首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
RNAMotif, an RNA secondary structure definition and search algorithm   总被引:26,自引:7,他引:19       下载免费PDF全文
RNA molecules fold into characteristic secondary and tertiary structures that account for their diverse functional activities. Many of these RNA structures are assembled from a collection of RNA structural motifs. These basic building blocks are used repeatedly, and in various combinations, to form different RNA types and define their unique structural and functional properties. Identification of recurring RNA structural motifs will therefore enhance our understanding of RNA structure and help associate elements of RNA structure with functional and regulatory elements. Our goal was to develop a computer program that can describe an RNA structural element of any complexity and then search any nucleotide sequence database, including the complete prokaryotic and eukaryotic genomes, for these structural elements. Here we describe in detail a new computational motif search algorithm, RNAMotif, and demonstrate its utility with some motif search examples. RNAMotif differs from other motif search tools in two important aspects: first, the structure definition language is more flexible and can specify any type of base–base interaction; second, RNAMotif provides a user controlled scoring section that can be used to add capabilities that patterns alone cannot provide.  相似文献   

2.
New methods are described for finding recurrent three-dimensional (3D) motifs in RNA atomic-resolution structures. Recurrent RNA 3D motifs are sets of RNA nucleotides with similar spatial arrangements. They can be local or composite. Local motifs comprise nucleotides that occur in the same hairpin or internal loop. Composite motifs comprise nucleotides belonging to three or more different RNA strand segments or molecules. We use a base-centered approach to construct efficient, yet exhaustive search procedures using geometric, symbolic, or mixed representations of RNA structure that we implement in a suite of MATLAB programs, “Find RNA 3D” (FR3D). The first modules of FR3D preprocess structure files to classify base-pair and -stacking interactions. Each base is represented geometrically by the position of its glycosidic nitrogen in 3D space and by the rotation matrix that describes its orientation with respect to a common frame. Base-pairing and base-stacking interactions are calculated from the base geometries and are represented symbolically according to the Leontis/Westhof basepairing classification, extended to include base-stacking. These data are stored and used to organize motif searches. For geometric searches, the user supplies the 3D structure of a query motif which FR3D uses to find and score geometrically similar candidate motifs, without regard to the sequential position of their nucleotides in the RNA chain or the identity of their bases. To score and rank candidate motifs, FR3D calculates a geometric discrepancy by rigidly rotating candidates to align optimally with the query motif and then comparing the relative orientations of the corresponding bases in the query and candidate motifs. Given the growing size of the RNA structure database, it is impossible to explicitly compute the discrepancy for all conceivable candidate motifs, even for motifs with less than ten nucleotides. The screening algorithm that we describe finds all candidate motifs whose geometric discrepancy with respect to the query motif falls below a user-specified cutoff discrepancy. This technique can be applied to RMSD searches. Candidate motifs identified geometrically may be further screened symbolically to identify those that contain particular basepair types or base-stacking arrangements or that conform to sequence continuity or nucleotide identity constraints. Purely symbolic searches for motifs containing user-defined sequence, continuity and interaction constraints have also been implemented. We demonstrate that FR3D finds all occurrences, both local and composite and with nucleotide substitutions, of sarcin/ricin and kink-turn motifs in the 23S and 5S ribosomal RNA 3D structures of the H. marismortui 50S ribosomal subunit and assigns the lowest discrepancy scores to bona fide examples of these motifs. The search algorithms have been optimized for speed to allow users to search the non-redundant RNA 3D structure database on a personal computer in a matter of minutes.  相似文献   

3.
MOTIVATION: Searching genomes for non-coding RNAs (ncRNAs) by their secondary structure has become an important goal for bioinformatics. For pseudoknot-free structures, ncRNA search can be effective based on the covariance model and CYK-type dynamic programming. However, the computational difficulty in aligning an RNA sequence to a pseudoknot has prohibited fast and accurate search of arbitrary RNA structures. Our previous work introduced a graph model for RNA pseudoknots and proposed to solve the structure-sequence alignment by graph optimization. Given k candidate regions in the target sequence for each of the n stems in the structure, we could compute a best alignment in time O(k(t)n) based upon a tree width t decomposition of the structure graph. However, to implement this method to programs that can routinely perform fast yet accurate RNA pseudoknot searches, we need novel heuristics to ensure that, without degrading the accuracy, only a small number of stem candidates need to be examined and a tree decomposition of a small tree width can always be found for the structure graph. RESULTS: The current work builds on the previous one with newly developed preprocessing algorithms to reduce the values for parameters k and t and to implement the search method into a practical program, called RNATOPS, for RNA pseudoknot search. In particular, we introduce techniques, based on probabilistic profiling and distance penalty functions, which can identify for every stem just a small number k (e.g. k 相似文献   

