首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Plasmalemmal ionic currents from excitable motor cells of the primary pulvinus ofMimosa pudica were investigated by patch-clamp techniques. In almost all of the enzymatically isolated protoplasts, a delayed rectifier potassium current was activated by depolarization, while no currents were detected upon hyperpolarization. This sustained outward current was reversibly blocked by Ba and TEA and serves to repolarize the membrane potential. Outward single channel currents that very likely underly the macroscopic outward potassium current had an elementary conductance of 20 pS. In addition, in a few protoplasts held at hyperpolarized potentials, depolarization-activated transient inward currents were observed, and under current clamp, action potential-like responses were triggered by depolarizing current injections or by mechanical perturbations. The activation characteristics of both inward currents and spikes showed striking similarities compared to those of action potentialsin situ.  相似文献   

2.
The antimalarial drugs, quinacrine, chloroquine, quinine, primaquine, and mefloquine, share structural similarities with W-7, a compound that inhibits calcium-dependent backward swimming and calcium currents in Paramecium. Therefore, we tested whether antimalarial drugs also inhibit backward swimming and calcium currents in P. calkinsi. When the Paramecium is depolarized in high potassium medium, voltage-dependent calcium channels in the ciliary membrane open causing the cell to swim backward for 30 to 70 s. Application of calcium channel inhibitors, such as W-7, reduce the duration of backward swimming. In 0.05 mM calcium, quinacrine, mefloquine, quinine, chloroquine, primaquine and W-7 all reduced the duration of backward swimming. These effects were seen in sodium-containing and sodium-free high potassium solutions as well as sodium-free depolarizing solutions containing potassium channel blockers. In these low calcium solutions, backward swimming was inhibited by 50% at concentrations ranging from 100 nM to 30 M. At higher calcium concentrations (1 mM or 15 mM), the effects of the antimalarials and W-7 were reduced. The effects of quinacrine and W-7 were tested directly on calcium currents using the two microelectrode voltage clamp technique. In 15 mM calcium, 100 M quinacrine and 100 M W-7 reduced the peak calcium current by 51% and 42%, respectively. Thus, antimalarial drugs reduce calcium currents in Paramecium calkinsi.  相似文献   

3.
Summary The antennal trap setae ofLoricera pilicornis (Carabidae) with one mechanoreceptive neuron and 2 or 3 neurons of so far unknown function were characterized electrophysiologically. The setal shaft is conductive, but screens the epithelial cells against electrolytes (5 mM KCl, 200 mM CaCl2).Transepithelial resistances in the setae ranged from 180 to 490 M (25° C) and 320 to 830 M (12° C). Mechanical stimuli reduce the transepithelial voltage by maximally –13 mV (receptor potential), corresponding to (calculated) receptor currents below 30 pA. Spikes superimposed on receptor potentials can be 20 mV p/p and cause transient transeptithelial current changes that exceed the receptor current.Clamp currents greater than 110 pA inward (12° C) across the epithelium elicit positive spikes at frequencies that are essentially independent of current intensity. Outward clamp currents above 25 pA elicit negative spikes of current-dependent frequency with one to three positive smaller pulses superimposed on them. This indicates the coexistance of apical and basal spike generator sites in the sensillar neurons.We conclude: in the cell with the tubular body, mechanical stimuli elicit a receptor current and apical spikes. These spikes can render the receptor lymph cavity sufficiently negative to trigger synchronized apical spikes in the other neurons, too. The apical spikes trigger the less synchronized basal spikes in the individual neurons.Abbreviations TEV transepithelial voltage - TER transepithelial resistance  相似文献   

4.
Summary Ionic currents from freshly dissociated rabbit corneal endothelial cells were examined using patch-clamp technology and a perforated patch technique. Whole-cell current recordings revealed a transient outward K+-selective current that was blockable in a dose-dependent manner by 4-aminopyridine (4-AP) and quinidine. This current is similar to the A-type current present in many excitable cells and is the first reported instance of such a current in any epithelial cell type. In addition to the transient current, an outwardly rectifying nonselective cation current was also observed. This current is also blocked by quinidine.To examine the possible role of these currents in the stromal volume regulatory function of the endothelium, corneas were perfused under a specular microscope with a glutathionebicarbonate Ringer's solution (GBR) or GBR plus either 1 mM quinidine or 10 mM 4-AP. For quinidine perfusions, control corneas swelled at a rate of 6 m/hr, while quinidine-perfused corneas swelled at a rate of 48 m/hr. For 4-AP perfusions, control corneas deswelled at a rate of –2 m/hr, while 4-AP perfused corneas swelled at a rate of 24 m/hr. One possible mechanism of the stromal swelling induced by these K+ channel blockers may be the result of loss of the K+ recycling pathway necessary for proper Na+/K+ ATPase function.We would like to thank Dr. William Bourne for the use of his specular microscopy corneal perfusion apparatus and Helen Hendrickson for her technical assistance. This work was supported by NIH grants EY06206, EY03282, EY06005, and an unrestricted award from Research to Prevent Blindness.  相似文献   

