of PTP cDNAs of Ephydatia fluviatilis (freshwater sponge) have been conducted by RT-PCR to determine whether or not sponges have PTP genes in their genomes. We have isolated nine PTPs, of which five are possibly receptor type. A phylogenetic tree including the sponge PTPs revealed that most of the gene duplications that gave rise to the 17 subtypes had been completed in the very early evolution of animals before the parazoan–eumetazoan split, the earliest branching among extant animal phyla. The family tree also revealed the rapid evolutionary rate of PTP subtypes in the early stage of animal evolution. Received: 22 October 1998 / Accepted: 27 November 1998  相似文献   

10.
Oxidation is emerging as an important regulatory mechanism of protein-tyrosine phosphatases (PTPs). Here we report that PTPs are differentially oxidized, and we provide evidence for the underlying mechanism. The membrane-proximal RPTPalpha-D1 was catalytically active but not readily oxidized as assessed by immunoprobing with an antibody that recognized oxidized catalytic site cysteines in PTPs (oxPTPs). In contrast, the membrane-distal RPTPalpha-D2, a poor PTP, was readily oxidized. Oxidized catalytic site cysteines in PTP immunoprobing and mass spectrometry demonstrated that mutation of two residues in the Tyr(P) loop and the WPD loop that reverse catalytic activity of RPTPalpha-D1 and RPTPalpha-D2 also reversed oxidizability, suggesting that oxidizability and catalytic activity are coupled. However, catalytically active PTP1B and LAR-D1 were readily oxidized. Oxidizability was strongly dependent on pH, indicating that the microenvironment of the catalytic cysteine has an important role. Crystal structures of PTP domains demonstrated that the orientation of the absolutely conserved PTP loop arginine correlates with oxidizability of PTPs, and consistently, RPTPmu-D1, with a similar conformation as RPTPalpha-D1, was not readily oxidized. In conclusion, PTPs are differentially oxidized at physiological pH and H(2)O(2) concentrations, and the PTP loop arginine is an important determinant for susceptibility to oxidation.  相似文献   

11.
The viroid and viroid-like RNA database is a compilation of all natural sequences published in journals or available from the GenBank and EMBL nucleotide sequence libraries. Several information regarding these RNA species such as the position of their self-catalytic domains and the open reading frame of the human hepatitits delta virus are provided. The database also includes a determination of the likely ancestral sequence of most species and a prediction of the most stable secondary structures of these sequences. This online database is available on the World Wide Web (http://www.callisto.si.usherb.ca/[symbol: see text]jpperra ). It should provide an excellent reference point for further phylogenetic and structure-function studies of these RNA species.  相似文献   

12.
Protein phosphorylation plays critical roles in the regulation of protein activity and cell signaling. The level of protein phosphorylation is controlled by protein kinases and protein tyrosine phosphatases (PTPs). Disturbance of the equilibrium between protein kinase and PTP activities results in abnormal protein phosphorylation, which has been linked to the etiology of several diseases, including cancer. In this study, we screened protein tyrosine phosphatases (PTPs) by in vitro phosphatase assays to identify PTPs that are inhibited by bis (4-trifluoromethyl-sulfonamidophenyl, TFMS)-1,4-diisopropylbenzene (PTP inhibitor IV). PTP inhibitor IV inhibited DUSP14 phosphatase activity. Kinetic studies with PTP inhibitor IV and DUSP14 revealed a competitive inhibition, suggesting that PTP inhibitor IV binds to the catalytic site of DUSP14. PTP inhibitor IV effectively and specifically inhibited DUSP14-mediated dephosphorylation of JNK, a member of the mitogen-activated protein kinase (MAPK) family.  相似文献   

13.
Allele-specific enzyme inhibitors are powerful tools in chemical biology. However, few general approaches for the discovery of such inhibitors have been described. Herein is reported a method for the sensitization of protein tyrosine phosphatases (PTPs) to small-molecule inhibition. It is shown that mutation of an active-site isoleucine to alanine (I219A) sensitizes PTP1B to inhibition by a class of thiophene-based inhibitors. This sensitization strategy succeeds for both 'orthogonal' inhibitors, designed to be incompatible with wild-type PTP active sites, and previously optimized wild-type PTP inhibitors. The finding that the I219A mutation sensitizes phosphatase domains to a variety of compounds suggests that isoleucine 219 may act as a 'gatekeeper' residue that can be widely exploited for the chemical-genetic analysis of PTP function.  相似文献   

