首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为配准医学图像,本文提出了一种新的自适应指数加权的互信息(Adaptive Exponential Weighted Mutual Informa- tion,AEWMI)测度,分析表明:通过对互信息(Mutual Information,MI)测度进行指数加权可以提高测度曲线的峰值尖锐性和平滑性;而指数的权值则可以通过评估待配准图像的质量和分辨率大小来自适应确定。仿真实验结果在验证分析结果的同时也表明,基于本文AEWMI测度的配准方案,对图像噪声、分辨率差异等有较高的鲁棒性,且可有效地提高配准的成功率。  相似文献   

2.

Background

Existing sequence alignment algorithms use heuristic scoring schemes based on biological expertise, which cannot be used as objective distance metrics. As a result one relies on crude measures, like the p- or log-det distances, or makes explicit, and often too simplistic, a priori assumptions about sequence evolution. Information theory provides an alternative, in the form of mutual information (MI). MI is, in principle, an objective and model independent similarity measure, but it is not widely used in this context and no algorithm for extracting MI from a given alignment (without assuming an evolutionary model) is known. MI can be estimated without alignments, by concatenating and zipping sequences, but so far this has only produced estimates with uncontrolled errors, despite the fact that the normalized compression distance based on it has shown promising results.

Results

We describe a simple approach to get robust estimates of MI from global pairwise alignments. Our main result uses algorithmic (Kolmogorov) information theory, but we show that similar results can also be obtained from Shannon theory. For animal mitochondrial DNA our approach uses the alignments made by popular global alignment algorithms to produce MI estimates that are strikingly close to estimates obtained from the alignment free methods mentioned above. We point out that, due to the fact that it is not additive, normalized compression distance is not an optimal metric for phylogenetics but we propose a simple modification that overcomes the issue of additivity. We test several versions of our MI based distance measures on a large number of randomly chosen quartets and demonstrate that they all perform better than traditional measures like the Kimura or log-det (resp. paralinear) distances.

Conclusions

Several versions of MI based distances outperform conventional distances in distance-based phylogeny. Even a simplified version based on single letter Shannon entropies, which can be easily incorporated in existing software packages, gave superior results throughout the entire animal kingdom. But we see the main virtue of our approach in a more general way. For example, it can also help to judge the relative merits of different alignment algorithms, by estimating the significance of specific alignments. It strongly suggests that information theory concepts can be exploited further in sequence analysis.  相似文献   

3.
Atherosclerosis is among the leading causes of death and disability. Combining information from multi-modal vascular images is an effective and efficient way to diagnose and monitor atherosclerosis, in which image registration is a key technique. In this paper a feature-based registration algorithm, Two-step Auto-labeling Conditional Iterative Closed Points (TACICP) algorithm, is proposed to align three-dimensional carotid image datasets from ultrasound (US) and magnetic resonance (MR). Based on 2D segmented contours, a coarse-to-fine strategy is employed with two steps: rigid initialization step and non-rigid refinement step. Conditional Iterative Closest Points (CICP) algorithm is given in rigid initialization step to obtain the robust rigid transformation and label configurations. Then the labels and CICP algorithm with non-rigid thin-plate-spline (TPS) transformation model is introduced to solve non-rigid carotid deformation between different body positions. The results demonstrate that proposed TACICP algorithm has achieved an average registration error of less than 0.2mm with no failure case, which is superior to the state-of-the-art feature-based methods.  相似文献   

4.
Mutual information (MI)-based registration, which uses MI as the similarity measure, is a representative method in medical image registration. It has an excellent robustness and accuracy, but with the disadvantages of a large amount of calculation and a long processing time. In this paper, by computing the medical image moments, the centroid is acquired. By applying fuzzy c-means clustering, the coordinates of the medical image are divided into two clusters to fit a straight line, and the rotation angles of the reference and floating images are computed, respectively. Thereby, the initial values for registering the images are determined. When searching the optimal geometric transformation parameters, we put forward the two new concepts of fuzzy distance and fuzzy signal-to-noise ratio (FSNR), and we select FSNR as the similarity measure between the reference and floating images. In the experiments, the Simplex method is chosen as multi-parameter optimisation. The experimental results show that this proposed method has a simple implementation, a low computational cost, a fast registration and good registration accuracy. Moreover, it can effectively avoid trapping into the local optima. It is adapted to both mono-modality and multi-modality image registrations.  相似文献   