5.
Summary K currents and K-current fluctuations were recorded in inwardly rectifying K channels of frog skeletal muscle under voltage-clamp conditions. External application of 0.2 to 10mm Cs reduces the inward mean K current but produces a distinct increase of the spectral density of K-current fluctuations. The additional fluctuations arise from the random blocking by Cs ions. From the variance of current fluctuations, the steady-state current and the probability of the open unblocked channel an effective single-channel conductance * was calculated. * strongly depends on the external Cs concentration (7.8 pS at 0.2mm Cs, 2.1 pS at 10mm Cs). This dependence is interpreted in terms of a two-step blocking process: (1) a fast exchange of Cs ions between the external solution and a first binding site inside the channel which leads to the Cs-modulated effective single-channel conductance, and (2) a slow Cs binding to a second site deeper in the channel which produces the observed current fluctuations. With this hypothesis we obtained a real single-channel conductance of 10 pS and a real density ofn4 inwardly rectifying channels per m2 of muscle surface area.  相似文献   

6.
(+)-MK801, a noncompetitive NMDA receptor antagonist, was reported to exhibit anticonvulsive and neuroprotective activities during the postischemic period. Intravenous administration of (+)-MK801 produced tachycardia in rats, but bradycardia in pigs. We examined the mechanical and electrophysiological effects of (+)-MK801 on rat cardiac tissues. (+)-MK801 dose-dependently increased (3–100 µM) twitch tension in rat atria and ventricular strips. The spontaneous beating rate in rat right atria, however, was dose-dependently decreased by (+)-MK801. The inotropic effect of (+)-MK801 was affected neither by 1-antagonist (1 µM prazosin) nor by 1-adrenoceptor antagonist (3 µM atenolol), but significantly by a transient outward K+ channel blocker (3 mM 4-aminopyridine). (+)-MK801 did not cause any significant change of intracellular cAMP content. Electrophysiological study in rat ventricular cells revealed that (+)-MK801 concentration-dependently prolonged the action potential duration with a concomitant decrease in the maximum rate of the action potential upstroke (Vmax) and an increase in the recovery time constant of Vmax. Voltage clamp study showed that (+)-MK801 (3 µM) reduced inward Na+ current (INa), along with a slowing of its recovery from inactivation and a slight negative shift of its voltage-dependent steady-state inactivation curves. At a much higher concentration (30 µM), (+)-MK801 slightly reduced the amplitude of L-type calcium inward current (ICa), although the voltage dependence of its steady-state inactivation was unaffected. For the potassium currents in rat ventricular cells, 3 µM of (+)-MK801 reduced the peak transient outward current (Ito), steady-state outward current (Iss) and inward current through K1 channels. The inhibition of Ito was associated with a prominent negative shift in the voltage dependence of its steady-state inactivation curve. The outward current through K1 channels was unaffected. These results indicate that (+)-MK801 may be a strong INa and Ito blocker with some ICa blocking activity. The inhibition of Ito and other K+ efflux would prolong action potential duration, produce positive inotropic action and contribute to the negative chronotropic effect of (+)-MK801.  相似文献   

7.
Volume-sensitive chloride and potassium currents were studied, using the whole-cell clamp technique, in cultured wild-type mouse proximal convoluted tubule (PCT) epithelial cells and compared with those measured in PCT cells from null mutant kcne1 –/– mice. In wild-type PCT cells in primary culture, a Cl conductance activated by cell swelling was identified. The initial current exhibited an outwardly rectifying current-voltage (I-V) relationship, whereas steady-state current showed decay at depolarized membrane potentials. The ion selectivity was I > Br > Cl >> gluconate. This conductance was sensitive to 1 mM 4,4-Diisothiocyanostilbene-2,2-disulfonic acid (DIDS), 0.1 mM 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB) and 1 mM diphenylamine-2-carboxylate (DPC). Osmotic stress also activated K+ currents. These currents are time-independent, activated at depolarized potentials, and inhibited by 0.5 mM quinidine, 5 mM barium, and 10 µM clofilium but are insensitive to 1 mM tetraethylammonium (TEA), 10 nM charybdotoxin (CTX), and 10 µM 293B. In contrast, the null mutation of kcne1 completely impaired volume-sensitive chloride and potassium currents in PCT. The transitory transfection of kcne1 restores both Cl and K+ swelling-activated currents, confirming the implication of KCNE1 protein in the cell-volume regulation in PCT cells in primary cultures.  相似文献   

