首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The intrinsic cAMP-dependent protein kinase activity of highly purified cardiac sarcolemmal vesicles was characterized. The sarcolemmal protein kinase was specifically activated by cAMP. Binding of cAMP to the kinase was saturable and occurred exclusively to a protein of Mr = 55,000 intrinsic to the vesicles. This binding of cAMP to the sarcolemmal vesicles caused a selective release of catalytic activity from the membranes, which was capable of phosphorylating several endogenous sarcolemmal substrates as well as one additional substrate, which was also identified in purified vesicles of cardiac sarcoplasmic reticulum. Unmasking experiments conducted with the ionophore alamethicin demonstrated that the protein kinase activity and its endogenous sarcolemmal substrates were localized on the inner, cytoplasmic surfaces of the vesicles, and, furthermore, suggested that at least 75% of the vesicles were right side out. The major protein substrates phosphorylated in the sarcolemmal fraction exhibited apparent molecular weights of 21,000 and 8,000, as analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Heating the membranes in the presence of sodium dodecyl sulfate prior to electrophoresis completely converted the 21,000-dalton substrate into the form of higher mobility, suggesting that the two substrates were, in fact, identical proteins. This was supported by the observation that both substrates exhibited identical pI values of approximately 6.7. Although present in the sarcolemmal fraction, these two substrates were not localized exclusively to sarcolemmal membranes. The same two substrates were present in 3-fold higher content in purified cardiac sarcoplasmic reticulum vesicles. Moreover, although phosphorylation of all other sarcolemmal proteins in right side out vesicles by exogenously added protein kinase was increased 4-fold or greater by alamethicin, phosphorylation of the substrates of Mr = 21,000 and 8,000 was not altered appreciably by the ionophore. The results suggest that these two major substrates identified in the sarcolemmal preparations are not intrinsic sarcolemmal proteins.  相似文献   

2.
The effect of beta-adrenergic stimulation on sarcolemmal protein phosphorylation was examined in intact ventricular myocardium. Isolated guinea pig ventricles were perfused via the coronary arteries with 32Pi after which membrane vesicles enriched 3-5-fold in sarcolemma were isolated by differential centrifugation followed by sucrose gradient centrifugation. Perfusion of hearts with isoproterenol stimulated 32P incorporation into a protein of apparent molecular weight of 15,000, which copurified with sarcolemmal vesicles. The increase in 32P incorporation was rapid in onset and elevated 2.5-3.0-fold after 30-45 s exposure of hearts to 100 nM isoproterenol. A positive correlation was found between stimulation of phosphorylation of the 15-kDa protein and the increase in the maximal rate of developed tension in intact ventricles after administration of isoproterenol. Phosphorylated phospholamban (most likely present as a contaminant) was also identified in the same sarcolemmal preparations. However, phospholamban and the 15-kDa sarcolemmal substrate were different proteins. Boiling of the membrane samples in sodium dodecyl sulfate prior to electrophoresis dissociated the high Mr form of phospholamban into the form of lower Mr but did not alter the mobility of the 15-kDa protein in sodium dodecyl sulfate-polyacrylamide gels. The 15-kDa protein did not undergo the electrophoretic mobility shift that is characteristic of phospholamban after cAMP-dependent phosphorylation nor did it cross-react with a highly specific phospholamban antibody. In vitro phosphorylation experiments conducted with the unmasking agent Triton X-100 suggested that the 15-kDa protein was localized to the cytoplasmic surfaces of sarcolemmal vesicles. These results demonstrate phosphorylation of a sarcolemmal protein, distinct from phospholamban, in response to beta-adrenergic stimulation of the heart. Phosphorylation of the sarcolemmal 15-kDa protein may play a role in mediating the effects of beta-adrenergic agonists on cardiac contractile force.  相似文献   