14.
Regulation of protein tyrosine phosphatases (PTPs) through reversible oxidation of the active site cysteine is emerging as a general, yet poorly characterized, mechanism for control of the activity of this important group of enzymes. This regulatory mechanism was initially described after in vitro treatment of PTPs with oxidizing agents. However, accumulating evidence has substantiated the notion that this mechanism is also operating in vivo, e.g., in association with the transient increase in H(2)O(2) production which occurs after activation of receptor tyrosine kinases. A novel generic antibody-based method for monitoring of PTP oxidation is described. The sensitivity of this strategy has been validated by the demonstration of oxidation of endogenously expressed PTPs after stimulation of cells with growth factors. The method was also instrumental in providing the first evidence for intrinsic differences between PTP domains with regard to sensitivity to oxidation.  相似文献   

15.
PTPs (protein tyrosine phosphatases) are fundamental enzymes for cell signalling and have been linked to the pathogenesis of several diseases, including cancer. Hence, PTPs are potential drug targets and inhibitors have been designed as possible therapeutic agents for Type II diabetes and obesity. However, a complete understanding of the detailed catalytic mechanism in PTPs is still lacking. Free-energy profiles, obtained by computer simulations of catalysis by a dual-specificity PTP, are shown in the present study and are used to shed light on the catalytic mechanism. A highly accurate hybrid potential of quantum mechanics/molecular mechanics calibrated specifically for PTP reactions was used. Reactions of alkyl and aryl substrates, with different protonation states and PTP active-site mutations, were simulated. Calculated reaction barriers agree well with experimental rate measurements. Results show the PTP substrate reacts as a bi-anion, with an ionized nucleophile. This protonation state has been a matter of debate in the literature. The inactivity of Cys-->Ser active-site mutants is also not fully understood. It is shown that mutants are inactive because the serine nucleophile is protonated. Results also clarify the interpretation of experimental data, particularly kinetic isotope effects. The simulated mechanisms presented here are better examples of the catalysis carried out by PTPs.  相似文献   

16.
Protein tyrosine phosphatases (PTPs) play key roles in switching off tyrosine phosphorylation cascades, such as initiated by cytokine receptors. We have used substrate-trapping mutants of a large set of PTPs to identify members of the PTP family that have substrate specificity for the phosphorylated human GH receptor (GHR) intracellular domain. Among 31 PTPs tested, T cell (TC)-PTP, PTP-beta, PTP1B, stomach cancer-associated PTP 1 (SAP-1), Pyst-2, Meg-2, and PTP-H1 showed specificity for phosphorylated GHR that had been produced by coexpression with a kinase in bacteria. We then used GH-induced, phosphorylated GH receptor, purified from overexpressing mammalian cells, in a Far Western-based approach to test whether these seven PTPs were also capable of recognizing ligand-induced, physiologically phosphorylated GHR. In this assay, only TC-PTP, PTP1B, PTP-H1, and SAP-1 interacted with the mature form of the phosphorylated GHR. In parallel, we show that these PTPs recognize very different subsets of the seven GHR tyrosines that are potentially phosphorylated. Finally, mRNA tissue distribution of these PTPs by RT-PCR analysis and coexpression of the wild-type PTPs to test their ability to dephosphorylate ligand-activated GHR suggest PTP-H1 and PTP1B as potential candidates involved in GHR signaling.  相似文献   