8.
Summary Cultured ovine oligodendrocytes (OLGs) express a number of voltage-dependent potassium currents after they attach to a substratum and as they begin to develop processes. At 24–48 hours following plating, an outward potassium current can be identified that represents a composite response of a rapidly inactivating component and a steady-state or noninactivating component. After 4–7 days in culture, OLGs also develop an inward rectifier current. We studied the effects of forskolin and phorbol 12-myristate 13-acetate (PMA) on OLG outward currents. These compounds are known to alter the myelinogenic metabolism of OLGs. PMA, an activator of protein kinase C (PK-C), has been shown to enhance myelin basic protein phosphorylation while forskolin acting on adenylate cyclase, and thereby increasing cAMP, inhibits it. Both forskolin and PMA increase the phosphorylation of 23-cyclic nucleotide phosphodiesterase, an OLG/myelin protein. We found that forskolin decreased the steady-state outward current at 120 mV by 10% at 100nm, and by 72% at 25 m from a holding potential of –80 mV. The time course of inactivation of the peak currents was decreased, affecting both the fast and slow time constants. There was no significant change in the steady-state parameters of current activation and inactivation. The effect of forskolin was attenuated when the adenylate cyclase inhibitor adenosine (2mm) was present in the intracellular/pipette filling solution. The results of PMA experiments were similar to those obtained with forskolin. Whereas the amplitude of the currents in the presence of PMA was reduced by 28% at 1.5nm and 60% and 600nm, the decay phase of the peak currents was less affected. The PMA effect could still be seen when the intracellular Ca2+ was reduced to 10nm with 5mm BAPTA, but was inhibited when the cells were pre-exposed to 50 m psychosine, a PK-C inhibitor. It is postulated that the potassium currents in OLG can be physiologically modulated by two distinct second-messenger systems, perhaps converging at the level of a common phosphorylated enzyme or regulatory protein.  相似文献   

9.
Single channel currents were activated by GABA (0.5 to 5 m) in cell-attached and inside-out patches from cells in the dentate gyrus of rat hippocampal slices. The currents reversed at the chloride equilibrium potential and were blocked by bicuculline (100 m). Several different kinds of channel were seen: high conductance and low conductance, rectifying and nonrectifying. Channels had multiple conductance states. The open probability (P o ) of channels was greater at depolarized than at hyperpolarized potentials and the relationship between P o and potential could be fitted with a Boltzmann equation with equivalent valency (z) of 1. The combination of outward rectification and potentialdependent open probability gave very little chloride current at hyperpolarized potentials but steeply increasing current with depolarization, useful properties for a tonic inhibitory mechanism.  相似文献   

10.
Dietrich Gradmann 《Planta》1970,93(4):323-353
Summary 1. In sea water at 25°C cells of Acetabularia crenulata exhibit a resting potential (RP) of-170 mV between cytoplasm and external medium. At temperatures below 10°C, or upon addition of 10-3m dinitrophenol in darkness, the cell shows a second steady potential (RP) of about-70 mV. Among the cations of sea water, i.e. K+, Na+, Mg++, only K+ was found to affect RP and RP. If the ionic strength of the medium is reduced by addition of isotonic mannitol solution, RP decreases, while RP is not influenced. RP is explained as a potassium diffusion potential, while for the existence of RP an electrogenic chloride pump is inferred which is driven by ATP of the photo- or oxidative phosphorylation (system X).-2. Starting from RP, the current-voltage relationship consists of two linear portions for inward (R e ) and outward current (R a ), respectively, merging at RP (Fig. 3). Presumably they represent potassium conductances. For a given cell, the expression RT/F ln R e /R a yields a value which fits the RP of the cell (Fig. 20).-3. Starting from RP, a N-shaped current-voltage relationship was obtained for depolarisation (Fig. 3). The deviation from the potassium conductance is supposed to be due to the shunt of the potassium channel and the system X (voltage-dependent resistance). An electric circuit diagram was derived from voltage and current clamp experiments (Fig. 21); the elements of the circuit were tentatively analogized with cell functions.-4. Action potentials of about 120 mV, lasting from 30 to 300 sec may arise spontaneously. They can be triggered by lowering the temperature or depolarisation (voltage clamp, current clamp, light-off-cf. Figs. 2,11). The mechanism of the action potential can be derived from the properties of the chloride pump. Action currents were recorded upon different depolarizing steps by voltage clamp to yield current-coltage curves at different times after stimulation (Fig. 13).-5. Pulses of white light shift the potential off RP: light-on elicits a small depolarisation, light-off a large transient hyperpolarisation. The primary event of this response is a change of current (Fig. 19), the voltage change being its consequence. This result is interpreted on the basis of the circuit diagram.
Abkürzungen AP Aktionspotential - RP stabiles Potential bei ca.-170 mV - RP stabiles Potential bei ca.-70 mV Dissertation der Math.-Nat. Fakultät der Universität Tübingen.  相似文献   