3.
The cation-binding characteristics of isolated sarcolemmal vesicles from rat and canine cardiac muscle cells were investigated. To help elucidate the molecular properties involved in these interactions the cation-induced aggregation behavior of rat and canine cardiac sarcolemmal vesicles, sonicated unilamellar vesicles (SUVs) made from sarcolemmal lipid extracts, and SUVs generated from combinations of synthetic lipids similar to those found in the sarcolemmal membrane, as well as mitochondrial and sarcoplasmic reticulum enriched membrane fractions were examined. Our results indicate that cations, such as Ca2+, to indeed bind to the sarcolemmal membrane surface. They also suggest that two (or more) interacting sites are involved in the Ca2+-induced aggregation of the isolated sarcolemmal vesicles, and that sarcolemmal lipid components could be the primary binding sites. The modulating (secondary) sites on the other hand may be protein or carbohydrate in nature, or require specific lipid organizational properties. Finally, the results indicate that the interactions of cations, such as Ca2+, with the sarcolemmal surface are species specific, with the sarcolemmal membranes of both rat and canine preparations having different physico-chemical properties.  相似文献   

4.
Purified canine cardiac sarcolemmal membrane vesicles exhibit a sodium ion for proton exchange activity (Na+/H+ exchange). Na+/H+ exchange was demonstrated both by measuring rapid 22Na uptake into sarcolemmal vesicles in response to a transmembrane H+ gradient and by following H+ transport in response to a transmembrane Na+ gradient with use of the probe acridine orange. Maximal 22Na uptake into the sarcolemmal vesicles (with starting intravesicular pH = 6 and extravesicular pH = 8) was approximately 20 nmol/mg protein. The extravesicular Km of the Na+/H+ exchange activity for Na+ was determined to be between 2 and 4 mM (intravesicular pH = 5.9, extravesicular pH = 7.9), as assessed by measuring the concentration dependence of the 22Na uptake rate and the ability of extravesicular Na+ to collapse an imposed H+ gradient. All results suggested that Na+/H+ exchange was reversible and tightly coupled. The Na+/H+ exchange activity was assayed in membrane subfractions and found most concentrated in highly purified cardiac sarcolemmal vesicles and was absent from free and junctional sarcoplasmic reticulum vesicles. 22Na uptake into sarcolemmal vesicles mediated by Na+/H+ exchange was dependent on extravesicular pH, having an optimum around pH 9 (initial internal pH = 6). Although the Na+/H+ exchange activity was not inhibited by tetrodotoxin or digitoxin, it was inhibited by quinidine, quinacrine, amiloride, and several amiloride derivatives. The relative potencies of the various inhibitors tested were found to be: quinacrine greater than quinidine = ethylisopropylamiloride greater than methylisopropylamiloride greater than dimethylamiloride greater than amiloride. The Na+/H+ exchange activity identified in purified cardiac sarcolemmal vesicles appears to be qualitatively similar to Na+/H+ exchange activities recently described in intact cell systems. Isolated cardiac sarcolemmal vesicles should prove a useful model system for the study of Na+/H+ exchange regulation in myocardial tissue.  相似文献   

5.
Dystrophin was purified by immunoaffinity chromatography from detergent-solubilized Torpedo electric organ postsynaptic membranes using monoclonal antibodies. A major doublet of proteins at Mr 58,000 and minor proteins at Mr 87,000, Mr 45,000, and Mr 30,000 reproducibly copurified with dystrophin. The Mr 58,000 and Mr 87,000 proteins were identical to previously described peripheral membrane proteins (Mr 58,000 protein and 87,000 protein) whose muscle homologs are associated with the sarcolemma (Froehner, S. C., Murnane, A. A., Tobler, M., Peng, H. B., and Sealock, R. (1987) J. Cell Biol. 104, 1633-1646; Carr, C., Fischbach, G. D., and Cohen, J. B. (1989) J. Cell Biol. 109, 1753-1764). The copurification of dystrophin and Mr 58,000 protein was shown to be specific, since dystrophin was also captured with a monoclonal antibody against the Mr 58,000 protein but not by several control antibodies. The Mr 87,000 protein was a major component (along with the Mr 58,000 protein) in material purified on anti-58,000 columns, suggesting that the Mr 58,000 protein forms a distinct complex with the Mr 87,000 protein, as well as with dystrophin. Immunofluorescence staining of skeletal and cardiac muscle from the dystrophin-minus mdx mouse with the anti-58,000 antibody was confined to the sarcolemma as in normal muscle but was much reduced in intensity, even though immunoblotting demonstrated that the contents of Mr 58,000 protein in normal and mdx muscle were comparable. Thus, the Mr 58,000 protein appears to associate inefficiently with the sarcolemmal membrane in the absence of dystrophin. This deficiency may contribute to the membrane abnormalities that lead to muscle necrosis in dystrophic muscle.  相似文献   

