首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The strain-specific capsular polysaccharide KR5 antigen of Sinorhizobium meliloti 41 is required both for invasion of the symbiotic nodule and for the adsorption of bacteriophage 16-3. In order to know more about the genes involved in these events, bacterial mutants carrying an altered phage receptor were identified by using host range phage mutants. A representative mutation was localized in the rkpM gene by complementation and DNA sequence analysis. A host range phage mutant isolated on these phage-resistant bacteria was used to identify the h gene, which is likely to encode the tail fiber protein of phage 16-3. The nucleotide sequences of the h gene as well as a host range mutant allele were also established. In both the bacterial and phage mutant alleles, a missense mutation was found, indicating a direct contact between the RkpM and H proteins in the course of phage adsorption. Some mutations could not be localized in these genes, suggesting that additional components are also important for bacteriophage receptor recognition.  相似文献   

2.
A host range mutant was isolated from a bacteriophage that attacked Streptococcus cremoris 114. The mutant was able to adsorb and grow on S. cremoris 266, where the parent phage could not. The mutant phage was unable to adsorb to the original bacterial host, S. cremoris 114. The change in host range was accompanied by an alteration in the neutralization antigen as shown by a change in neutralization rate by an anti-phage serum. Serum-blocking experiments confirmed the difference in neutralization antigen between parent and mutant phages. The two phages nevertheless had similar complement fixation antigens, confirming that one was a mutant derived from the other. A distinction between complement fixation and neutralization antigens, similar to that found for the coliphages and staphylococcal phages, has therefore been demonstrated for two lactic streptococcal phages.  相似文献   

3.
Phage FIC is a spontaneous host-dependent mutant of phage FI which is classified into the fourth group of RNA Escherichia coli phages (RNA coliphages). The mutant phage (FIC) grows normally in E. coli strain Q13 (permissive host), but poorly in strain A/lambda (non-permissive host) (9). Attempts to elucidate the regulatory mechanism of growth of the mutant phage in the non-permissive host revealed the following: (a) growth of the mutant phage was specifically restricted in E. coli strains that have certain suppressor genes for amber mutation; (b) the mutant phage RNA (FIC-RNA) could not produce progeny in the spheroplasts of the non-permissive host; (c) adsorption of the mutant phage to, and penetration of the mutant phage RNA into, the non-permissive host were normal; and (d) biosynthesis of the phage-specific late protein and RNA did not occur in the non-permissive host. Based on these results we conclude that phage FIC is a spontaneous azure-type mutant of the fourth group of RNA coliphage FI.  相似文献   

4.
The Escherichia coli K-12 outer membrane protein OmpA functions as the receptor for bacteriophage Ox2. We isolated a host range mutant of this phage which was able to grow on an Ox2-resistant ompA mutant producing an altered OmpA protein. From this mutant, Ox2h5, a second-step host range mutant was recovered which formed turbid plaques on a strain completely lacking the OmpA protein. From one of these mutants, Ox2h10, a third-step host range mutant, Ox2h12, was isolated which formed clear plaques on a strain missing the OmpA protein. Ox2h10 and Ox2h12 apparently were able to use both outer membrane proteins OmpA and OmpC as receptors. Whereas there two proteins are very different with respect to primary structures and functions, the OmpC protein is very closely related to another outer membrane protein, OmpF, which was not recognized by Ox2h10 or Ox2h12. An examination of the OmpC amino acid sequence, in the regions where it differs from that of OmpF, revealed that one region shares considerable homology with a region of the OmpA protein which most likely is required for phage Ox2 receptor activity.  相似文献   

5.
Protein 38 of the Escherichia coli phage T4 is thought to be required catalytically for the assembly of the long tail fibers of this phage. It is shown that this protein of phage T2 and the T-even-type phage K3 and Ox2 act differently. It was found that NH2-terminal fragments of the protein, expressed from cloned fragments of gene 38 of phage K3, bind to gene 38 amber mutants of phage T2. Such phage or T2 gene 38 amber mutants, grown on a non-permissive host, possess a complete set of six tail fibers but are non-infectious. Both types of non-infectious phage could be repaired by incubation with an extract of cells harboring a cloned gene 38 of a host range mutant of phage K3, K3hx. The repaired phages had the host range of K3hx and not of T2. Immuno-electron microscopy showed that protein 38 is located at the free ends of the long tail fibers of phages T2, K3 and Ox2. The protein serves the recognition of the cellular receptor, i.e. it acts as an adhesin.  相似文献   