4.
We present the development of a web server, a protein short motif search tool that allows users to simultaneously search for a protein sequence motif and its secondary structure assignments. The web server is able to query very short motifs searches against PDB structural data from the RCSB Protein Databank, with the users defining the type of secondary structures of the amino acids in the sequence motif. The output utilises 3D visualisation ability that highlights the position of the motif in the structure and on the corresponding sequence. Researchers can easily observe the locations and conformation of multiple motifs among the results. Protein short motif search also has an application programming interface (API) for interfacing with other bioinformatics tools. AVAILABILITY: The database is available for free at http://birg3.fbb.utm.my/proteinsms.  相似文献   

5.
The recent interest sparked due to the discovery of a variety of functions for non-coding RNA molecules has highlighted the need for suitable tools for the analysis and the comparison of RNA sequences. Many trans-acting non-coding RNA genes and cis-acting RNA regulatory elements present motifs, conserved both in structure and sequence, that can be hardly detected by primary sequence analysis alone. We present an algorithm that takes as input a set of unaligned RNA sequences expected to share a common motif, and outputs the regions that are most conserved throughout the sequences, according to a similarity measure that takes into account both the sequence of the regions and the secondary structure they can form according to base-pairing and thermodynamic rules. Only a single parameter is needed as input, which denotes the number of distinct hairpins the motif has to contain. No further constraints on the size, number and position of the single elements comprising the motif are required. The algorithm can be split into two parts: first, it extracts from each input sequence a set of candidate regions whose predicted optimal secondary structure contains the number of hairpins given as input. Then, the regions selected are compared with each other to find the groups of most similar ones, formed by a region taken from each sequence. To avoid exhaustive enumeration of the search space and to reduce the execution time, a greedy heuristic is introduced for this task. We present different experiments, which show that the algorithm is capable of characterizing and discovering known regulatory motifs in mRNA like the iron responsive element (IRE) and selenocysteine insertion sequence (SECIS) stem–loop structures. We also show how it can be applied to corrupted datasets in which a motif does not appear in all the input sequences, as well as to the discovery of more complex motifs in the non-coding RNA.  相似文献   

6.
Although identification of active motifs in large random sequence pools is central to RNA in vitro selection, no systematic computational equivalent of this process has yet been developed. We develop a computational approach that combines target pool generation, motif scanning and motif screening using secondary structure analysis for applications to 1012–1014-sequence pools; large pool sizes are made possible using program redesign and supercomputing resources. We use the new protocol to search for aptamer and ribozyme motifs in pools up to experimental pool size (1014 sequences). We show that motif scanning, structure matching and flanking sequence analysis, respectively, reduce the initial sequence pool by 6–8, 1–2 and 1 orders of magnitude, consistent with the rare occurrence of active motifs in random pools. The final yields match the theoretical yields from probability theory for simple motifs and overestimate experimental yields, which constitute lower bounds, for aptamers because screening analyses beyond secondary structure information are not considered systematically. We also show that designed pools using our nucleotide transition probability matrices can produce higher yields for RNA ligase motifs than random pools. Our methods for generating, analyzing and designing large pools can help improve RNA design via simulation of aspects of in vitro selection.  相似文献   