5.
Mutual information (MI)-based registration, which uses MI as the similarity measure, is a representative method in medical image registration. It has an excellent robustness and accuracy, but with the disadvantages of a large amount of calculation and a long processing time. In this paper, by computing the medical image moments, the centroid is acquired. By applying fuzzy c-means clustering, the coordinates of the medical image are divided into two clusters to fit a straight line, and the rotation angles of the reference and floating images are computed, respectively. Thereby, the initial values for registering the images are determined. When searching the optimal geometric transformation parameters, we put forward the two new concepts of fuzzy distance and fuzzy signal-to-noise ratio (FSNR), and we select FSNR as the similarity measure between the reference and floating images. In the experiments, the Simplex method is chosen as multi-parameter optimisation. The experimental results show that this proposed method has a simple implementation, a low computational cost, a fast registration and good registration accuracy. Moreover, it can effectively avoid trapping into the local optima. It is adapted to both mono-modality and multi-modality image registrations.  相似文献   

6.
The stomach has the ability to change its geometry and volume during digestion. Thus, the stomach shape changes dynamically due to changes in contents and due to pressure from adjacent organs. Full-field strain analysis is therefore important for accurate estimation of the true deformation in this highly non-homogeneous, anisotropic organ. The aim of this study is to introduce a modified non-rigid image registration based 3D shape context method combined with a full-field strain analysis method to describe a distension-induced 3D gastric deformation. The geometry of a normal rat stomach at distension pressures from 0.05 kPa to 0.8 kPa were obtained by ultrasonic scanning. The full-field strain distribution of the 3D gastric model between the reference state and the distended state were computed on the basis of the improved 3D shape context method and full-field strain analysis method. The registered surface showed a good agreement with the real deformed surface for all distension states. However, the errors increased with the distension pressure due to increasing dissimilarity between the deformed and the reference surface. The strain distributions on the stomach surface were non-uniform with the largest deformation in the non-glandular part and the greater and lesser curvature when the pressure was higher than 0.2 kPa. The wall stiffness of the non-glandular part was softer than that of the glandular part. The modelling analysis method which is closely allied with the non-rigid image registration and strain analysis provides a kinematically possible deformation mode of the gastric wall. This method can be potentially used for clinical data estimating the kinematical properties of the human visceral organs in health and disease.  相似文献   

7.
A mathematical technique is described that relates detection model parameters to stimulus magnitude and experimental probability of detection. The normalizing transform is used to make the response statistics approximately Gaussian. Conventional probit analysis is then applied. From measurements at M stimulus levels, a system of M equations is solved and estimates of M unknown parameters of the detection model are obtained. The technique is applied to a threshold vision model based on additive and multiplicative Poisson noise. Results are obtained for the parameter estimates for individual subjects, and for the standard deviation of the estimates, for various values of the stimulus energy and number of trials. A frequency-of-seeing experiment is performed using a point-source stimulus that randomly assumes 3 energy levels with 200 trials per level. With a central efficiency of 50%, the estimated ocular quantum efficiency for our four subjects lies between 12% and 23%, the average dark count at the retina lies between 8 and 36 counts, and the threshold count for our (low falsereport rate) data lies between 11 and 32. The theoretical results reduce to those obtained by Barlow (J. Physiol. London 160, 155–168, 1962), in the absence of dark light and multiplication noise.This work was supported by the National Science Foundation  相似文献   

8.
断层间图像插值是三维重建的一个关键步骤,因为图像上像素之间的间隔常常小于断层图像之间的距离,而在三维重建需要它们有一致的分辨率.由于是同模态断层图像层间插值,对于解决同模态弹性配准问题,Thirion的demons算法比较适合.所以配准采用Demons方法.Demons算法先判断出待配准图像上各个象素点的运动方法,通过对各个象素点的移动来实现非刚性配准.在这个算法中,每张图像都被视为同灰度值轮廓的集合.该算法可以应用于精度要求比较高的体数据插值重建过程.  相似文献   

9.
The chronobiologic serial section is described. Its applicability to the analysis of nonequidistant data is emphasized. Its ability to detect and quantify multiple components is discussed and exemplified on simulated series with various amounts of additive Gaussian noise. This least-squares method is discussed in the context of a number of complementary procedures such as complex demodulation and linear-nonlinear least-squares rhythmometry.  相似文献   

10.
The 3D folding structure formed by different genomic regions of a chromosome is still poorly understood. So far, only relatively simple geometric features, like distances and angles between different genomic regions, have been evaluated. This work is concerned with more complex geometric properties, i.e., the complete shape formed by genomic regions. Our work is based on statistical shape theory and we use different approaches to analyze the considered structures, e.g., shape uniformity test, 3D point-based registration, Fisher distribution, and 3D non-rigid image registration for shape normalization. We have applied these approaches to analyze 3D microscopy images of the X-chromosome where four consecutive genomic regions (BACs) have been simultaneously labeled by multicolor FISH. We have acquired two sets of four consecutive genomic regions with an overlap of three regions. From the experimental results, it turned out that for all data sets the complete structure is non-random. In addition, we found that the shapes of active and inactive X-chromosomal genomic regions are statistically independent. Moreover, we reconstructed the average 3D structure of chromatin in a small genomic region (below 4 Mb) based on five BACs resulting from two overlapping four BAC regions. We found that geometric normalization with respect to the nucleus shape based on non-rigid image registration has a significant influence on the location of the genomic regions.  相似文献   