6.
lamB is the structural gene for the bacteriophage lambda receptor in Escherichia coli K-12. In vivo and in vitro studies of the lambda receptor from lamB missence mutants selected as resistant to phage lambda h+ showed the following. (i) Resistance was not due to a change in the amount of lambda receptor protein present in the outer membrane but rather to a change in activity. All of the mutants were still sensitive to phage lambda hh*, a two-step host range mutant of phage lambda h+. Some (10/16) were still sensitive to phage lambda h, a one-step host range mutant. (ii) Resistance occurred either by a loss of binding ability or by a block in a later irreversible step. Among the 16 mutations, 14 affected binding of lambda h+. Two (lamB106 and lamB110) affected inactivation but not binding; they represented the first genetic evidence for a role of the lambda receptor in more than one step of phage inactivation. Similarly, among the six mutations yielding resistance to lambda h, five affected binding and one (lamB109) did not. (iii) The pattern of interactions between the mutated receptors and lambda h+ and its host range mutants were very similar, although not identical, in vivo and in vitro. Defects were usually more visible in vitro than in vivo, the only exception being lamB109. (iv) The ability to use dextrins as a carbon source was not appreciably affected in the mutants. Possible working models and the relations between phage infection and dextrins transport were briefly discussed.  相似文献   

7.
8.
Endonuclease II-deficient, ligase-deficient double mutants of phage T4 induce considerably more deoxyribonucleic acid (DNA) synthesis after infection of Escherichia coli B than does the ligase-deficient single mutant. Furthermore, the double mutant can replicate 10 to 15% as well as wild-type T4, whereas the single mutant fails to replicate. When the E. coli host is also deficient in ligase, the double mutant resembles the single mutant. The results indicate that host ligase can substitute for phage ligase when the host DNA is not attacked by the phage-induced endonuclease II.  相似文献   

9.
The requirement for phage protein synthesis for the inhibition of host deoxyribonucleic acid synthesis has been investigated by using a phage mutant unable to catalyze the production of any phage deoxyribonucleic acid. It has been concluded that the major pathway whereby phage inhibit host syntheses requires protein synthesis. The inhibition of host syntheses by phage ghosts is not affected by inhibitors of protein synthesis.  相似文献   

10.
The membrane phospholipids of bacteriophage PR4 grown on wild-type Escherichia coli are markedly enriched in phosphatidylglycerol (PG) relative to host phospholipids. To investigate the role of PG in phage assembly and infectivity, we propagated PR4 on an E. coli mutant defective in PG synthesis. The PG content of PR4 grown on the mutant host accounted for 0.4% of the total viral phospholipids, representing a 90-fold decrease in PG relative to the PG content of phage grown on a wild-type host. Phosphatidylethanolamine and phosphatidic acid, the two major phospholipid species present in these phage preparations, accounted for 88.4 and 9.4% of the total viral phospholipids, respectively. This drastic alteration of the phage phospholipid composition had little or no adverse effect on either the stability or infectivity of the phage. We conclude that the enrichment of the PR4 virion in PG does not reflect an absolute structural requirement of the phage and is not essential for phage infectivity.  相似文献   

11.
We isolated an OmpF-specific bacteriophage whose host range mutant, SQ108h2, requires the presence of the Lc porin for its attachment and which can be used to screen or select for Lc-defective mutants among Escherichia coli K-12 strains lysogenic for the PA-2 converting phage.  相似文献   

