首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Sugar beet (Beta vulgaris) is an important crop plant that accounts for 30% of the world's sugar production annually. The genus Beta is a distant relative of currently sequenced taxa within the core eudicotyledons; the genomic characterization of sugar beet is essential to make its genome accessible to molecular dissection. Here, we present comprehensive genomic information in genetic and physical maps that cover all nine chromosomes. Based on this information we identified the proposed ancestral linkage groups of rosids and asterids within the sugar beet genome. We generated an extended genetic map that comprises 1127 single nucleotide polymorphism markers prepared from expressed sequence tags and bacterial artificial chromosome (BAC) end sequences. To construct a genome-wide physical map, we hybridized gene-derived oligomer probes against two BAC libraries with 9.5-fold cumulative coverage of the 758 Mbp genome. More than 2500 probes and clones were integrated both in genetic maps and the physical data. The final physical map encompasses 535 chromosomally anchored contigs that contains 8361 probes and 22 815 BAC clones. By using the gene order established with the physical map, we detected regions of synteny between sugar beet (order Caryophyllales) and rosid species that involves 1400-2700 genes in the sequenced genomes of Arabidopsis, poplar, grapevine, and cacao. The data suggest that Caryophyllales share the palaeohexaploid ancestor proposed for rosids and asterids. Taken together, we here provide extensive molecular resources for sugar beet and enable future high-resolution trait mapping, gene identification, and cross-referencing to regions sequenced in other plant species.  相似文献   

2.
A bacterial artificial chromosome (BAC) library of the 750-Mbp sugar beet genome represented in hybrid US H20 was constructed fromHind III-digested DNA, with an average insert size of 120 kbp. US H20 is a variety grown in the eastern United States. It exhibits heterosis for emergence and yield, presumably because of its hybridity between eastern and western US germplasm sources. Filter arrays were used to assess the abundance and distribution of particular nucleotide sequences. An rRNA gene probe found that 1.2% of the library carried sequences similar to these highly repetitive and conserved sequences. A simple sequence repeat element (CA)8 thought to be predominantly distributed throughout centromere regions of all chromosomes was present in 1.7% of clones. For more than half of the 28 randomly chosen expressed sequence tags (ESTs) used as probes, a higher-than-expected number of single-copy hybridization signals was observed. Assuming 6× genome coverage, this suggests that many duplicate genes exist in the beet genome.  相似文献   

3.
Summary A restriction endonuclease fragment map of sugar beet chloroplast DNA (ctDNA) has been constructed with the enzymes SmaI, PstI and PvuII. The ctDNA was found to be contained in a circular molecule of 148.5 kbp. In common with many other higher plant ctDNAs, sugar beet ctDNA consists of two inverted repeat sequences of about 20.5 kbp separated by two single-copy regions of different sizes (about 23.2 and 84.3 kbp). Southern hybridization analyses indicated that the genes for rRNAs (23S+16S) and the large subunit of ribulose 1,5-bisphosphate carboxylase were located in the inverted repeats and the large single-copy regions, respectively.  相似文献   

4.
As part of a larger project to sequence the Populus genome and generate genomic resources for this emerging model tree, we constructed a physical map of the Populus genome, representing one of the few such maps of an undomesticated, highly heterozygous plant species. The physical map, consisting of 2802 contigs, was constructed from fingerprinted bacterial artificial chromosome (BAC) clones. The map represents approximately 9.4-fold coverage of the Populus genome, which has been estimated from the genome sequence assembly to be 485 ± 10 Mb in size. BAC ends were sequenced to assist long-range assembly of whole-genome shotgun sequence scaffolds and to anchor the physical map to the genome sequence. Simple sequence repeat-based markers were derived from the end sequences and used to initiate integration of the BAC and genetic maps. A total of 2411 physical map contigs, representing 97% of all clones assigned to contigs, were aligned to the sequence assembly (JGI Populus trichocarpa , version 1.0). These alignments represent a total coverage of 384 Mb (79%) of the entire poplar sequence assembly and 295 Mb (96%) of linkage group sequence assemblies. A striking result of the physical map contig alignments to the sequence assembly was the co-localization of multiple contigs across numerous regions of the 19 linkage groups. Targeted sequencing of BAC clones and genetic analysis in a small number of representative regions showed that these co-aligning contigs represent distinct haplotypes in the heterozygous individual sequenced, and revealed the nature of these haplotype sequence differences.  相似文献   