6.
Phospholamban, the putative protein regulator of the Ca2+ pump of cardiac sarcoplasmic reticulum, was purified to apparent homogeneity from canine cardiac sarcoplasmic reticulum vesicles by selective extraction with sodium cholate, followed by adsorption to calcium oxalate, solubilization in Zwittergent 3-14, and specific elution from p-hydroxymercuribenzoate-agarose. Phospholamban, isolated in the dephosphorylated state, was purified 80-fold in 15% yield (approximately 2 mg of phospholamban/g of sarcoplasmic reticulum protein). Nondissociated phospholamban exhibited an apparent Mr = 25,000 in sodium dodecyl sulfate-polyacrylamide gels. Partially dissociated phospholamban, induced by boiling in sodium dodecyl sulfate, exhibited five distinct mobility forms in sodium dodecyl sulfate-polyacrylamide gels, of apparent molecular weights between 5,000-6,000 and 25,000. Phospholamban was phosphorylated to a level of 190 nmol of Pi/mg of protein by cAMP-dependent protein kinase, consistent by minimum stoichiometry with a subunit molecular weight of approximately 5,000. Phospholamban prepared by the present method was different in several respects from the proteins that have been isolated in other laboratories. Pure phospholamban was cysteine rich, containing 6 residues/100 amino acid residues. Dephosphorylated phospholamban was strongly basic with a pI = 10; phosphorylation decreased the pI to approximately 6.7. Pure phospholamban (and phospholamban present in sarcoplasmic reticulum vesicles) was not readily extracted into acidified chloroform/methanol, suggesting that the protein does not behave as an acidic proteolipid. The purified protein was highly antigenic. Phospholamban was localized by immunochemical methods to cardiac membranes enriched in sarcoplasmic reticulum, but was absent from sarcoplasmic reticulum membranes prepared from fast skeletal muscle. The method described for isolation of cardiac phospholamban is highly reproducible and relatively simple, and should be useful for further detailed studies designed to probe the molecular structure of the protein.  相似文献   

7.
The morphological and ultrastructural properties of highly purified canine cardiac sarcolemmal vesicles, prepared by a modification (Colvin, R.A., Ashavaid, T.F. and Herbette, L.G. (1985) Biochim. Biophys. Acta 812, 601-608) of the method of Jones et al. (Jones L.R., Madlock, S.W. and Besch, H.R. (1980) J. Biol. Chem. 255, 9971-9980), were examined by several techniques. Thin-section electron microscopy showed predominantly intact unilamellar vesicles with little staining beyond the lipid bilayer boundaries. Freeze-fracture electron microscopy demonstrated that the majority of particles are approx. 90 A diameter and present at a density of 780 +/- 190 micrometers-2 (+/- S.D.). If it is assumed that some of these particles represent the (Na+ + K+)-ATPase, the finding that they are largely confined to the convex fracture face suggests a predominant right-side-out orientation of these sarcolemmal vesicles that is consistent with biochemical assays. The sarcolemmal membrane width measured by electron microscopy (unhydrated membrane width of 50-70 A) is consistent with the unit cell dimensions of 56-77 A determined by lamellar X-ray diffraction (hydrated membrane width). A unit cell dimension of 56-62 A was also found by X-ray diffraction for sarcolemmal lipids extracted from these preparations, indicating that the isolated sarcolemmal preparations do not contain a significant surface coat (glycocalyx). As both cardiac and skeletal sarcoplasmic reticulum membranes have a 80-100 A membrane width, these findings demonstrate that the purified sarcolemmal membrane is structurally distinct from both cardiac and skeletal sarcoplasmic reticulum. In contrast to the protein-rich skeletal sarcoplasmic reticulum membrane, which contains a single essential protein responsible for the regulation of cytosolic Ca2+ concentration, the sarcolemma is a lipid-rich membrane that contains a variety of proteins associated with many regulatory functions served by this membrane in cardiac muscle.  相似文献   