7.
The discovery of novel noncoding RNAs has been among the most exciting recent developments in biology. It has been hypothesized that there is, in fact, an abundance of functional noncoding RNAs (ncRNAs) with various catalytic and regulatory functions. However, the inherent signal for ncRNA is weaker than the signal for protein coding genes, making these harder to identify. We consider the following problem: Given an RNA sequence with a known secondary structure, efficiently detect all structural homologs in a genomic database by computing the sequence and structure similarity to the query. Our approach, based on structural filters that eliminate a large portion of the database while retaining the true homologs, allows us to search a typical bacterial genome in minutes on a standard PC. The results are two orders of magnitude better than the currently available software for the problem. We applied FastR to the discovery of novel riboswitches, which are a class of RNA domains found in the untranslated regions. They are of interest because they regulate metabolite synthesis by directly binding metabolites. We searched all available eubacterial and archaeal genomes for riboswitches from purine, lysine, thiamin, and riboflavin subfamilies. Our results point to a number of novel candidates for each of these subfamilies and include genomes that were not known to contain riboswitches.  相似文献   

8.
RNA binding proteins recognize RNA targets in a sequence specific manner. Apart from the sequence, the secondary structure context of the binding site also affects the binding affinity. Binding sites are often located in single-stranded RNA regions and it was shown that the sequestration of a binding motif in a double-strand abolishes protein binding. Thus, it is desirable to include knowledge about RNA secondary structures when searching for the binding motif of a protein. We present the approach MEMERIS for searching sequence motifs in a set of RNA sequences and simultaneously integrating information about secondary structures. To abstract from specific structural elements, we precompute position-specific values measuring the single-strandedness of all substrings of an RNA sequence. These values are used as prior knowledge about the motif starts to guide the motif search. Extensive tests with artificial and biological data demonstrate that MEMERIS is able to identify motifs in single-stranded regions even if a stronger motif located in double-strand parts exists. The discovered motif occurrences in biological datasets mostly coincide with known protein-binding sites. This algorithm can be used for finding the binding motif of single-stranded RNA-binding proteins in SELEX or other biological sequence data.  相似文献   

9.
Traditional sequence-based search methods such as BLAST and FASTA can be used to identify sequence similarities. Recently, there is a growing interest in performing RNA shape similarity searches inside selected genes to locate RNA structure motifs that are known to possess functionally important roles. For example, in the newly discovered RNA genetic control elements called "riboswitches", the box domain is known to be highly conserved among various bacterial species in both its nucleotide composition and shape. However, in non-bacterial species, shape conservation is likely to become more important than sequence conservation when searching for riboswitch patterns. For this purpose, we present an approach tailored for detecting RNA shape similarities. We extend the Structure to String (ST R2) method that was initially proposed to locate shape similarities in proteins to identify predicted secondary structures of RNAs. The ST R2 for RNAs is a translation of a secondary structure to a string of characters, after which known sequence-based search algorithms with an efficient implementation are being used. We validate that the ST R2 succeeds to locate G-box riboswitches in prokaryotes, as expected. Subsequently we show running examples when attempting to detect G-box riboswitch candidates in eukaryotes.  相似文献   

10.
The most probable secondary structure of an RNA molecule, given the nucleotide sequence, can be computed efficiently if a stochastic context-free grammar (SCFG) is used as the prior distribution of the secondary structure. The structures of some RNA molecules contain so-called pseudoknots. Allowing all possible configurations of pseudoknots is not compatible with context-free grammar models and makes the search for an optimal secondary structure NP-complete. We suggest a probabilistic model for RNA secondary structures with pseudoknots and present a Markov-chain Monte-Carlo Method for sampling RNA structures according to their posterior distribution for a given sequence. We favor Bayesian sampling over optimization methods in this context, because it makes the uncertainty of RNA structure predictions assessable. We demonstrate the benefit of our method in examples with tmRNA and also with simulated data. McQFold, an implementation of our method, is freely available from http://www.cs.uni-frankfurt.de/~metzler/McQFold.  相似文献   

11.
Noncoding RNAs (ncRNAs) are important functional RNAs that do not code for proteins. We present a highly efficient computational pipeline for discovering cis-regulatory ncRNA motifs de novo. The pipeline differs from previous methods in that it is structure-oriented, does not require a multiple-sequence alignment as input, and is capable of detecting RNA motifs with low sequence conservation. We also integrate RNA motif prediction with RNA homolog search, which improves the quality of the RNA motifs significantly. Here, we report the results of applying this pipeline to Firmicute bacteria. Our top-ranking motifs include most known Firmicute elements found in the RNA family database (Rfam). Comparing our motif models with Rfam's hand-curated motif models, we achieve high accuracy in both membership prediction and base-pair–level secondary structure prediction (at least 75% average sensitivity and specificity on both tasks). Of the ncRNA candidates not in Rfam, we find compelling evidence that some of them are functional, and analyze several potential ribosomal protein leaders in depth.  相似文献   

