首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Five members of the KMT2 family of lysine methyltransferases, originally named the mixed lineage leukemia (MLL1-5) proteins, regulate gene expression during embryogenesis and development. Each KMT2A-E contains a catalytic SET domain that methylates lysine 4 of histone H3, and one or several PHD fingers. Over the past few years a growing number of studies have uncovered diverse biological roles of the KMT2A-E PHD fingers, implicating them in binding to methylated histones and other nuclear proteins, and in mediating the E3 ligase activity and dimerization. Mutations in the PHD fingers or deletion of these modules are linked to human diseases including cancer and Kabuki syndrome. In this work, we summarize recently identified biological functions of the KMT2A-E PHD fingers, discuss mechanisms of their action, and examine preference of these domains for histone and non-histone ligands.  相似文献   

3.
A new family of cyclophilins with an RNA recognition motif (RRM) has members in vertebrates, roundworms and flatworms. We have identified a Drosophilacyclophilin, Dcyp33, with a high degree of amino acid sequence identity and similarity with other members of the family. Dcyp33 interacts through its RRM domain with the third PHD finger of trithorax. This interaction is conserved in the human homologues of these proteins, Cyp33 and MLL. Over expression of Dcyp33 in DrosophilaSL1 cells results in down-regulation of AbdominalB Hoxgene expression, mirroring the effect of human Cyp33 on the expression of human HOXgenes.  相似文献   

4.
5.
Ruault M  Brun ME  Ventura M  Roizès G  De Sario A 《Gene》2002,284(1-2):73-81
We characterized MLL3, a new human member of the TRX/MLL gene family. MLL3 is expressed in peripheral blood, placenta, pancreas, testes, and foetal thymus and is weakly expressed in heart, brain, lung, liver, and kidney. It encodes a predicted protein of 4911 amino acids containing two plant homeo domains (PHD), an ATPase alpha_beta signature, a high mobility group, a SET (Suppressor of variegation, Enhancer of zeste, Trithorax) and two FY (phenylalanine tyrosine)-rich domains. The amino acid sequence of the SET domain was used to obtain a phylogenetic tree of human MLL genes and their homologues in different species. MLL3 is closely related to human MLL2, Fugu mll2, a Caenorhabditis elegans predicted protein, and Drosophila trithorax-related protein. Interestingly, PHD and SET domains are frequently found in proteins encoded by genes that are rearranged in different haematological malignancies and MLL3 maps to 7q36, a chromosome region that is frequently deleted in myeloid disorders. Partial duplications of the MLL3 gene are found in the juxtacentromeric region of chromosomes 1, 2, 13, and 21.  相似文献   

6.
7.
8.
9.
The mixed lineage leukemia protein MLL1 contains four highly conserved plant homeodomain (PHD) fingers, which are invariably deleted in oncogenic MLL1 fusion proteins in human leukemia. Here we show that the second PHD finger (PHD2) of MLL1 is an E3 ubiquitin ligase in the presence of the E2-conjugating enzyme CDC34. This activity is conserved in the second PHD finger of MLL4, the closest homolog to MLL1 but not in MLL2 or MLL3. Mutation of PHD2 leads to MLL1 stabilization, as well as increased transactivation ability and MLL1 recruitment to the target gene loci, suggesting that PHD2 negatively regulates MLL1 activity.  相似文献   

10.
The MLL gene is a frequent target for leukemia-associated chromosomal translocations that generate dominant-acting chimeric oncoproteins. These invariably contain the amino-terminal 1,400 residues of MLL fused with one of a variety of over 30 distinct nuclear or cytoplasmic partner proteins. Despite the consistent inclusion of the MLL amino-terminal region in leukemia oncoproteins, little is known regarding its molecular contributions to MLL-dependent oncogenesis. Using high-resolution mutagenesis, we identified three MLL domains that are essential for in vitro myeloid transformation via mechanisms that do not compromise subnuclear localization. These include the CXXC/Basic domain and two novel domains of unknown function. Point mutations in the CXXC domain that eliminate myeloid transformation by an MLL fusion protein also abolished recognition and binding of nonmethylated CpG DNA sites in vitro and transactivation in vivo. Our results define a critical role for the CXXC DNA binding domain in MLL-associated oncogenesis, most likely via epigenetic recognition of CpG DNA sites within the regulatory elements of target genes.  相似文献   

11.
Mixed Lineage Leukemia 5 (MLL5) is a histone methyltransferase that plays a key role in hematopoiesis, spermatogenesis and cell cycle progression. In addition to its catalytic domain, MLL5 contains a PHD finger domain, a protein module that is often involved in binding to the N-terminus of histone H3. Here we report the NMR solution structure of the MLL5 PHD domain showing a variant of the canonical PHD fold that combines conserved H3 binding features from several classes of other PHD domains (including an aromatic cage) along with a novel C-terminal α-helix, not previously seen. We further demonstrate that the PHD domain binds with similar affinity to histone H3 tail peptides di- and tri-methylated at lysine 4 (H3K4me2 and H3K4me3), the former being the putative product of the MLL5 catalytic reaction. This work establishes the PHD domain of MLL5 as a bone fide ‘reader’ domain of H3K4 methyl marks suggesting that it may guide the spreading or further methylation of this site on chromatin.  相似文献   