11.
A series of opiate compounds was tested for their ability to depress the probability that the protozoan Stentor coeruleus would contract in response to mechanical stimulation. Of these -endorphin proved to be the most effective. The depressive effect of -endorphin is concentration-dependent with an approximate E.C.50 of 3.0 M and time-dependent with the maximum depression occurring 15 min after drug exposure. The effect of -endorphin is blocked by the opiate antagonist naloxone and pertussis toxin suggesting that it is mediated by a G-protein coupled opiate receptor. -endorphin does not alter responding to photic or electrical stimuli indicating its action is specific to the mechanical stimulus transduction mechanism. In agreement with this conclusion, electrophysiological studies reveal that -endorphin decreases the amplitude of the mechanoreceptor potential without altering other membrane properties. Voltage clamp analysis shows that -endorphin acts by decreasing inward currents through the mechanoreceptor channel at transmembrane potentials between -70 and + 20 mV without affecting the outward currents observed at more depolarized voltages. The fact that a mammalian neuromodulatory peptide is capable of producing a specific modulation of an ion channel in a unicellular eukaryote indicates that mechanisms of signal transduction and neuromodulation originated at an early stage in evolution.Abbreviation DAGO [D-Ala2, N-Me-Phe4, Gly5-ol]-enkephalin  相似文献   

12.
Summary The present study has been performed to test for the effect of intracellular calcium and of serotonin on the channel activity in patches from subconfluent MDCK-cells. In inside-out patches, inwardly rectifying potassium-selective channels are observed with open probabilities of 0.01±0.01, 0.24±0.03 and 0.39±0.07, at 100 nmol/liter, 1 mol/liter or 10 mol/liter calcium activity, respectively. The single-channel slope conductance is 34±2 pS, if the potential difference across the patch (V ) is zero, and approaches 59±1 pS, ifV is –50 mV, cell negative. In the cell-attached mode, little channel activity is observed prior to application of serotonin (open probability=0.03±0.03). If 1 mol/liter serotonin is added to the bath perfusate, the open probability increases rapidly to a peak value of 0.34±0.04 within 8 sec. In continued presence of the hormone, the open probability declines to approach 0.06±0.02 within 30 sec. At zero potential difference between pipette and reference in the bath (i.e., the potential difference across the patch is equal to the potential difference across the cell membrane), the single-channel conductance is 59±4 pS. In conclusion, inwardly rectifying potassium channels have been identified in the cell membrane of subconfluent MDCK-cells, which are activated to a similar extent by increase of intracellular calcium activity to 1 mol/liter and by extracellular application of 1 mol/liter serotonin.  相似文献   

13.
Summary Confidence interval estimators have not been described for several heritability (H) estimators relevant to recurrent family selection. Previously described H interval estimators do not apply to onefactor mating designs in split-plot in time experiment designs in one or more locations, one-factor mating designs for several experiment designs in two or more locations and years, and two-factor mating designs for several experiment designs in two or more locations or years. Our objective was to derive H interval estimators for these cases. H reduced to a function of constants and a single expected mean square ratio in every case; H=1–E(M)/E(M) where E(M) is a linear function of expected mean squares and E(M) is a single expected mean square. It was shown that F=[M/E(M)]/[M/E(M)] has an approximate F-distribution with df and df degrees of freedom, respectively, where M and M are mean squares corresponding to E(M) and E(M), respectively. H is a function of F, therefore, we used F to define an approximate (1–) interval estimator for H.Oregon Agricultural Experiment Station Technical Paper No. 7923  相似文献   