12.
A simple technique for the isolation of deletion mutants of phage lambda.   总被引:5,自引:0,他引:5  
We describe a simple technique for isolating deletion mutants of phage lambda and use it to dissect a cloned fragment of foreign DNA. The technique is based on our previous finding that the normally essential product of lambda head gene D is dispensible for phage growth if the DNA content of the phage is less than 82% that of lambda wild-type (Sternberg and Weisberg, 1977). A significant fraction of the few phage that form plaques when a D amber mutant is plated on a nonsuppressing host contains deletions that reduce the phage chromosome size to less than 82% that of wild-type. It is possible to isolate deletions ranging in size from less than 1.5 kb to 14 kb (3 to 27% of wild-type lambda), and the size range can be restricted by an appropriate choice of the DNA content of the starting phage. This method, unlike the older EDTA or heat resistance methods, permits the scoring of deletions because of the absence of phenotypic variants. We investigated the effect of several host and phage mutations on deletion frequency and type and have determined that a host polA mutation increases the frequency of deletions about 30-50-fold without changing the type of deletions. A host mutD mutation or thymine deprivation increases deletion frequency about 10-fold. In contrast, a host ligts mutation has no effect on the frequency of deletions. We have also determined that the size of the smallest lambda chromosome packageable in a plaque-forming phage particle is 72-73% that of lambda wild-type.  相似文献   

13.
Evolution of bacteriophage T7 in a growing plaque.   总被引:2,自引:0,他引:2       下载免费PDF全文
J Yin 《Journal of bacteriology》1993,175(5):1272-1277
The emergence of mutants during the 10(9)-fold amplification of a bacteriophage was spatially resolved in a growing plaque. When wild-type phage T7 was grown on an Escherichia coli host which expressed an essential early enzyme of the phage infection cycle, the T7 RNA polymerase, mutant phage relying on this enzyme appeared in 10(8) phage replications and outgrew the wild type. Spatial resolution of the selection process was achieved by analyzing stab samples taken along a plaque radius. Different mutants were selected at different rates along different radii of the plaque, based on host range and restriction patterns of the isolates. The mutants deleted up to 11% of their genomes, including the gene for their own RNA polymerase. They gained an advantage over the wild type by replicating more efficiently, as determined by one-step growth cultures.  相似文献   

14.
Summary Spontaneous mutants of S. typhimurium resistant to thiolutin are conditionally non-permissive for phage P22 development (Joshi and Chakravorty 1979). At 40° C non-infective phage particles are produced. Phage development in two nonpermissive hosts (18/MC4 and 153/MC4) has been studied in detail. The steps at which the phage morphogenesis is interfered with differ in the two mutants. The electron micrograph of the particles produced in the mutant 18/MC4 reveals the presence of normal-looking particles; these particles contain phage DNA, adsorb to the permissive host but fail to inject their DNA. The particles produced in the mutant 153/MC4 which fail to adsorb to the host are found to be tail fibre-less. These observations indicate the involvement of host protein(s) in phage P22 morphogenesis.  相似文献   

15.
When studying the single cycle of the multiplication of gene 26 mutant amN131 of phage T4, like in temperature shift experiments, the yield of this mutant in non-permissive host depends greatly on the temperature. The burts size of phage in Escherichia coli B is found to be 3.3 phage particles at 25 degrees C, 1.6 at 30 degrees C, 0.051 at 37 degrees C and 0.0007 at 41 degrees C. In the case of permissive host (E. coli CR-63) the burst size per cell decreases from 158 to 49 phage particles at the same temperature interval. The results of the single-burst experiments indicate, that when the incubation temperature increases, the number of E. coli B cells, in which the phage particles maturate, also decreases. It results in the dependence of the transmission coefficient value on the temperature. The transmission coefficient in the conditions favourable for the maturation of the phage is found to be 0.80. It is shown by several methods that the temperature sensitivity of the multiplication of the mutant amN131 in bacterial cells is entirely due to amber mutation in genome of the phage. Therefore the amber mutants having high temperature sensitivity when maturating in non-permissive host cells exist among ordinary amber mutants of phage T4.  相似文献   

16.
A bacteriophage T5 mutant has been isolated that is completely deficient in the induction of deoxynucleoside 5'-monophosphatase activity during infection of Escherichia coli F. The mutant bacteriophage has been shown to be deficient in the excretion of the final products of DNA degradation during infection of E. coli F, and about 30% of the host DNA's thymine residues were reinocorporated into phage DNA. During infection with this mutant, host DNA degradation to trichloroacetic acid-soluble products was normal, host DNA synthesis was shut off normally, and second-step transfer was not delayed. However, induction of early phage enzymes and production of DNA and phage were delayed by 5 to 15 min but eventually reached normal levels. The mutant's phenotype strongly suggests that the enzyme's role is to act at the final stage in the T5-induced system of host DNA degradation by hydrolyzing deoxynucleoside 5'-monophosphates to deoxynucleosides and free phosphate; failure to do this may delay expression of the second-step-transfer DNA.  相似文献   