11.
High resolution strain measurements are of particular interest in load bearing tissues such as the intervertebral disc (IVD), permitting characterization of biomechanical conditions which could lead to injury and degenerative outcomes. Magnetic resonance (MR) imaging produces excellent image contrast in cartilaginous tissues, allowing for image-based strain determination. Nonrigid registration (NRR) of MR images has previously demonstrated sub-voxel registration accuracy although its accuracy and precision in determining strain has not been evaluated. Accuracy and precision of NRR-derived strain measurements were evaluated using computer generated deformations applied to both computer generated images and MR images. Two different measures of registration similarity--the cost function which drives the registration algorithm--were compared: Mutual Information (MI) and Least Squares (LS). Strain error was evaluated with respect to signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and strain heterogeneity. Additionally, the creep strain response from an in vitro loaded porcine IVD is shown and comparisons between similarity measures are presented. MI showed a decrease in strain precision with increasing CNR and decreasing SNR while LS was insensitive to both. Both similarity measures showed a decrease in strain precision with increasing strain heterogeneity. When computer generated heterogeneous strains were applied to MR images of the IVD, LS showed substantially lower strain error in comparison to MI. Results suggest that LS-driven NRR provides a more accurate image-based method for mapping large and heterogeneous strain fields and this method can be applied to studies of the IVD and, potentially, other soft tissues which present sufficient image texture.  相似文献   

12.
MOTIVATION: Although several recently proposed analysis packages for microarray data can cope with heavy-tailed noise, many applications rely on Gaussian assumptions. Gaussian noise models foster computational efficiency. This comes, however, at the expense of increased sensitivity to outlying observations. Assessing potential insufficiencies of Gaussian noise in microarray data analysis is thus important and of general interest. RESULTS: We propose to this end assessing different noise models on a large number of microarray experiments. The goodness of fit of noise models is quantified by a hierarchical Bayesian analysis of variance model, which predicts normalized expression values as a mixture of a Gaussian density and t-distributions with adjustable degrees of freedom. Inference of differentially expressed genes is taken into consideration at a second mixing level. For attaining far reaching validity, our investigations cover a wide range of analysis platforms and experimental settings. As the most striking result, we find irrespective of the chosen preprocessing and normalization method in all experiments that a heavy-tailed noise model is a better fit than a simple Gaussian. Further investigations revealed that an appropriate choice of noise model has a considerable influence on biological interpretations drawn at the level of inferred genes and gene ontology terms. We conclude from our investigation that neglecting the over dispersed noise in microarray data can mislead scientific discovery and suggest that the convenience of Gaussian-based modelling should be replaced by non-parametric approaches or other methods that account for heavy-tailed noise.  相似文献   

13.
L Theis  R Hosseini  M Bethge 《PloS one》2012,7(7):e39857
We present a probabilistic model for natural images that is based on mixtures of Gaussian scale mixtures and a simple multiscale representation. We show that it is able to generate images with interesting higher-order correlations when trained on natural images or samples from an occlusion-based model. More importantly, our multiscale model allows for a principled evaluation. While it is easy to generate visually appealing images, we demonstrate that our model also yields the best performance reported to date when evaluated with respect to the cross-entropy rate, a measure tightly linked to the average log-likelihood. The ability to quantitatively evaluate our model differentiates it from other multiscale models, for which evaluation of these kinds of measures is usually intractable.  相似文献   

14.
A functional expansion was used to model the relationship between a Gaussian white noise stimulus current and the resulting action potential output in the single sensory neuron of the cockroach femoral tactile spine. A new precise procedure was used to measure the kernels of the functional expansion. Very similar kernel estimates were obtained from separate sections of the data produced by the same neuron with the same input noise power level, although some small time-varying effects were detectable in moving through the data. Similar kernel estimates were measured using different input noise power levels for a given cell, or when comparing different cells under similar stimulus conditions. The kernels were used to identify a model for sensory encoding in the neuron, comprising a cascade of dynamic linear, static nonlinear, and dynamic linear elements. Only a single slice of the estimated experimental second-order kernel was used in identifying the cascade model. However, the complete second-order kernel of the cascade model closely resembled the estimated experimental kernel. Moreover, the model could closely predict the experimental action potential train obtained with novel white noise inputs.  相似文献   

15.