8.
A unique set of high molecular weight proteins was identified in junctional sarcoplasmic reticulum (SR) vesicles isolated from both cardiac muscle and skeletal muscle. These high Mr proteins were not present in free SR vesicles isolated from either tissue, nor were they observed in purified sarcolemmal fractions. The junctional SR high Mr proteins migrated as doublets in sodium dodecyl sulfate-polyacrylamide gels and exhibited apparent Mr values between 290,000 and 350,000. The high Mr proteins bound calmodulin; they were the principal proteins labeled in the cardiac and skeletal muscle SR subfractions by azido-125I-calmodulin. The high Mr proteins were also substrates for an endogenous Ca2+-calmodulin-dependent protein kinase activity, as well as exogenously added catalytic subunit of cAMP-dependent protein kinase. In addition, the junctional SR high Mr proteins were the major SR proteins degraded by a Ca2+-activated protease purified from smooth muscle. Control experiments verified the separation of junctional SR vesicles and free SR vesicles from both muscle types. Junctional SR vesicles were enriched in calsequestrin, and they exhibited Ca2+ uptake which was stimulated up to 10-fold by either ryanodine or ruthenium red. Free SR vesicles were deficient in calsequestrin and were insensitive to these two agents. Localization of the cardiac and skeletal muscle high Mr proteins to the junctional SR, coupled with demonstration of their nearly identical biochemical properties, suggests that the proteins are homologous and are likely to have similar functions in both types of striated muscle.  相似文献   

9.
Outer membranes of Haemophilus influenzae type b were fractionated to yield Triton X-100-insoluble material and lipopolysaccharide and phospholipids. Liposomes reconstituted from lipopolysaccharide and phospholipids were impermeable to sucrose (Mr, 342) and to a high-molecular-weight dextran (average Mr, 6,600). When the Triton X-100-insoluble material was introduced into the reconstituted liposomes, the vesicles became permeable to sucrose, raffinose (Mr, 504), and stachyose (Mr, 666) and fully retained dextrans of Mr greater than 1,500. Inulin (average Mr, 1,400) was tested for its efflux from the reconstituted outer membrane vesicles; 62% of the added inulin was trapped. The molecular weight exclusion limit for the outer membrane of H. influenzae type b was therefore estimated at approximately 1,400. A protein responsible for the transmembrane diffusion of solutes was purified from H. influenzae type b by extraction of whole cells with cetyl trimethyl ammonium bromide. When this extract was passed over DEAE-Sepharose, three protein-containing peaks (I, II, and III) were eluted. Peaks I and II contained mixtures of proteins as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis; when tested for their pore-forming properties, these proteins were unable to render liposomes of lipopolysaccharide and phospholipid permeable to sucrose. Peak III contained only one molecular species of protein of molecular weight 40,000; this protein acted as a porin in reconstituted vesicles. The molecular weight exclusion limit for 40,000-molecular-weight protein matched the estimate of approximately 1,400 which was determined for outer membranes. A series of homologous saccharides of increasing degree of polymerization was prepared from agarose by hydrolysis with beta-agarase and fractionation on gel filtration chromatography. These oligosaccharides of Mr, 936, 1,242, 1,548, and 1,854 were assayed for retention by the complete vesicles containing 40-kilodalton protein and lipopolysaccharide and phospholipids. All of these oligosaccharides were lost by efflux through the porin. Since the molecular conformation of the largest oligosaccharide is an elongated semirigid helix, it is suggested that the pore formed by the 40-kilodalton protein does not act as a barrier to the diffusion of this compound.  相似文献   