17.
Bacteriophage studies with Escherichia coli K-12 (gamma)DR-DS-, a mutant lacking the major known fatty acyl hydrolases (phospholipases), and its wild-type parent showed equivalent phage infection with regard to phage production and time of phage release. Further examination of the DR-DS- mutant, however, revealed that the progeny bacteriophage were released without complete dissolution of the host cell. Prolonged cell integrity of the infected mutant was noted by spectrophotometry and supported by direct microscope examination. The phage release occurred at normal "lysis" time with phage yields comparable to that of the wild-type bacteria. Inner membrane degradation was indicated by the release of beta-galactosidase, a cytoplasmic enzyme, and of trichloracetic acid-precipitable RNA. Thus, outer membrane degradation is required for dissolution of phage-infected cells, and this degradation is at least partly dependent on activation of host phospholipases.  相似文献   

18.
Non-targeted mutagenesis of lambda phage by ultraviolet light is the increase over background mutagenesis when non-irradiated phage are grown in irradiated Escherichia coli host cells. Such mutagenesis is caused by different processes from targeted mutagenesis, in which mutations in irradiated phage are correlated with photoproducts in the phage DNA. Non-irradiated phage grown in heavily irradiated uvr+ host cells showed non-targeted mutations, which were 3/4 frameshifts, whereas targeted mutations were 2/3 transitions. For non-targeted mutagenesis in heavily irradiated host cells, there were one to two mutant phage per mutant burst. From this and the pathways of lambda DNA synthesis, it can be argued that non-targeted mutagenesis involves a loss of fidelity in semiconservative DNA replication. A series of experiments with various mutant host cells showed a major pathway of non-targeted mutagenesis by ultraviolet light, which acts in addition to "SOS induction" (where cleavage of the LexA repressor by RecA protease leads to din gene induction): (1) the induction of mutants has the same dependence on irradiation for wild-type and for umuC host cells; (2) a strain in which the SOS pathway is constitutively induced requires irradiation to the same level as wild-type cells in order to fully activate non-targeted mutagenesis; (3) non-targeted mutagenesis occurs to some extent in irradiated recA recB cells. In cells with very low levels of PolI, the induction of non-targeted mutagenesis by ultraviolet light is enhanced. We propose that the major pathway for non-targeted mutagenesis in irradiated host cells involves binding of the enzyme DNA polymerase I to damaged genomic DNA, and that the low polymerase activity leads to frameshift mutations during semiconservative DNA replication. The data suggest that this process will play a much smaller role in ultraviolet mutagenesis of the bacterial genome than it does in the mutagenesis of lambda phage.  相似文献   

19.
Pseudomonas aeruginosa bacteriophage φKMV requires type IV pili for infection, as observed from the phenotypic characterization and phage adsorption assays on a phage infection-resistant host strain mutant. A cosmid clone library of the host ( P. aeruginosa PAO1) genomic DNA was generated and used to select for a clone that was able to restore φKMV infection in the resistant mutant. This complementing cosmid also re-established type IV pili-dependent twitching motility. The correlation between bacteriophage φKMV infectivity and type IV pili, along with its associated twitching motility, was confirmed by the resistance of a P. aeruginosa PAO1Δ pilA mutant to the phage. Subcloning of the complementing cosmid and further phage infection analysis and motility assays suggests that a common regulatory mechanism and/or interaction between the ponA and pilMNOPQ gene products are essential for bacteriophage φKMV infectivity.  相似文献   

20.
Bacteriophage MB78, a virulent phage ofSalmonella typhimurium cannot grow in rifampicin-resistant mutant (rif-39) of the host having altered RNA polymerase. The temperate phage P22 which cannot multiply in presence of the virulent phage MB78 can, however, help MB78 to overcome replication inhibition in rif-39. The processing of concatemeric phage DNA to monomer is blocked in this nonpermissive host. Superinfection with P22 induces synthesis of at least five P22 specific polypeptides which help phage MB78 in the processing of the concatemeric DNA and maturation of phage particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号