12.
The mixed-lineage leukemia gene (MLL, ALL1, HRX) encodes a 3,969-amino-acid nuclear protein homologous to Drosophila trithorax and is required to maintain proper Hox gene expression. Chromosome translocations in human leukemia disrupt MLL (11q23), generating chimeric proteins between the N terminus of MLL and multiple translocation partners. Here we report that MLL is normally cleaved at two conserved sites (D/GADD and D/GVDD) and that mutation of these sites abolishes the proteolysis. MLL cleavage generates N-terminal p320 (N320) and C-terminal p180 (C180) fragments, which form a stable complex that localizes to a subnuclear compartment. The FYRN domain of N320 directly interacts with the FYRC and SET domains of C180. Disrupting the interaction between N320 and C180 leads to a marked decrease in the level of N320 and a redistribution of C180 to a diffuse nuclear pattern. These data suggest a model in which a dynamic post-cleavage association confers stability to N320 and correct nuclear sublocalization of the complex, to control the availability of N320 for target genes. This predicts that MLL fusion proteins of leukemia which would lose the ability to complex with C180 have their stability conferred instead by the fusion partners, thus providing one mechanism for altered target gene expression.  相似文献   

13.
Translocations involving the mixed lineage leukemia (MLL) gene result in human acute leukemias with very poor prognosis. The leukemogenic activity of MLL fusion proteins is critically dependent on their direct interaction with menin, a product of the multiple endocrine neoplasia (MEN1) gene. Here we present what are to our knowledge the first small-molecule inhibitors of the menin-MLL fusion protein interaction that specifically bind menin with nanomolar affinities. These compounds effectively reverse MLL fusion protein-mediated leukemic transformation by downregulating the expression of target genes required for MLL fusion protein oncogenic activity. They also selectively block proliferation and induce both apoptosis and differentiation of leukemia cells harboring MLL translocations. Identification of these compounds provides a new tool for better understanding MLL-mediated leukemogenesis and represents a new approach for studying the role of menin as an oncogenic cofactor of MLL fusion proteins. Our findings also highlight a new therapeutic strategy for aggressive leukemias with MLL rearrangements.  相似文献   

14.
Rearrangements of the MLL gene, which is located at chromosome 11q23, are associated with aggressive acute leukemias in both children and adults. MLL regulates Hox gene expression through direct promoter binding and histone modification. MLL rearrangements occurring in leukemia include MLL fusion genes, partial tandem duplications of MLL and MLL amplification. MLL fusions and amplification upregulate Hox expression, apparently resulting in a block of hematopoietic differentiation. Future therapies for MLL-associated leukemia might involve blocking Hox gene upregulation by using fusion proteins or inhibiting the activity of Hox proteins themselves.  相似文献   

15.
16.
17.
18.
The PHD finger, a nuclear protein-interaction domain   总被引:14,自引:0,他引:14  
The PHD finger is a common structural motif found in all eukaryotic genomes. It is a Zn(2+)-binding domain and its closest structural relative is the RING domain. Many RING fingers bind to E2 ligases to mediate the ubiquitination of proteins. Whether PHD fingers share a common function is unclear. Notably, many if not all PHD fingers are found in nuclear proteins whose substrate tends to be chromatin. Some PHD fingers bind to specific nuclear protein partners, apparently through the same surface that is used by RING domains to bind their cognate E2 ligases. New evidence also suggests that some PHD fingers bind to nucleosomes, raising the possibility that chromatin might be a common nuclear ligand of PHD fingers.  相似文献   

19.
MLL targets SET domain methyltransferase activity to Hox gene promoters   总被引:11,自引:0,他引:11  
MLL, the human homolog of Drosophila trithorax, maintains Hox gene expression in mammalian embryos and is rearranged in human leukemias resulting in Hox gene deregulation. How MLL or MLL fusion proteins regulate gene expression remains obscure. We show that MLL regulates target Hox gene expression through direct binding to promoter sequences. We further show that the MLL SET domain is a histone H3 lysine 4-specific methyltransferase whose activity is stimulated with acetylated H3 peptides. This methylase activity is associated with Hox gene activation and H3 (Lys4) methylation at cis-regulatory sequences in vivo. A leukemogenic MLL fusion protein that activates Hox expression had no effect on histone methylation, suggesting a distinct mechanism for gene regulation by MLL and MLL fusion proteins.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号