10.
The cardiac sarcolemmal 15-kDa protein, previously shown to be the principal sarcolemmal substrate phosphorylated in intact heart in response to beta-adrenergic stimulation (Presti, C. F., Jones, L. R., and Lindemann J. P. (1985) J. Biol. Chem. 260, 3860-3867), was demonstrated to be the major substrate phosphorylated in purified canine cardiac sarcolemmal vesicles by an intrinsic protein kinase C activity. The intrinsic protein kinase C, detected by its ability to phosphorylate H1 histones, was most concentrated in cardiac sarcolemmal vesicles and absent from sarcoplasmic reticulum membranes. Unmasking techniques localized the intrinsic protein kinase activity and its principal endogenous substrate, the 15-kDa protein, to the cytoplasmic surfaces of sarcolemmal vesicles; phospholamban contaminating the sarcolemmal preparation was not significantly phosphorylated. The intrinsic protein kinase C required micromolar Ca2+ for activity, but not calmodulin. Half-maximal phosphorylation of the 15-kDa protein occurred at 10 microM Ca2+; optimal phosphorylation of the 15-kDa protein by protein kinase C and Ca2+ was additive to that produced by cAMP-dependent protein kinase. Exogenous phospholipids were not required to activate endogenous protein kinase C. However, heat-treated sarcolemmal vesicles, in which intrinsic protein kinase activities were inactivated, were sufficient to maximally activate soluble protein kinase C prepared from rat brain, suggesting that all the necessary phospholipid cofactors were already present in sarcolemmal vesicles. Of the many proteins present in sarcolemmal vesicles, only the 15-kDa protein was phosphorylated significantly in heat-inactivated sarcolemmal vesicles by soluble protein kinase C, confirming that the 15-kDa protein was a preferential substrate for this enzyme. Consistent with a protein kinase C activity in sarcolemmal vesicles, the tumor-promoting phorbol ester 12-O-tetradecanoylphorbol 13-acetate stimulated 15-kDa protein phosphorylation severalfold, producing approximately 70% of the maximal phosphorylation even in the absence of significant ionized Ca2+. The results are compatible with an intrinsic protein kinase C activity in sarcolemmal vesicles whose major substrate is the 15-kDa protein.  相似文献   

11.
Sarcolemmal and sarcoplasmic reticulum membrane vesicle fractions were isolated from cardiac microsomes. Separation of sarcolemmal and sarcoplasmic reticulum membrane markers was documented by a combination of correlative assay and centrifugation techniques. To facilitate the separation, the crude microsomes were incubated in the presence of ATP, Ca2+, and oxalate to increase the density of the sarcoplasmic reticulum vesicles. After sucrose gradient centrifugation, the densest subfraction (sarcoplasmic reticulum) contained the highest (K+,Ca2+)-ATPase activity and virtually no (Na2+,K+)-ATPase activity, even when latent (Na+,K+)-ATPase activity was unmasked. In addition, the sarcoplasmic reticulum fraction contained no significant sialic acid, beta receptor binding activity, or adenylate cyclase activity. Sarcolemmal membrane fractions were of low buoyant density. Preparations most enriched in sarcolemmal vesicles contained the highest level of all the other parameters and only about 10% of the (K+,Ca2+)-ATPase activity of the sarcoplasmic reticulum fraction. The results suggest that (Na+,K+)-ATPase, sialic acid, beta-adrenergic receptors, and adenylate cyclase can be entirely accounted for by the sarcolemmal content of cardiac microsomes. Gel electrophoresis of the sarcolemmal and sarcoplasmic reticulum membrane fractions showed distinct bands. Membrane proteins exclusive to each of the fractions were also demonstrated by phosphorylation. Cyclic AMP stimulated phosphorylation by [gamma-32P]ATP of two proteins of apparent Mr = 20,000 and 7,000 that were concentrated in sarcoplasmic reticulum, but the stimulation was markedly dependent on the presence of added soluble cyclic AMP-dependent protein kinase. Cyclic AMP also stimulated phosphorylation of membrane proteins in sarcolemma, but this phosphorylation was mediated by an endogenous protein kinase activity. The apparent molecular weights of these phosphorylated proteins were 165,000, 90,000, 56,000, 24,000, and 11,000. The results suggest that sarcolemma may contain an integral enzyme complex, not present in sarcoplasmic reticulum, that contains beta-adrenergic receptors, adenylate cyclase, cyclic AMP-dependent protein kinase, and several substrates of the protein kinase.  相似文献   