12.
Computational methods such as sequence alignment and motif construction are useful in grouping related proteins into families, as well as helping to annotate new proteins of unknown function. These methods identify conserved amino acids in protein sequences, but cannot determine the specific functional or structural roles of conserved amino acids without additional study. In this work, we present 3MATRIX (http://3matrix.stanford.edu) and 3MOTIF (http://3motif.stanford.edu), a web-based sequence motif visualization system that displays sequence motif information in its appropriate three-dimensional (3D) context. This system is flexible in that users can enter sequences, keywords, structures or sequence motifs to generate visualizations. In 3MOTIF, users can search using discrete sequence motifs such as PROSITE patterns, eMOTIFs, or any other regular expression-like motif. Similarly, 3MATRIX accepts an eMATRIX position-specific scoring matrix, or will convert a multiple sequence alignment block into an eMATRIX for visualization. Each query motif is used to search the protein structure database for matches, in which the motif is then visually highlighted in three dimensions. Important properties of motifs such as sequence conservation and solvent accessible surface area are also displayed in the visualizations, using carefully chosen color shading schemes.  相似文献   

13.
14.
The traditional way to infer RNA secondary structure involves an iterative process of alignment and evaluation of covariation statistics between all positions possibly involved in basepairing. Watson-Crick basepairs typically show covariations that score well when examples of two or more possible basepairs occur. This is not necessarily the case for non-Watson-Crick basepairing geometries. For example, for sheared (trans Hoogsteen/Sugar edge) pairs, one base is highly conserved (always A or mostly A with some C or U), while the other can vary (G or A and sometimes C and U as well). RNA motifs consist of ordered, stacked arrays of non-Watson-Crick basepairs that in the secondary structure representation form hairpin or internal loops, multi-stem junctions, and even pseudoknots. Although RNA motifs occur recurrently and contribute in a modular fashion to RNA architecture, it is usually not apparent which bases interact and whether it is by edge-to-edge H-bonding or solely by stacking interactions. Using a modular sequence-analysis approach, recurrent motifs related to the sarcin-ricin loop of 23S RNA and to loop E from 5S RNA were predicted in universally conserved regions of the large ribosomal RNAs (16S- and 23S-like) before the publication of high-resolution, atomic-level structures of representative examples of 16S and 23S rRNA molecules in their native contexts. This provides the opportunity to evaluate the predictive power of motif-level sequence analysis, with the goal of automating the process for predicting RNA motifs in genomic sequences. The process of inferring structure from sequence by constructing accurate alignments is a circular one. The crucial link that allows a productive iteration of motif modeling and realignment is the comparison of the sequence variations for each putative pair with the corresponding isostericity matrix to determine which basepairs are consistent both with the sequence and the geometrical data.  相似文献   

15.
The paper investigates the computational problem of predicting RNA secondary structures. The general belief is that allowing pseudoknots makes the problem hard. Existing polynomial-time algorithms are heuristic algorithms with no performance guarantee and can handle only limited types of pseudoknots. In this paper, we initiate the study of predicting RNA secondary structures with a maximum number of stacking pairs while allowing arbitrary pseudoknots. We obtain two approximation algorithms with worst-case approximation ratios of 1/2 and 1/3 for planar and general secondary structures, respectively. For an RNA sequence of n bases, the approximation algorithm for planar secondary structures runs in O(n(3)) time while that for the general case runs in linear time. Furthermore, we prove that allowing pseudoknots makes it NP-hard to maximize the number of stacking pairs in a planar secondary structure. This result is in contrast with the recent NP-hard results on psuedoknots which are based on optimizing some general and complicated energy functions.  相似文献   