5.
Ginger (Zingiber officinale Rosc.) is an important herb of the family Zingiberaceae. It is accepted as a universal cure for a multitude of diseases in Indian systems of medicine and its rhizomes are equally popular as a spice ingredient throughout Asia. SNPs, the definitive genetic markers, representing the finest resolution of a DNA sequence, are abundantly found in populations having a lower rate of mutation and are used for genomic analysis. The public ESTs sequences mostly lack quality files, making high quality SNPs detection more difficult since it is exclusively based on sequence comparisons. In the present study, current dbESTs of NCBI was mined and 38115 ginger ESTs sequences were obtained and assembled into contigs using CAP3 program. In this analysis, recent software tool QualitySNP was used to detect 11523 potential SNPs sites, 8810 high quality SNPs and 1008 indels polymorphisms with a frequency of 1.61 SNPs / 10 kbp. Of ESTs libraries generated from three ginger tissues together, rhizomes had a frequency of 0.32 SNPs and 0.03 indels per 10 kbp whereas the leaves had a frequency of 2.51 SNPs and 0.23 indels per 10 kbp and root is showing relative frequency of 0.76/10 kbp SNPs and 0.02/10 kbp indels. The present analysis provides additional information about the tissue wise presence of haplotypes (222), distribution of high quality exonic (2355) and intronic (6455) SNPs and information about singletons (7538) in addition to contigs transitions and transversions ratio (0.57). Among all tissue detected SNPs, transversions number is higher in comparison to the number of transitions. Quality SNPs detected in this work can be used as markers for further ginger genetic experiments.  相似文献   

6.
7.
We describe a novel approach for high-throughput development of genetic markers using representational oligonucleotide microarray analysis. We test the performance of the method in sugar beet (Beta vulgaris L.) as a model for crop plants with little sequence information available. Genomic representations of both parents of a mapping population were hybridized on microarrays containing in total 146,554 custom made oligonucleotides based on sugar beet bacterial artificial chromosome (BAC) end sequences and expressed sequence tags (ESTs). Oligonucleotides showing a signal with one parental line only, were selected as potential marker candidates and placed onto an array, designed for genotyping of 184 F2 individuals from the mapping population. Utilizing known co-dominant anchor markers we obtained 511 new dominant markers (392 derived from BAC end sequences, and 119 from ESTs) distributed over all nine sugar beet linkage groups and calculated genetic maps. Further improvements for large-scale application of the approach are discussed and its feasibility for the cost-effective and flexible generation of genetic markers is presented.  相似文献   

8.
Single-nucleotide polymorphisms in soybean   总被引:36,自引:0,他引:36  
  相似文献   

9.
Jacobs G  Dechyeva D  Wenke T  Weber B  Schmidt T 《Genetica》2009,135(2):157-167
We constructed a sugar beet (Beta vulgaris) bacterial artificial chromosome (BAC) library of the monosomic addition line PAT2. This chromosomal mutant carries a single additional chromosome fragment (minichromosome) derived from the wild beet Beta patellaris. Restriction analysis of the mutant line by pulsed-field gel electrophoresis was used to determine HindIII as a suitable enzyme for partial digestion of genomic DNA to generate large-insert fragments which were cloned into the vector pCC1. The library consists of 36,096 clones with an average insert size of 120 kb, and 2.2% of the clones contain mitochondrial or chloroplast DNA. Based on a haploid genome size of 758 Mbp, the library represents 5.7 genome equivalents providing the probability of 99.67% that any sequence of the PAT2 genome can be found in the library. Hybridization to high-density filters was used to isolate 89 BACs containing arrays of the centromere-associated satellite repeats pTS5 and pTS4.1. Using the identified BAC clones in fluorescent in situ hybridization experiments with PAT2 and Beta patellaris chromosome spreads their wild beet origin and centromeric localization was demonstrated. Multi-colour FISH with differently labelled satellite repeats pTS5 and pTS4.1 was used to investigate the large-scale organization of the centromere of the PAT2 minichromosome in detail. FISH studies showed that the centromeric satellite pTS5 is flanked on both sides by pTS4.1 arrays and the arms of the minichromosome are terminated by the Arabidopsis-type telomeric sequences. FISH with a BAC, selected from high-density filters after hybridization with an RFLP marker of the genetic linkage group I, demonstrated that it is feasible to correlate genetic linkage groups with chromosomes. Therefore, the PAT2 BAC library provides a useful tool for the characterization of Beta centromeres and a valuable resource for sugar beet genome analysis.  相似文献   