12.
Numerous studies suggest that cation-sarcolemmal interactions play an essential role in the excitation/contraction/relaxation cycles of cardiac muscle cells. To help elucidate the molecular mechanisms involved in these processes the cation binding characteristics of isolated rabbit cardiac sarcolemmal vesicles were investigated. Cation-membrane interactions were studied by examining the cation-induced aggregation properties of the vesicles. The results obtained were qualitatively very similar to those previously reported for rat and canine cardiac sarcolemmal vesicle preparations (Leonards, K.S. (1988) Biochim. Biophys. Acta 938, 293-309), indicating that all three species have a shared set of basic membrane characteristics. Specifically the results indicate that cations, such as Ca2+, bind to the sarcolemmal surface, and suggest that two (or more) interacting sites are involved in the process. The selectivity series for the cation-induced aggregation of the sarcolemmal vesicles was: La3+ greater than or equal to Cd2+ much greater than Mn2+ greater than Ca2+ greater than Ba2+ = Sr2+ = Mg2+. Protons (H+) could also induce massive vesicle aggregation at pH 5.60-5.75. However, the results obtained also show that the interactions of cations with the rabbit cardiac sarcolemmal membrane surface are quantitatively distinct from those obtained in either rat or canine sarcolemmal vesicle preparations, thereby confirming the species specific nature of cation-sarcolemmal interactions in cardiac cells.  相似文献   

13.
Dystrophin is a high molecular weight protein present at low abundance in skeletal, cardiac and smooth muscle and in trace amounts in brain. In skeletal muscle, dystrophin is uniformly distributed along the inner surface of the plasma membrane. Biochemical fractionation studies have shown that all detectable skeletal muscle dystrophin is tightly associated with a complex of wheat germ agglutinin (WGA)-binding and concanavalin A (Con A) binding sarcolemmal glycoproteins. Absence of dystrophin is the primary biochemical defect in patients with Duchenne muscular dystrophy and leads to segmental necrosis of their skeletal myofibers. Although present in similar amounts in normal cardiac and skeletal muscle, the absence of dystrophin from cardiac muscle has less severe effects on the survival of cardiac cells. We have therefore examined whether there are differences in the properties of cardiac and skeletal dystrophin. We report that in contrast to skeletal muscle, cardiac dystrophin is distributed between distinct pools: a soluble cytoplasmic pool, a membrane-bound pool not associated with WGA-binding glycoproteins and a membrane-bound pool associated with WGA-binding glycoproteins. Cardiac dystrophin was not associated with any Con A binding glycoproteins. Immunohistochemical localization studies in isolated ventricular myocytes reveal a distinct punctate staining pattern for dystrophin, approximating to the level of the transverse tubule/Z-line and contrasting with the uniform sarcolemmal staining reported for skeletal muscle fibers. The distinct properties of cardiac dystrophin suggest unique roles for this protein in cardiac versus skeletal muscle function.Abbreviations Dys Dystrophin - T-tubule Transverse tubule - SDS-PAGE Sodium Dodecyl Sulphate-Polyacrylamide Gel Electrophoresis - WGA Wheat Germ Agglutinin - Con A Concanavalin A - DHP Dihydropyridine receptor - FITC Fluorescein Isothiocyanate Conjugate - NAG N-Acetyl-D-Glucosamine - NP-40 NONIDET P-40 - PBS Phosphate-Buffered Saline - TBST Tris Buffered Saline-Tween  相似文献   

14.
Subfractionation of cardiac sarcolemma with wheat-germ agglutinin.   总被引:1,自引:0,他引:1       下载免费PDF全文
The properties of highly purified bovine cardiac sarcolemma subfractionated with the lectin, wheat-germ agglutinin (WGA) were studied. Two different membrane subfractions were isolated, one which was agglutinated in the presence of 1.0 mg of WGA/mg of protein (WGA+ vesicles) and a second fraction which failed to agglutinate (WGA- vesicles). These two membrane fractions had quantitatively different rates of Na+/K+-dependent, ouabain-sensitive ATPase and Na+/Ca2+ exchange activities, yet a similar protein composition, which suggests that they were both derived from the plasma membrane. WGA- vesicles had a decreased number of [3H]quinuclidinyl benzilate-binding sites and no detectable [3H]nitrendipine-binding sites. Electron-microscopic and freeze-fracture analysis showed that the WGA+ fraction was composed of typical spherical sarcolemmal vesicles, whereas the WGA- fraction primarily contained elongated tubular structures suggestive of the T-tubule vesicles which were previously isolated from skeletal muscle. Assays of marker enzymes revealed that these fractions were neither sarcoplasmic reticulum nor plasma membrane from endothelial cells. Moreover, WGA agglutination did not result in the separation of right-side-out and inside-out vesicles. On the basis of these findings we propose that the WGA+ fraction corresponds to highly purified sarcolemma, whereas the WGA- fraction may be derived from T-tubule membranes.  相似文献   