14.
We studied modulating influences of a core oligoadenylate, 2,5-ApApA, on the voltage-operated potassium channels; the agent was injected into cloned cells of the rat pheochromocytoma PC-12. Diffusion of 2,5-ApApA from a micropipette into the cell evoked clear changes in the current-voltage relationships of the integral potassium current; when positive shifts of the membrane potential reached about +20 mV, a saturation phenomenon was observed. The dependence of the probability for open state of the voltage-operated potassium channels on the membrane potential was calculated using normalization of the potassium conductance graphs; it satisfactorily fit Boltzmann's equation. Under the influence of 2,5-ApApA, activation of the potassium channels became more strongly dependent on the voltage. Within the first minutes of the action of core oligoadenylate, the potassium conductance changed by e times at a shift of the membrane potential by 12 mV, while after a stationary level of the 2,5-ApApA effect had been attained (approximately from the 25th min), the same change in the potassium conductance needed only an 8-mV shift. We conclude that 2,5-ApApA-evoked conformation modifications in the structure of the potassium channels in the cells of rat PC-12 pheochromocytoma can result from an increase in the sensitivity of voltage sensors in the above-mentioned channels to changes in the membrane potential.  相似文献   

15.
Summary Inward currents carried by external Cs, Rb, NH4 and K through theI K1 channel were studied using a whole-cell voltage clamp technique. Cs, NH4, and Rb currents could be recorded negative to –40 mV following depolarizing prepulses (0 mV and 200–1000 msec in duration). The current activation displayed an instantaneous component followed by a monoexponential increase () to a peak amplitude. Subsequent inactivation was fit by a single exponential, i. With hyperpolarization, and i decreasede-fold per 36 and 25 mV, respectively. In Ca-free external solutions (pipette [Mg]0.3mm), inactivation was absent, consistent with the hypothesis that inactivation represents time- and voltage-dependent block of Cs, NH4, and Rb currents by external Ca. The inactivation and degree of steady-state block was greatest when Cs was the charge carrier, followed by NH4, and then Rb. K currents, however, did not inactivate in the presence of Ca. Na and Li did not carry any significant current within the resolution of our recordings. Comparison ofpeak inward current ratios (I x/IK) as an index of permeability revealed a higher permeance of Cs (0.15), NH4 (0.30), and Rb (0.51) relative to K (1.0) than that obtained by comparing thesteady-state current ratios (CsNH4RbK0.010.060.211.0). At any given potential, was smaller the more permeant the cation. In the absence of depolarizing prepulses, the amplitude of was reduced. Divalent-free solutions did not significantly affect activatio in the presence of 0.3mm pipette [Mg]. When pipette [Mg] was buffered to 50 m, however, removal of external Ca and Mg lead to a four- to fivefold increase in Cs currents and loss of both time-dependent activation and inactivation (reversible upon repletion of external Ca).These results suggest that (i) permeability ratios forI K1 should account for differences in the degree to which monovalent currents are blocked by extracellular Ca and (ii) extracellular or intracellular divalent cations contribute to the slow phase of activation which may represent either (a) the actual rate of Mg or Ca extrusion from the channel into the cell, a process which may be enhanced by repulsive interaction with the incoming permeant monovalent cation or (b) an intrinsic gating process that is strongly modulated by the permeant monovalent ion and divalent cations.  相似文献   

16.
K. W. Linz  K. Köhler 《Protoplasma》1994,179(1-2):34-45
Summary The electrical properties of the vacuolar membrane of the primitive green algaEremosphaera virdis were investigated using the patch-clamp technique. In whole vacuole measurements two types of transport systems with long activation time-constants were identified. The first, showing marked outward rectification, was activated by an increase in the cytosolic calcium concentration. Furthermore, it displayed sensitivity to micromolar concentrations of the anion channel blocker Zn2+ and to acidification of the cytosol. In contrast, the second time-activated current component was almost insensitive to changes in cytosolic pH and was blocked by the potassium channel inhibitor TEA. In addition to these slowly activating current components, the vacuolar membrane contained at least two further transport systems, responsible for an instantaneous current. These two current components were distinguished by their different sensitivity to protons, cytosolic calcium, and TEA. Comparing these electrical properties to those observed in vacuoles of higher plants or in cytoplasmic droplets from characean algae, respectively, it seems thatEremosphaera is intermediate, corresponding to the systematic position of this simple green alga.Abbreviations [Ca2+]cyt cytosolic free calcium concentration - EGTA ethyleneglycol-bis(-aminoethylether)N,N,N,N-tetraacetic acid - HEPES N-[2-hydroxyethyl]piperazine-N-[2-ethanesulfonic acid] - I electric current - IRC inward rectifying current - MES 2-[N-morpholino]ethanesulfonic acid - ORC outward rectifying current - pHcyt cytosolic pH - pHvac vacuolar pH - Po open probability - Px permeability coefficient of ion species X - TEA tetraethylammonium chloride - Tris tris[hydroxymethyl]aminomethane - V voltage  相似文献   