The statistical analysis of enzyme kinetic reactions usually involves models of the response functions which are well defined on the basis of Michaelis–Menten type equations. The error structure, however, is often without good reason assumed as additive Gaussian noise. This simple assumption may lead to undesired properties of the analysis, particularly when simulations are involved and consequently negative simulated reaction rates may occur. In this study, we investigate the effect of assuming multiplicative log normal errors instead. While there is typically little impact on the estimates, the experimental designs and their efficiencies are decisively affected, particularly when it comes to model discrimination problems.

  相似文献   

16.
In this paper we present a methodology to form an anatomical atlas based on the analysis of dense deformation fields recovered by the Morphons non-rigid registration algorithm. The methodology is based on measuring the bending energy required to register the whole database to a reference, and the atlas is the one image in the database which yields the smallest bending energy when taken as reference. The suitability of our atlas is demonstrated in the context of head and neck radiotherapy through its application to a database with thirty-one computed tomography (CT) images of the head and neck region. In head and neck radiotherapy, CT is the most frequently used modality for the segmentation of organs at risk and clinical target volumes. One challenge brought by the use of CT images is the presence of important artifacts caused by dental implants. The presence of such artifacts hinders the use of intensity averages, thus severely limiting the application of most atlas building techniques described in the literature in this context. The results presented in the paper show that our bending energy model faithfully represents the shape variability of patients in the head and neck region; they also show its good performance in segmentation of volumes of interest in radiotherapy. Moreover, when compared to other atlases of similar performance in automatic segmentation, our atlas presents the desirable feature of not being blurred after intensity averaging.  相似文献   

17.
Flatfoot (pes planus) is one of the most important physical examination items for military new recruits in Taiwan. Currently, the diagnosis of flatfoot is mainly based on radiographic examination of the calcaneal-fifth metatarsal (CA–MT5) angle, also known as the arch angle. However, manual measurement of the arch angle is time-consuming and often inconsistent between different examiners. In this study, seventy male military new recruits were studied. Lateral radiographic images of their right and left feet were obtained, and mutual information (MI) registration was used to automatically calculate the arch angle. Images of two critical bones, the calcaneus and the fifth metatarsal bone, were isolated from the lateral radiographs to form reference images, and were then compared with template images to calculate the arch angle. The result of this computer-calculated arch angle was compared with manual measurement results from two radiologists, which showed that our automatic arch angle measurement method had a high consistency. In addition, this method had a high accuracy of 97% and 96% as compared with the measurements of radiologists A and B, respectively. The findings indicated that our MI registration measurement method cannot only accurately measure the CA–MT5 angle, but also saves time and reduces human error. This method can increase the consistency of arch angle measurement and has potential clinical application for the diagnosis of flatfoot.  相似文献   

18.
19.
Several stochastic models with environmental noise generate spatio‐temporal Gaussian fields of log densities for the species in a community. Combinations of such models for many species often lead to lognormal species abundance distributions. In spatio‐temporal analysis it is often realistic to assume that the same species are expected to occur at different times and/or locations because extinctions are rare events. Spatial and temporal β‐diversity can then be analyzed by studying pairs of communities at different times or locations defined by a bivariate lognormal species abundance model in which a single correlation occurs. This correlation, which is a measure of similarity between two communities, can be estimated from samples even if the sampling intensities vary and are unknown, using the bivariate Poisson lognormal distribution. The estimators are approximately unbiased, although each specific correlation may be rather uncertain when the sampling effort is low with only a small fraction of the species represented in the samples. An important characteristic of this community correlation is that it relates to the classical Jaccard‐ or the Sørensen‐indices of similarity based on the number of species present or absent in two communities. However, these indices calculated from samples of species in a community do not necessarily reflect similarity of the communities because the observed number of species depends strongly on the sampling intensities. Thus, we propose that our community correlation should be considered as an alternative to these indices when comparing similarity of communities. We illustrate the application of the correlation method by computing the similarity between temperate bird communities.  相似文献   

20.
In this paper, a novel methodology for estimating the shape of human biconcave red blood cells (RBCs), using color scattering images, is presented. The information retrieval process includes, image normalization, features extraction using two-dimensional discrete transforms, such as angular radial transform (ART), Zernike moments and Gabor filters bank and features dimension reduction using both independent component analysis (ICA) and principal component analysis (PCA). A radial basis neural network (RBF-NN) estimates the RBC geometrical properties. The proposed method is evaluated in both regression and identification tasks by processing images of a simulated device used to acquire scattering phenomena of moving RBCs. The simulated device consists of a tricolor light source (light emitting diode – LED) and moving RBCs in a thin glass. The evaluation database includes 23,625 scattering images, obtained by means of the boundary element method. The regression and identification accuracy of the actual RBC shape is estimated using three feature sets in the presence of additive white Gaussian noise from 60 to 10 dB SNR and systematic distortion, giving a mean error rate less than 1% of the actual RBC shape, and more than 99% mean identification rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号