15.
A highly purified sarcolemmal fraction from rat heart consisted of closed inside-out oriented vesicles and possessed high activities of Na+, K+-ATPase, adenylate cyclase and creatine kinase. Contaminations of sarcolemmal preparation by other membranous fractions were practically absent. This sarcolemmal fraction contained protein kinase tightly bound to the membrane. Substrates of the phosphorylation reaction catalyzed by this protein kinase were either endogenous sarcolemmal protein (proteins) with molecular weight of 11500 or exogenous protein--histone, type II. Phosphorylation of the endogenous but not of the exogenous substrate was completely independent of cyclic AMP. A kinetic analysis of the sarcolemmal protein kinase reaction with Mg[gamma-32P]ATP and histone as substrates revealed that the kinetic mechanism of this reaction is characterized by the following kinetic parameters: Km (Mg-ATP) = 12.1 microM; Km (histone) = 0.47 mg/ml; Ki (Mg-ADP) = 15.6 microM. A comparison of experimental results to literary data allows to suggest that the sarcolemmal enzyme is virtually soluble protein kinase tightly bound to the sarcolemma.  相似文献   

16.
Sarcolemmal vesicles with right-side-out configuration were prepared from normal fresh human and rabbit skeletal muscle bundles by incubation in 140 mM KCl solution containing collagenase. The vesicles were used to examine the association of dystrophin, the protein product of the Duchenne muscular dystrophy gene, with the sarcolemma. Western blot analysis, indirect immunofluorescence, and immunoperoxidase staining using specific antibodies raised against the N-terminal and the C-terminal domains show that dystrophin remains associated with the membrane of sarcolemmal vesicles. Indirect immunofluorescence microscopy using permeabilized and unpermeabilized vesicles indicated that both the N-terminus and the C-terminus of dystrophin are localized to the cytoplasmic surface of the sarcolemma. These results suggest that dystrophin has much stronger attachment to the surface membrane than it has to the internal domain of skeletal muscle fibers. Sarcolemmal vesicles thus represent a new system for studying the function of dystrophin and the molecular basis of its association with the sarcolemma.  相似文献   

17.
Phosphorylation of the Ca2(+)-pump ATPase of cardiac sarcolemmal vesicles by exogenously added protein kinases was examined to elucidate the molecular basis for its regulation. The Ca2(+)-pump ATPase was isolated from protein kinase-treated sarcolemmal vesicles using a monoclonal antibody raised against the erythrocyte Ca2(+)-ATPase. Protein kinase C (C-kinase) was found to phosphorylate the Ca2(+)-ATPase. The stoichiometry of this phosphorylation was about 1 mol per mol of the ATPase molecule. The C-kinase activation resulted in up to twofold acceleration of Ca2+ uptake by sarcolemmal vesicles due to its effect on the affinity of the Ca2+ pump for Ca2+ in both the presence and absence of calmodulin. Both the phosphorylation and stimulation of ATPase activity by C kinase were also observed with a highly-purified Ca2(+)-ATPase preparation isolated from cardiac sarcolemma with calmodulin-Sepharose and a high salt-washing procedure. Thus, C-kinase appears to stimulate the activity of the sarcolemmal Ca2(+)-pump through its direct phosphorylation. In contrast to these results, neither cAMP-dependent protein kinase, cGMP-dependent protein kinase nor Ca2+/calmodulin-dependent protein kinase II phosphorylated the Ca2(+)-ATPase in the sarcolemmal membrane or the purified enzyme preparation, and also they exerted virtually no effect on Ca2+ uptake by sarcolemmal vesicles.  相似文献   

18.
We use a highly specific and sensitive antibody to further characterize the distribution of dystrophin in skeletal, cardiac, and smooth muscle. No evidence for localization other than at the cell surface is apparent in skeletal muscle and no 427-kD dystrophin labeling was detected in sciatic nerve. An elevated concentration of dystrophin appears at the myotendinous junction and the neuromuscular junction, labeling in the latter being more intense specifically in the troughs of the synaptic folds. In cardiac muscle the distribution of dystrophin is limited to the surface plasma membrane but is notably absent from the membrane that overlays adherens junctions of the intercalated disks. In smooth muscle, the plasma membrane labeling is considerably less abundant than in cardiac or skeletal muscle and is found in areas of membrane underlain by membranous vesicles. As in cardiac muscle, smooth muscle dystrophin seems to be excluded from membrane above densities that mark adherens junctions. Dystrophin appears as a doublet on Western blots of skeletal and cardiac muscle, and as a single band of lower abundance in smooth muscle that corresponds most closely in molecular weight to the upper band of the striated muscle doublet. The lower band of the doublet in striated muscle appears to lack a portion of the carboxyl terminus and may represent a dystrophin isoform. Isoform differences and the presence of dystrophin on different specialized membrane surfaces imply multiple functional roles for the dystrophin protein.  相似文献   