17.
Effects of different forms of C2-5A (2,5ApApA; 2,5ApApepoxyA; and 3,5ApApA) on high voltage-activated (HVA) calcium currents in GH3 cells were studied using the whole-cell patch-clamp recording technique. Addition of 10 µM 2,5ApApA, a core (dephosphorylated) oligoadenylate, to the pipette solution induced an increase in HVA calcium current. Ten minutes after the whole-cell configuration was established, the current magnitude was enhanced about twofold compared with that observed at 2 min. High concentration of Mg2+ (5 µM) in the pipette solution blocked this effect. 2,5ApA and 3,5ApApA oligoadenylates, and products of 2,5A hydrolysis, adenosine and AMP, did not change the value of HVA current. A chemically modified analog of 2,5ApApA (2,5ApApepoxyA) has been the oligoadenylate most stable under phosphodiesterase action. Addition of 2,5ApApepoxyA to the pipette solution under the same conditions caused a smaller effect than 2,5ApApA did.Neirofiziologiya/Neurophysiology, Vol. 26, No. 6, pp. 405–408, November–December, 1994.  相似文献   

18.
Summary The early phase of activation of the inward-rectifying potassium channel is studied on single cells from guinea-pig heart. The current is quasi-instantaneous when it is outward, but activates with time when it is inward. This relaxation is exponential and its time-constant decreases with hyperpolarization. TheI/V curve reflects a strong inward rectification and has a negative slope conductance on depolarization. Similar results were recorded in the absence of sodium, calcium, chloride ions and in isotonic potassium. Cesium slows down the phase of activation, and eventually appears to block the channels by suppression of the activation. Barium, conversely, does not affect the activation, but promotes an inactivation of this current, which blocks it. These results are independent on the cells' dissociation method. They suggest that this current is the inward rectifier, calledI K1 on heart. Its activation curve suggests that the inward and outward currents are flowing through the same channels. The inward rectifier is time-and voltage-dependent on heart as on other tissues. The effects of cesium and barium are also similar. The importance of its negative slope conductance is discussed.  相似文献   

19.
Summary Voltage clamp studies show that the wild-type membrane ofParamecium tetraurelia contains a conductance component which is sensitive to hyperpolarization. This component manifests itself as anomalous, or inward going, rectification of membrane voltage in response to applied constant current pulses and as a hyperpolarizing spike when no K is added to the external solution (Y. Satow, C. Kung, 1977.J. Comp. Physiol. 11999). Like the conductances which underlie anomalous rectification in other cells, the hyperpolarization-sensitive conductance inParamecium is specific for K, and the magnitude of the voltage-dependent conductance change depends not only on voltage but also on external potassium concentration. The internal potassium ion concentration ofParamecium is calculated to be between 17 and 18mm.  相似文献   

20.
Conditions promoting maximal in vitro activity of the particulate NADH:fumarate reductase from Fibrobacter succinogenes were determined. This system showed a pH optimum of 6.0 in K+ MES buffer only when salt (NaCl or KCl) was present. Salt stimulated the activity eightfold at the optimal concentration of 150m M. This effect was due to stimulation of fumarate reductase activity as salt had little effect on NADH: decylubiquinone oxidoreductase (NADH dehydrogenase). The stimulation of fumarate reductase by salt at pH 6.0 was not due to removal of oxaloacetate from the enzyme. Kinetic parameters for several inhibitors were also measured. NADH dehydrogenase was inhibited by rotenone at a single site with a K i of 1 M. 2-Heptyl-4-hydroxyquinonline-N-oxide (HOQNO) inhibited NADH: fumarate reductase with a K i of 0.006 M, but NADH dehydrogenase exhibited two HOQNO inhibition constants of approximately 1 M and 24 M. Capsaicin and laurylgallate each inhibited NADH dehydrogenase by only 20% at 100 M. NADH dehydrogenase gave K m values of 1 M for NADH and 4 M for reduced hypoxanthine adenine dinucleotide.Published with the approval of the Director of the Agricultural Experiment Station, North Dakota State University, as journal article no. 2201  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号