10.
F Gindullis  D Dechyeva  T Schmidt 《Génome》2001,44(5):846-855
We have constructed a sugar beet bacterial artificial chromosome (BAC) library of the chromosome mutant PRO1. This Beta vulgaris mutant carries a single chromosome fragment of 6-9 Mbp that is derived from the wild beet Beta procumbens and is transmitted efficiently in meiosis and mitosis. The library consists of 50,304 clones, with an average insert size of 125 kb. Filter hybridizations revealed that approximately 3.1% of the clones contain mitochondrial or chloroplast DNA. Based on a haploid genome size of 758 Mbp, the library represents eight genome equivalents. Thus, there is a greater than 99.96% probability that any sequence of the PROI genome can be found in the library. Approximately 0.2% of the clones hybridized with centromeric sequences of the PRO1 minichromosome. Using the identified BAC clones in fluorescence in situ hybridization experiments with PRO1 and B. procumbens chromosome spreads, their wild-beet origin and centromeric localization were demonstrated. Comparative Southern hybridization of pulsed-field separated PROI DNA and BAC inserts indicate that the centromeric region of the minichromosome is represented by overlapping clones in the library. Therefore, the PRO1 BAC library provides a useful tool for the characterization of a single plant centromere and is a valuable resource for sugar beet genome analysis.  相似文献   

11.
12.
Modern cultivated barley is an important cereal crop with an estimated genome size of 5000 Mb. To develop the resources for positional cloning and structural genomic analyses in barley, we constructed a bacterial artificial chromosome (BAC) library for the cultivar Morex using the cloning enzyme HindIII. The library contains 313344 clones (816 384-well plates). A random sampling of 504 clones indicated an average insert size of 106 kbp (range=30–195 kbp) and 3.4% empty vectors. Screening the colony filters for chloroplast DNA content indicated an exceptionally low 1.5% contamination with chloroplast DNA. Thus, the library provides 6.3 haploid genome equivalents allowing a >99% probability of recovering any specific sequence of interest. High-density filters were gridded robotically using a Genetix Q-BOT in a 4×4 double-spotted array on 22.5-cm2 filters. Each set of 17 filters allows the entire library to be screened with 18432 clones represented per filter. Screening the library with 40 single copy probes identified an average 6.4 clones per probe, with a range of 1–13 clones per probe. A set of resistance-gene analog (RGA) sequences identified 121 RGA-containing BAC clones representing 20 different regions of the genome with an average of 6.1 clones per locus. Additional screening of the library with a P-loop disease resistance primer probe identified 459 positive BAC clones. These data indicate that this library is a valuable resource for structural genomic applications in barley. Received: 20 September 1999 / Accepted: 25 March 2000  相似文献   

13.
We developed a reference karyotype for B. vulgaris which is applicable to all beet cultivars and provides a consistent numbering of chromosomes and genetic linkage groups. Linkage groups of sugar beet were assigned to physical chromosome arms by FISH (fluorescent in situ hybridization) using a set of 18 genetically anchored BAC (bacterial artificial chromosome) markers. Genetic maps of sugar beet were correlated to chromosome arms, and North–South orientation of linkage groups was established. The FISH karyotype provides a technical platform for genome studies and can be applied for numbering and identification of chromosomes in related wild beet species. The discrimination of all nine chromosomes by BAC probes enabled the study of chromosome‐specific distribution of the major repetitive components of sugar beet genome comprising pericentromeric, intercalary and subtelomeric satellites and 18S‐5.8S‐25S and 5S rRNA gene arrays. We developed a multicolor FISH procedure allowing the identification of all nine sugar beet chromosome pairs in a single hybridization using a pool of satellite DNA probes. Fiber‐FISH was applied to analyse five chromosome arms in which the furthermost genetic marker of the linkage group was mapped adjacently to terminal repetitive sequences on pachytene chromosomes. Only on two arms telomere arrays and the markers are physically linked, hence these linkage groups can be considered as terminally closed making the further identification of distal informative markers difficult. The results support genetic mapping by marker localization, the anchoring of contigs and scaffolds for the annotation of the sugar beet genome sequence and the analysis of the chromosomal distribution patterns of major families of repetitive DNA.  相似文献   

14.
15.
Sequence characterization of the genomic region of sorghum yellow seed 1 shows the presence of two genes that are arranged in a head to tail orientation. The two duplicated gene copies, y1 and y2 are separated by a 9.084 kbp intergenic region, which is largely composed of highly repetitive sequences. The y1 is the functional copy, while the y2 may represent a pseudogene; there are several sequence indels and rearrangements within the putative coding region of y2. The y1 gene encodes a R2R3 type of Myb domain protein that regulates the expression of chalcone synthase, chalcone isomerase and dihydroflavonol reductase genes required for the biosynthesis of 3-deoxyflavonoids. Expression of y1 can be observed throughout the plant and it represents a combination of expression patterns produced by different alleles of the maize p1. Comparative sequence analysis within the coding regions and flanking sequences of y1, y2 and their maize and teosinte orthologs show local rearrangements and insertions that may have created modified regulatory regions. These micro-colinearity modifications possibly are responsible for differential patterns of expression in maize and sorghum floral and vegetative tissues. Phylogenetic analysis indicates that sorghum y1 and y2 sequences may have arisen by gene duplication mechanisms and represent an evolutionarily parallel event to the duplication of maize p2 and p1 genes.  相似文献   

16.