19.
Structural and functional properties of a Ca2+-ATPase from human platelets   总被引:3,自引:0,他引:3  
An antibody prepared against highly purified rabbit muscle Ca2+-ATPase from sarcoplasmic reticulum has been observed to cross-react with proteins in human platelet membrane vesicles. The antibody specifically precipitated Ca2+-ATPase activity from solubilized human platelet membranes and recognized two platelet polypeptides denatured in sodium dodecyl sulfate with Mr = 107,000 and 101,000. Ca2+-ATPase activity from Brij 78-solubilized platelet membranes was purified up to 10-fold. The purified preparation consisted mainly of two polypeptides with Mr approximately 100,000, and 40,000. The lower molecular weight protein appeared unrelated to Ca2+-ATPase activity. The Ca2+-ATPase in human platelet membrane vesicles exhibited "negative cooperativity" with respect to the kinetics of ATP hydrolysis. The apparent Km for Ca2+ activation of ATPase activity was 0.1 microM. Ca2+-dependent phosphorylation of platelet vesicles by [gamma-32P]ATP at 0 degrees C yielded a maximum of 0.2-0.4 nmol of PO4/mg of protein that was labile at pH 7.0 and 20 degrees C. This result suggests that only about 2-4% of the total protein in platelet membrane vesicles is the Ca2+-ATPase, which agrees with an estimate based on the specific activity of the Ca2+-ATPase in platelet membranes (20-50 nmol of ATP hydrolyzed/min/mg of protein at 30 degrees C). Calmodulin resulted in only a 1.6-fold stimulation of Ca2+-ATPase activity even after extensive washing of membranes with a calcium chelator or chlorpromazine. It is concluded that human platelets contain a Ca2+-ATPase immunochemically related to the Ca2+ pump from rabbit sarcoplasmic reticulum and that the enzymatic characteristics and molecular weight of the platelet ATPase are quite similar to those of the muscle ATPase.  相似文献   

20.
A mechanism for the activating effect of alamethicin on membrane enzymes was investigated, using a purified preparation of cardiac sarcolemmal vesicles. (Na+,K+)-ATPase, beta-adrenergic receptor-coupled adenylate cyclase, and cAMP-dependent protein kinase activities were measured. alamethicin increased ouabain-sensitive (Na+,K+)-ATPase activity of sarcolemmal vesicles 5- to 7-fold and adenylate cyclase activity 2.5- to 4-fold. Adenylate cyclase retained its sensitivity to the beta-adrenergic agonist isoproterenol after membranes were treated with alamethicin. Alamethicin caused a 4- to 6-fold increase in the number of detectable (Na+,K+)-ATPase enzymic sites, but no increase ws noted for the number of muscarinic-cholinergic receptor-binding sites. Phosphorylation of endogenous proteins of sarcolemmal vesicles by an intrinsic cAMP-dependent protein kinase activity was stimulated 5- to 7-fold by alamethicin. The regulatory subunit of the membrane-bound cAMP-dependent protein kinase was labeled with the photoaffinity probe 8-azido-adenosine 3':5'[32P]monophosphate (8-N3-[32P]cAMP), and it migrated with an apparent molecular weight of 55,000 in sodium dodecyl sulfate polyacrylamide gels. Alamethicin stimulated autophosphorylation of the regulatory subunit by [gamma-32P]ATP 6-fold and incorporation of of 8-N3-[32P]cAMP into the subunit 2.6-fold. The results suggest that alamethicin disrupts membrane barriers of sarcolemmal vesicles, which are mostly right side out, giving substrates and activators access to enzymic sites in the interior of the vesicles, while preserving functional coupling of enzymes to their effectors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号