17.
Evolution of the multifunctional protein tyrosine phosphatase family   总被引:4,自引:0,他引:4  
The protein tyrosine phosphatase (PTP) family plays a central role in signal transduction pathways by controlling the phosphorylation state of serine, threonine, and tyrosine residues. PTPs can be divided into dual specificity phosphatases and the classical PTPs, which can comprise of one or two phosphatase domains. We studied amino acid substitutions at functional sites in the phosphatase domain and identified putative noncatalytic phosphatase domains in all subclasses of the PTP family. The presence of inactive phosphatase domains in all subclasses indicates that they were invented multiple times in evolution. Depending on the domain composition, loss of catalytic activity can result in different consequences for the function of the protein. Inactive single-domain phosphatases can still specifically bind substrate and protect it from dephosphorylation by other phosphatases. The inactive domains of tandem phosphatases can be further subdivided. The first class is more conserved, still able to bind phosphorylated tyrosine residues and might recruit multiphosphorylated substrates for the adjacent active domain. The second has accumulated several variable amino acid substitutions in the catalytic center, indicating a complete loss of tyrosine-binding capabilities. To study the impact of substitutions in the catalytic center to the evolution of the whole domain, we examined the evolutionary rates for each individual site and compared them between the classes. This analysis revealed a release of evolutionary constraint for multiple sites surrounding the catalytic center only in the second class, emphasizing its difference in function compared with the first class. Furthermore, we found a region of higher conservation common to both domain classes, suggesting a new regulatory center. We discuss the influence of evolutionary forces on the development of the phosphatase domain, which has led to additional functions, such as the specific protection of phosphorylated tyrosine residues, substrate recruitment, and regulation of the catalytic activity of adjacent domains.  相似文献   

18.
The Protein Information Resource, in collaboration with the Munich Information Center for Protein Sequences (MIPS) and the Japan International Protein Information Database (JIPID), produces the most comprehensive and expertly annotated protein sequence database in the public domain, the PIR-International Protein Sequence Database. To provide timely and high quality annotation and promote database interoperability, the PIR-International employs rule-based and classification-driven procedures based on controlled vocabulary and standard nomenclature and includes status tags to distinguish experimentally determined from predicted protein features. The database contains about 200,000 non-redundant protein sequences, which are classified into families and superfamilies and their domains and motifs identified. Entries are extensively cross-referenced to other sequence, classification, genome, structure and activity databases. The PIR web site features search engines that use sequence similarity and database annotation to facilitate the analysis and functional identification of proteins. The PIR-Inter-national databases and search tools are accessible on the PIR web site at http://pir.georgetown.edu/ and at the MIPS web site at http://www.mips.biochem.mpg.de. The PIR-International Protein Sequence Database and other files are also available by FTP.  相似文献   

19.
4-(5-Arylidene-2,4-dioxothiazolidin-3-yl)methylbenzoic acids (2) were synthesized and evaluated in vitro as inhibitors of PTP1B and LMW-PTP, two protein tyrosine phosphatases (PTPs) which act as negative regulators of the metabolic and mitotic signalling of insulin. The synthesis of compounds 2 represents an example of utilizing phosphotyrosine-mimetics to identify effective low molecular weight nonphosphorus inhibitors of PTPs. Several thiazolidinediones 2 exhibited PTP1B inhibitory activity in the low micromolar range with moderate selectivity for human PTP1B and IF1 isoform of human LMW-PTP compared with other related PTPs.  相似文献   

20.
Reversible oxidation of the catalytic cysteine of protein-tyrosine phosphatases (PTPs) has emerged as a putative mechanism of activity regulation by physiological cell stimulation with growth factors, and by cell treatments with adverse agents such as UV irradiation. We compared SHP-1 and SHP-2, two structurally related cytoplasmic protein-tyrosine phosphatases with different cellular functions and cell-specific expression patterns, for their intrinsic susceptibility to oxidation by H(2)O(2). The extent of oxidation was monitored by detecting the modification of the PTP catalytic cysteine by three different methods, including a modified in-gel PTP assay, alkylation with a biotinylated iodoacetic acid derivative, and an antibody against oxidized PTPs. Dose-response curves for oxidation of the catalytic domains of SHP-1 and SHP-2 were similar. SHP-1 and -2 require relatively high H(2)O(2) concentrations for oxidation (half-maximal oxidation at 0.1-0.5 mM). For SHP-1, the SH2 domains had a significant protective function with respect to oxidation. In EOL-1 cells, SHP oxidation by exogenous H(2)O(2) in general and SHP-2 oxidation in particular was strongly diminished compared to HEK293 cells, at least partially related to a generally lower oxidant sensitivity of the EOL-1 cells. The data suggest that the differential cell functions of SHP-1 and SHP-2 are not related to differences in oxidation sensitivity. The modulating effects of SH2 domains for oxidation of these PTPs are in support of an enhanced oxidation susceptibility of activated SHPs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号