16.
Functional RNA regions are often related to recurrent secondary structure patterns (or motifs), which can exert their role in several different ways, particularly in dictating the interaction with RNA-binding proteins, and acting in the regulation of a large number of cellular processes. Among the available motif-finding tools, the majority focuses on sequence patterns, sometimes including secondary structure as additional constraints to improve their performance. Nonetheless, secondary structures motifs may be concurrent to their sequence counterparts or even encode a stronger functional signal. Current methods for searching structural motifs generally require long pipelines and/or high computational efforts or previously aligned sequences. Here, we present BEAM (BEAr Motif finder), a novel method for structural motif discovery from a set of unaligned RNAs, taking advantage of a recently developed encoding for RNA secondary structure named BEAR (Brand nEw Alphabet for RNAs) and of evolutionary substitution rates of secondary structure elements. Tested in a varied set of scenarios, from small- to large-scale, BEAM is successful in retrieving structural motifs even in highly noisy data sets, such as those that can arise in CLIP-Seq or other high-throughput experiments.  相似文献   

17.
RAG: RNA-As-Graphs database--concepts, analysis, and features   总被引:3,自引:0,他引:3  
MOTIVATION: Understanding RNA's structural diversity is vital for identifying novel RNA structures and pursuing RNA genomics initiatives. By classifying RNA secondary motifs based on correlations between conserved RNA secondary structures and functional properties, we offer an avenue for predicting novel motifs. Although several RNA databases exist, no comprehensive schemes are available for cataloguing the range and diversity of RNA's structural repertoire. RESULTS: Our RNA-As-Graphs (RAG) database describes and ranks all mathematically possible (including existing and candidate) RNA secondary motifs on the basis of graphical enumeration techniques. We represent RNA secondary structures as two-dimensional graphs (networks), specifying the connectivity between RNA secondary structural elements, such as loops, bulges, stems and junctions. We archive RNA tree motifs as 'tree graphs' and other RNAs, including pseudoknots, as general 'dual graphs'. All RNA motifs are catalogued by graph vertex number (a measure of sequence length) and ranked by topological complexity. The RAG inventory immediately suggests candidates for novel RNA motifs, either naturally occurring or synthetic, and thereby might stimulate the prediction and design of novel RNA motifs. AVAILABILITY: The database is accessible on the web at http://monod.biomath.nyu.edu/rna  相似文献   

18.
Although artificial RNA motifs that can functionally replace the GNRA/receptor interaction, a class of RNA–RNA interacting motifs, were isolated from RNA libraries and used to generate designer RNA structures, receptors for non-GNRA tetraloops have not been found in nature or selected from RNA libraries. In this study, we report successful isolation of a receptor motif interacting with GAAC, a non-GNRA tetraloop, from randomized sequences embedded in a catalytic RNA. Biochemical characterization of the GAAC/receptor interacting motif within three structural contexts showed its binding affinity, selectivity and structural autonomy. The motif has binding affinity comparable with that of a GNRA/receptor, selectivity orthogonal to GNRA/receptors and structural autonomy even in a large RNA context. These features would be advantageous for usage of the motif as a building block for designer RNAs. The isolated motif can also be used as a query sequence to search for unidentified naturally occurring GANC receptor motifs.  相似文献   

19.
20.
Understanding the structural repertoire of RNA is crucial for RNA genomics research. Yet current methods for finding novel RNAs are limited to small or known RNA families. To expand known RNA structural motifs, we develop a two-dimensional graphical representation approach for describing and estimating the size of RNA’s secondary structural repertoire, including naturally occurring and other possible RNA motifs. We employ tree graphs to describe RNA tree motifs and more general (dual) graphs to describe both RNA tree and pseudoknot motifs. Our estimates of RNA’s structural space are vastly smaller than the nucleotide sequence space, suggesting a new avenue for finding novel RNAs. Specifically our survey shows that known RNA trees and pseudoknots represent only a small subset of all possible motifs, implying that some of the ‘missing’ motifs may represent novel RNAs. To help pinpoint RNA-like motifs, we show that the motifs of existing functional RNAs are clustered in a narrow range of topological characteristics. We also illustrate the applications of our approach to the design of novel RNAs and automated comparison of RNA structures; we report several occurrences of RNA motifs within larger RNAs. Thus, our graph theory approach to RNA structures has implications for RNA genomics, structure analysis and design.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号