Background  

We describe the distribution of indels in the 44 Encyclopedia of DNA Elements (ENCODE) regions (about 1% of the human genome) and evaluate the potential contributions of small insertion and deletion polymorphisms (indels) to human genetic variation. We relate indels to known genomic annotation features and measures of evolutionary constraint.  相似文献   

17.
对6个野外居群(南川绣线菊和细枝绣线各3个)36个个体进行叶绿体(chloroplast,cp)DNA trnL-trnF片断测序分析.在南川绣线菊中发现了3个单倍型(Ros1-Ros3),在细枝绣线菊中发现了2个单倍型(Myr1-Myr2).两个种的序列联合分析对位排列后得到850 bp,共有9个变异位点,其中一个为碱基插入或缺失,另外8个为碱基置换,变异位点的百分率为0.11.对单倍型的遗传多样性分析表明同一区域亲缘关系相近的单倍型发生于同一居群中,并且存在着明显的分子系统地理学关系.以蔷薇科另两个外属植物Rosa californica 和 Sorbaria sorbifolia为外类群构建这两个种的最大简约(MP)树、最大似然(ML)树及贝叶斯树,结果获得了分辨良好的种间关系树.这表明在分子水平上两个种之间存在明显的差异,这与形态学上的表现是相一致的.遗传多样性分析结果表明了cpDNA trnL-trnF 片段对于绣线菊属的分子地理学研究还是比较有效的,可以通过进一步的大面积采样和分析来揭示植物的遗传结构、冰期避难所等问题.  相似文献   

18.
Self-incompatibility has been considered by geneticists a model system for reproductive biology and balancing selection, but our understanding of the genetic basis and evolution of this molecular lock-and-key system has remained limited by the extreme level of sequence divergence among haplotypes, resulting in a lack of appropriate genomic sequences. In this study, we report and analyze the full sequence of eleven distinct haplotypes of the self-incompatibility locus (S-locus) in two closely related Arabidopsis species, obtained from individual BAC libraries. We use this extensive dataset to highlight sharply contrasted patterns of molecular evolution of each of the two genes controlling self-incompatibility themselves, as well as of the genomic region surrounding them. We find strong collinearity of the flanking regions among haplotypes on each side of the S-locus together with high levels of sequence similarity. In contrast, the S-locus region itself shows spectacularly deep gene genealogies, high variability in size and gene organization, as well as complete absence of sequence similarity in intergenic sequences and striking accumulation of transposable elements. Of particular interest, we demonstrate that dominant and recessive S-haplotypes experience sharply contrasted patterns of molecular evolution. Indeed, dominant haplotypes exhibit larger size and a much higher density of transposable elements, being matched only by that in the centromere. Overall, these properties highlight that the S-locus presents many striking similarities with other regions involved in the determination of mating-types, such as sex chromosomes in animals or in plants, or the mating-type locus in fungi and green algae.  相似文献   

19.
 In a search for repetitive DNA sequences in the sugar beet genome, two sequences with repeat unit lengths of 143 and 434 bp were isolated and characterized. The pSV family showed an unusual conservation of restriction sites reflecting homogenization of the analyzed repeats. Members of the family are organized as tandem repeats as revealed by PCR and sequencing of dimeric units. The pSV satellite occurs in large intercalary arrays which are present on all chromosome arms of sugar beet. The pSV sequence family is present in different abundance in the sections Beta, Corollinae and Nanae but is not detectable by Southern hybridization in the section Procumbentes. The pDRV family is characterized by an interspersed genomic organization. The sequence is detectable in all sections of the genus and is amplified in species of the section Beta but was also detected, although at lower abundance, in the remaining three sections. Fluorescent in situ hybridization has shown that the pDRV sequence family is dispersed over all chromosomes of the sugar beet complement with some regions of clustering and centromeric depletion. Received: 18 March 1998 / Accepted: 31 March 1998  相似文献   

20.

Background  

Insertions and deletions (indels) are an important evolutionary force, making the evolutionary process more efficient and flexible by copying and removing genomic fragments of various lengths instead of rediscovering them by point mutations. As a mutational process, indels are known to be more active in specific sequences (like micro-satellites) but not much is known about the more general and mechanistic effect of sequence context on the insertion and deletion susceptibility of genomic loci.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号